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We consider the following problems: (a) Given a labelled Petri net and a
finite automaton, are they equivalent?; (b) Given a labelled Petri net, is it
equivalent to some (unspecified) finite automaton? These questions are studied
within the framework of trace and bisimulation equivalences, in both their
strong and weak versions. (In the weak version a special { action��likened to an
=-move in automata theory��is considered to be nonobservable.) We
demonstrate that (a) is decidable for strong and weak trace equivalence and
for strong bisimulation equivalence, but undecidable for weak bisimulation
equivalence. On the other hand, we show that (b) is decidable for strong
bisimulation equivalence, and undecidable for strong and weak trace equiv-
alence, as well as for weak bisimulation equivalence. � 1999 Academic Press

1. INTRODUCTION

In the specification and verification of distributed systems, it is typically the case
that one considers a specific mathematical model for the description of processes,
along with some equivalence relating processes which demonstrate the same semantic
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behaviour. One of the first questions to ask then for the purpose of (automatic)
verification is: (to what extent) is the equivalence decidable?

In this paper we consider the class of processes generated by labelled place�tran-
sition Petri nets, called just Petri nets in the sequel. Petri nets constitute a popular
and important formalism for modelling distributed systems, as exemplified by the
widely used textbooks by Peterson [22] and Olderog [21] and by the ``Advances
in Petri Nets'' volumes of the series Lecture Notes in Computer Science. We consider
trace equivalence and bisimulation equivalence��two equivalences in the forefront
of the study of these systems��and study both their strong and weak versions. (In
the strong versions, all the labels carried by the transitions of the net are assumed
to be visible actions. In the weak versions, some transitions may be labelled with
a special silent action {, which plays a similar role to =-moves in finite automata.
The firing of these transitions is assumed to be unobservable.)

Unfortunately, already the strong versions (along with the strong versions of all
``reasonable'' behavioural equivalences) are undecidable for general Petri nets
[10�12], in fact, even for Petri nets having at most two unbounded places. Faced
with such a negative result, a natural step then is to restrict the problem in some
way. For example, for the class of Petri nets in which every transition has a single
input place��the so-called basic parallel processes��strong bisimulation equivalence
is decidable [1], whereas all other standard equivalences (such as trace equiv-
alence) are undecidable, even in the strong case [6, 8]. If, on the other hand, we
compare two bounded Petri nets, then these equivalences all become decidable, as
such nets describe behaviours realized by finite automata.

We consider here the problem of restricting just one of the two Petri nets to be
bounded, thus comparing general Petri nets against finite automata. Within this
framework, we consider both the equivalence problem, as well as the question
concerning the finiteness of a given net, that is, the question as to whether or not
there is some (unspecified) finite automaton which is equivalent to the Petri net. We
address these questions for both trace and bisimulation equivalence. We show that
the strong and weak trace equivalence problems are decidable, while the finiteness
question for the traces of a net is undecidable, even in the strong case. In the
bisimulation case, both the equivalence and finiteness questions are decidable for
strong bisimilarity, yet undecidable for weak bisimilarity.

Our results extend and complement previous results by Valk and Vidal-Naquet
[23] on the finiteness question for trace equivalence, which they referred to as the
regularity question, as they were only interested in deciding if the traces describe
regular languages. They showed that the regularity of the terminal language of a net
��that is, the set of traces corresponding to the firing sequences leading to a fixed
set of markings��is undecidable, whereas the regularity of the set of all traces of a
net in which each transition carries a different label is decidable.

These problems can be addressed with respect to any semantic equivalence,
for example, for any of the observation-based equivalences catalogued by van
Glabbeek [3], or any of a variety of non-interleaving semantic equivalences
proposed for Petri nets. We restrict our present study to two of the most important
observation-based equivalences which happen to lie at opposite ends (with respect
to distinguishing power) of van Glabbeek's spectrum.
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The paper is structured as follows. In Section 2 we define the concepts which we
use, in particular, the notion of a Petri net, as well as the equivalences which we
study. We also present a catalogue of technical results��both old and new��which
we exploit in our decision procedures and undecidability proofs. Of particular
importance are results based on the decidability of the reachability problem for
Petri nets and the relevant variations of Higman's theorem.

In Section 3 we consider trace equivalence and demonstrate first the decidability
of the equivalence problem (in both the strong and weak cases) by showing that the
trace inclusion problem in each direction is decidable. We follow this by demonstrating
the undecidability of the finiteness problem in the strong case. The proof is carried
out by reduction from the halting problem for Minsky machines.

In Section 4 we turn our attention to bisimulation equivalence and demonstrate
that both problems are decidable in the strong case, yet both problems are
undecidable in the weak case. The first undecidability result follows from a reduc-
tion from the containment problem for Petri nets, while the second relies on a
special form of the containment problem to which the halting problem for Minsky
machines can be reduced. The results presented here elaborate on those presented
by the authors in [17, 14].

2. PRELIMINARIES

Here we define some basic notions and introduce various results which will prove
useful. By N we denote the set of nonnegative integers: N=[0, 1, 2, ...]. For a set
A, A* denotes the set of finite sequences of elements of A; the empty sequence is
denoted by = # A*. For u # A* and k # N, we denote by uk the k-fold concatenation
of u; and by |u| we denote the length of u.

2.1. Labelled Transition Systems and Equivalences

We define an automaton to be a labelled transition system (LTS), which is a tuple
L=(S, 7, [w�a ]a # 7), where S is a set of states, 7 is a finite set of actions, and
each w�a is a binary transition relation on S, that is, w�a �S_S; we write E w�a F
for (E, F) # w�a . By E � F we mean that E w�a F for some a; and �* denotes
the reflexive and transitive closure of the relation �. We write E w�u F for u=
a1 a2 } } } an # 7* to mean that there are states E1 , E2 , ..., En&1 such that E w�

a1

E1 w�
a2 } } } ww�

an&1 En&1 w�
an F. We write E w�u to mean that E w�u F for some F. In

particular, E w�= E for every E, and E w�= F only if E=F. (Note the difference
between E � F and E w�= F.)

We say that a set of states S�S is reachable from E, written E �* S, iff E �* F
for some F # S. The reachability set for a state E of L is defined by RL(E)=
[F : E �* F]. (We generally omit the subscript L when the underlying LTS is
clear from the context.)

An LTS L=(S, 7, [w�a ]a # 7 ) is finite-state iff S is finite. L is image finite iff
succa(E)=[F : E w�a F] is finite for every E # S and every a # 7. By a process E we
refer to a state in a transition system; when necessary, we denote the underlying
transition system by L(E). By referring to a finite-state process E, we mean that
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L(E) is finite; a similar convention holds for an image finite process. We use the
symbols R, R$, ... to denote finite-state LTSs, and the symbols r, r$, ... to denote
states in finite-state systems, that is, finite-state processes.

A binary relation B between processes is a strong bisimulation, provided that
whenever (E, F) # B for each a # 7,

v if E w�a E$ then F w�a F $ for some F $ such that (E$, F $) # B; and

v if F w�a F $ then E w�a E$ for some E$ such that (E$, F $) # B.

Two processes E and F are strongly bisimulation equivalent or strongly bisimilar,
written EtF, iff there is a strong bisimulation B relating them.

A decreasing chain t0 $t1 $t2 $ } } } $t of equivalence relations between
processes is defined inductively as follows:

v Et0 F for all processes E and F; and

v Etn+1 F iff for each a # 7:

�� if E w�a E$ then F w�a F $ for some F $ such that E$tn F $;

�� if F w�a F $ then E w�a E$ for some E$ such that E$tn F $.

The fact that these relations do form a decreasing chain of equivalences all contain-
ing t is easily confirmed (by induction on n). The next two propositions are also
easily confirmed folklore.

Proposition 2.1. For image finite processes E and F, EtF iff Etn F for all n�0.

Proof. The forward implication can be proved by induction on n; the reverse
implication is proved by demonstrating that the relation B=[(E, F) : Etn F for
all n] is a strong bisimulation. K

Let us call L=(S, 7, [w�a ]a # 7) an admissible system iff the state set S is
finite or countably infinite (identified with a set of sequences over a finite alphabet),
L is image finite, and all of the successor functions succa : S � 2S are effectively
computable. (Recall that 7 is finite, so there are only finitely many of these.) With
this restriction in place, the following result is immediate.

Proposition 2.2. Considering only admissible systems, all of the relations Etn F
are decidable. Therefore the nonequivalence problem Et3 F is semidecidable.

Proof. To decide Etn F, we need simply resort to the definition of the relations
tn . Et3 F can then be confirmed by deciding each Etn F for n=0, 1, 2, ... until we
discover that E t3 n F for some n. K

We have as yet dealt only with definitions and results concerning automata without
silent transitions. To introduce these transitions, we interpret a distinguished
symbol { # 7 as a silent action and modify our definitions accordingly. (We follow
this framework adopted from process theory, rather than the automata theoretic
technique of directly allowing =-moves, as we want to be able to distinguish, for
example, between w�a and w�{a ; whereas =a=a, {a{a.)
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Given any a # 7 with a{{, we let E =Oa F represent E w�
u F for some u={ka{l

(k, l�0); that is, =Oa =(w�{ )* w�a (w�{ )*. We then let E w�{ F represent E w�u F for
some u={k (k�0). Note that we allow u== so, for example, E =O{ E for all E.4

The relations E =Ou F and E =Ou , where u # 7*, are then the obvious generaliza-
tions: E =O= F iff E =O{ F, and for u=a1a2 } } } an {=, E =Ou F iff there are states
E1 , E2 , ..., En&1 such that E =O

a1 E1 =O
a2 } } } ===O

an&1 En&1 =O
an F; and E =Ou iff E =Ou F

for some F. Finally, we introduce one further bit of notation: given a set S of states,
we let =Ou (S)=[F : E =Ou F for some E # S].

The relation of weak bisimulation equivalence, denoted by r, as well as the rela-
tions rn (n=0, 1, 2, ...), are defined in the same way as for the strong relations t,
tn but with w�a replaced everywhere by =Oa .

The strong trace set of a state E of an LTS L is defined by ST(E)=
[w # 7* : E w�

w ]. Two processes E and F are strongly trace equivalent iff ST(E)=
ST(F). The weak trace set, or just the trace set, of a state E is defined by T(E)=
[w # (7"[{])* : E =Ow ]. Two processes E and F are weakly trace equivalent, or just
trace equivalent, iff T(E)=T(F ).

Notice that two {-free transition systems are weakly trace equivalent iff they are
strongly trace equivalent, and they are weakly bisimilar iff they are strongly
bisimilar. As an easy consequence, decidability of a problem in the weak case
implies decidability in the strong case. Moreover, undecidability of a problem in the
strong case can be shown by proving undecidability in the weak case for {-free
systems. We make free use of these facts.

2.2. Petri Nets

A ( finite, labelled, place�transition Petri) net is a tuple N=(P, T, F, 7, l), where

v P, T, and 7 are finite disjoint sets of places, transitions, and actions,
respectively;

v F : (P_T ) _ (T_P) � [0, 1] defines the set of arcs; (x, y) is an arc iff
F (x, y)=1;

v l : T � 7 is a labelling which associates an action from 7 to each transition.

In the Petri net literature, multiple arcs are often allowed (in which case the range
of F is given as N). For technical convenience, we treat only ordinary nets;
nevertheless all of our arguments can be easily modified to hold for these more
general nets. We display nets graphically using circles for places and boxes for trans-
itions; when labels of transitions are important, we write them inside the boxes.

A marking of a net is a mapping M: P � N associating a number of tokens to
each place. We denote the zero marking, that is, the marking that maps each place
to 0, by 0. A transition t is enabled at a marking M, written M [t) , iff M( p)�
F( p, t) for every p # P. If a transition t is enabled at a marking M it may fire or
occur yielding the marking M$, denoted M [t) M$, where M$( p)=M( p)&F( p, t)
+F(t, p) for all p # P. We extend this firing rule to sequences of transitions, thus
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writing M [t1 t2 } } } tn) M$ when M [t1) M1 [t2) } } } Mn&1 [tn) M$ for some
M1 , M2 , ..., Mn&1 (and M [t1 t2 } } } tn) when M [t1 t2 } } } tn) M$ for some M$).

We interpret a net N=(P, T, F, 7, l) as an LTS where markings play the role
of states. The transition relations w�a are provided by the firings of the enabled
transitions of the net: M w�a M$ iff M [t) M$ for some t with l(t)=a. Notions like
M w� M$, M =O

u M$, T(M), M1tM2 are then inherited from the respective
notions given in the general setting. In particular, we have the notion of the
reachable markings of a marking M of a net N; in this case we write either RN(M)
or R(M) if the underlying net N is clear from the context. Observe that the LTS
derived from a net is an admissible system, so Proposition 2.2 is applicable.

We now recall some known results from Petri net theory, in particular the
decidability of the reachability problem.

Theorem 2.3 (Mayr [18]). Given two markings M and M$ of a Petri net N, it
is decidable whether or not M �* M$, that is, whether or not M$ # R(M).

We also use the notion of an |-marking; it extends the notion of a marking by
allowing an infinite number of tokens to be associated to the places. Formally we
set N|=N _ [|], where we suppose | satisfies n�| and |+n=|&n=| for all
n # N. An |-marking, for which we reserve symbols M� , M� $, ..., is then simply a
mapping M� : P � N| . Notions such as M� [t) M� $, M� w�a M� $ and T(M� ) are then
naturally defined as extensions of the previous definitions.

We define the ordering � pointwise on the set NP
| of |-markings of a net with

place set P, thus writing M� �M� $ iff M� ( p)�M� $( p) for every p # P; this is a partial
order on |-markings (it is reflexive, transitive, and antisymmetric). Moreover, it
satisfies the finite basis property ( fbp): every infinite sequence of elements has an
infinite (not necessarily strictly) ascending subsequence. This result is known as
Dickson's lemma [2].

Lemma 2.4 (Dickson [2]). The collection of |-markings of a net ordered by
� satisfies the fbp. Specifically, given an infinite sequence of |-markings
M� 1 , M� 2 , M� 3 , ..., there are indices i1<i2<i3< } } } , such that M� i1

�M� i2
�M� i3

� } } } .

Proof. By induction on the number of places: for each place p in turn, we
choose an infinite subsequence M� i1

, M� i2
, M� i3

, ..., such that M� i1
( p)�M� i2

( p)�M� i3
( p)

� } } } . K

Finally, we extend the ordering to sets of |-markings by defining M�M$ iff for
every M� # M there exists M� $ # M$ with M� �M� $; this relation is a preorder on sets
of |-markings (it is reflexive and transitive, but not antisymmetric). We may then
observe the following.

Lemma 2.5. (a) If M� $ [t) M� $t and M� �M� $, then M� [t) M� t (and hence, M� t�M� $t).

(b) If M� $ =Oa M� $a and M� �M� $, then M� =Oa M� a with M� a�M� $a .

(c) If M� $ [u) and M� ( p)�min( |u|, M� $( p)) for all places p, then M� [u) .

(d) If M� $ =O
w and M� �M� $, then M� =O

w
.

(e) If M�M$, then =Oa (M)�=Oa (M$).
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Proof. Part (a) is easily proved directly; part (b) is proved from part (a) by
induction on the number of unobservable { transitions involved in the transition
M� $ =Oa M� $a ; part (c) is proved by induction on |u|; part (d) follows from part (c);
and part (e) follows from part (b). K

Every increasing chain M� 1�M� 2�M� 3� } } } of |-markings has a unique least
upper bound M� defined by M� ( p)=limn � � M� n( p) for each place p. For a set M

of |-markings we define its completion C(M) to be M enriched by such least upper
bounds; and we use max(M) to refer to the subset of maximal elements of M.
Formally, these are defined as

C(M)=[M� : M� is the least upper bound of a (possibly constant-valued)

chain M� 1�M� 2� } } } in M].

max(M)=[M� # M : for all M� $ # M, either M� =M� $ or M� �3 M� $].

The first important observation we can make is that there can only be finitely
many maximal elements in any set of |-markings.

Lemma 2.6. For every set M of |-markings, max(M) is finite.

Proof. Immediate from Lemma 2.4. K

We can then make the following sequence of observations.

Lemma 2.7. (a) M�C(M).

(b) C(C(M))=C(M).

(c) max(M)�M.

(d) If M�M$, then M�M$.

(e) If M�M$, then =Oa (M)�=Oa (M$).

(f ) If max(M)�max(M$)�max(M), then max(M)=max(M$).

Proof. Immediate. K

Lemma 2.8. For every M� # C(M) there is M� $ # max(C(M)) such that M� �M� $.

Proof. By induction on the number of places p with M� ( p)<�. If there is no
chain M� �M� 1�M� 2� } } } of distinct |-markings in C(M), then the result readily
follows. Otherwise let M� � # C(M) be the least upper bound of such a chain. Then
M� �M� � , and M� � must have fewer finitely marked places than M� , from which the
result follows by induction. K

Lemma 2.9. If M�M$, then max(C(M))�max(C(M$)).

Proof. Let M� # max(C(M)). Then by Lemma 2.7(c), M� # C(M), so M� is the
least upper bound of a chain M� 1�M� 2� } } } in M. From M�M$ we can find a
sequence M� $1 , M� $2 , ... in M$ with M� i�M� $i for each i�1. By Lemmas 2.7(a) and 2.8,
we can find M� i" # max(C(M$)) such that M� $i�M� i" for each i�1. By Lemma 2.6,
there must be a single M� $ # max(C(M$)) such that M� $i�M� $ for infinitely many
i�1, and hence M� i�M� $ for all i�1. Thus M� �M� $. K
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Lemma 2.10. C(�1�i�n Mi)=�1�i�n C(Mi ).

Proof. For inclusion in the forward direction, any M� # C(�1�i�n Mi) must be
the least upper bound of a chain M� 1�M� 2� } } } of markings taken from �1�i�n Mi ;
but since there are only finitely many Mi , we must be able to take a subchain M� i1

�M� i2
� } } } of markings from a single Mi , from which we deduce that M� # C(Mi)�
�1�i�n C(Mi).

For inclusion in the reverse direction, any M� # �1�i�n C(Mi) must come from
some C(Mi), from which we get M� # C(�1�i�n Mi). K

Lemma 2.11. max(�i Mi)=max(�i max(Mi)).

Proof. M� # max(�i Mi)

iff M� # Mi for some i, and M� �3 M� $ for every M� ${M� in �i Mi

iff M� # max(Mi) for some i, and M� �3 M� $ for every M� ${M� in �i max(Mi)

iff M� # max(� i max(Mi)). K

Lemma 2.12. =Oa (C(M))�C(=Oa (M)).

Proof. Let M� a # =Oa (C(M)). Then there is a chain M� 1�M� 2� } } } in M with
least upper bound M� such that M� w�

w M� a , where w={ka{l (k, l�0) if a{{ and
w={k (k�0) if a={. We can assume (by dropping a sufficient initial segment of
the chain) that M� 1( p)=M� ( p) whenever M� ( p)<� and that M� 1( p)�|w| whenever
M� ( p)=�. By Lemma 2.5(c) we have a sequence M� $1 , M� $2 , ... in =Oa (M) such that
M� i w�

w M� $i for each i�1, all using the same sequence of net transistions as
M� w�

w M� a , thus having the same effect on the markings; in particular, M� $1�M� $2
� } } } . This chain has a least upper bound M� $ in C(=Oa (M)); it remains to
demonstrate that M� a=M� $, that is, that M� a( p)=M� $( p) for all places p:

v If M� ( p)<� then M� ( p)=M� i ( p) for all i�1, so M� a( p)=M� $i ( p) for all
i�1, so M� a( p)=lim i � � M� $i ( p)=M� $( p).

v If M� ( p)=� then for each n�0 there is an i�1 such that M� i ( p)>n+|w| ,
so M� $i ( p)>n, and hence, M� $( p)=limi � � M� $i ( p)=�. K

Lemma 2.13. (a) T(M� $)�T(M� ) for any |-markings M� and M� $ with M� �M� $.

(b) Given an increasing chain M� 1�M� 2�M� 3� } } } of |-markings with least
upper bound M� , we have that �i�1 T(M� i)=T(M� ).

(c) �M� # M T(M� )=�M� # max(C(M)) T(M� ).

Proof. Part (a) follows directly from Lemma 2.5(d). For part (b), inclusion in
the forward direction follows from part (a) since M� �M� i for each i. Inclusion in the
reverse direction holds since whenever M� w�

w
we must have some M� i such that

M� i ( p)�min( |w|, M� ( p)) for all places p; the result then follows from Lemma 2.5(c).
Finally for part (c), to show inclusion in the forward direction, let M� # M. By

Lemmas 2.7(a) and 2.8 there is M� $ # max(C(M)) with M� �M� $. Then by part (a),
T(M� )�T(M� $). To show inclusion in the reverse direction let M� # max(C(M)).
Thus by Lemma 2.7(c) M� # C(M), so there is a chain M� 1�M� 2� } } } in M with
least upper bound M� . By part (b), T(M� )=�i�1 T(M� i)��M� # M T(M� ). K
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Lemma 2.14. max(C(=Oa (max(C(M)))))=max(C(=Oa (M))).

Proof. By Lemma 2.7(f ), it suffices to demonstrate

1. max(C(=Oa (max(C(M)))))�max(C(=Oa (M)));

2. max(C(=Oa (M)))�max(C(=Oa (max(C(M))))).

For 1 we have

max(C(M))�C(M) (by Lemma 2.7(c))

so

=Oa (max(C(M)))� Oa (C(M)) (by Lemma 2.7(e))

�C(=Oa (M)) (by Lemma 2.12)

so

=Oa (max(C(M)))�C(=Oa (M)) (by Lemma 2.7(d))

so

max(C(=Oa (max(C(M)))))�max(C(C(=Oa (M)))) (by Lemma 2.9)

=max(C(=Oa (M))) (by Lemma 2.7(b))

For 2 we have

M�max(C(M)) by Lemmas 2.7(a) and 2.8)

so

=Oa (M)�=Oa (max(C(M))) (by Lemma 2.5(e))

so

max(C(=Oa (M)))�max(C(=Oa (max(C(M))))) (by Lemma 2.9). K

Given an |-marking M� of a net N, we can effectively find the (finitely many)
maximal elements of C(R(M� )); this can be achieved by the technique of coverability
trees [22]. Similarly, we can get the following.

Lemma 2.15. Given an |-marking M� and an action symbol a # 7, we can effec-
tively construct max(C(=Oa [M� ])). Hence, we can effectively construct max(C(=Oa (M)))
for any finite set M of |-markings.

Proof. Assume that a{{. Construct net N$ from N by removing all transitions
with a label different from a or {, and adding a new place p which is an input place
to all transitions with label a. Then let M� $ have a single token on place p and let
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it be the same as M� on the remaining places. Compute max(C(RN$(M� $))), take only
the vectors in which the p-component is 0, and drop this 0-component from the
vectors.

The case where a={ is simpler. We construct N$ by removing the non-{ tran-
sitions and compute max(C(RN$(M� $))). K

We shall also need an extension of Lemma 2.4 based on Higman's theorem [5].

Theorem 2.16 (Higman [5]). If a preorder (A, �) satisfies the fbp then so
does (A*, <<) , where

<<=[(a1a2 } } } an , v0 b1v1 b2 } } } vn&1 bnvn) : ai , bi # A, vi # A*, ai�bi] .

Corollary 2.17. The collection Pfin(NP
|) of all finite sets of |-markings for a

net with place set P satisfies the fbp with respect to �.

Proof. By Lemma 2.4, (NP
| , �) satisfies the fbp. Hence, ( (NP

|)*, <<) also
satisfies the fbp. The corollary is then clear from the fact that any finite set M can
be viewed as a string of its elements. K

Finally, we shall need the following additional technical result (for Theorem 4.8).
Let us call a set of markings M�NP simple if there is a disjoint partition
P=P1 _ P2 , a fixed mapping fix : P1 � N, and a constant n such that

M=[M : M( p1)= fix( p1) and M( p2)�n for all p1 # P1 and p2 # P2 ] .

The next result shows that it is semidecidable if a simple set M2 is reachable via
markings from a simple set M1 whose nonfixed values can be arbitrarily large.

Lemma 2.18. The following problem is semidecidable:

Instance: A marking M0 of a net N, and two simple sets M1 and M2 of
markings of N, where P=P1 _ P2 is the partition relevant to M1 .

Question: For every m # N, does there exist Mm # M1 with Mm( p2)>m for
every p2 # P2 such that M0 �*Mm �* M2?

Proof. Consider an instance of the problem as given above. We use u, v, w to
denote transition sequences of N and 2u to denote the mapping (of places to
integers) indicating the change in the marking upon performing u; that is, if
M [u) M$ then M$=M+2u .

We define a preorder (D, P) , where

D=[(u, M1 , v, M2) : M1 # M1 , M2 # M2 , and M0 [u) M1 [v) M2]

and (u, M1 , v, M2) P(u$, M$1 , v$, M$2) iff we can write

u=u1 u2 u3 } } } uk v=v1 v2 v3 } } } vl

u$=u1w1 u2w2 u3 } } } uk wk v$=v1wk+1 v2wk+2 v3 } } } vl wk+l ,
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so that 2w�0 for every prefix w=w1w2 } } } wi (0�i�k+l) of w1w2 } } } wi } } }
wk+l . By a variation of the proof of Theorem 6.5 in [9] (and using Theorem 2.16
as in that proof), we can show that (D, P) satisfies the fbp. (Briefly, the proof
works by providing a straightforward order-preserving encoding of the elements
of D as sequences of vectors over N and then recalling that vectors over N satisfy
the fbp.)

Given (u, M1 , v, M2 ) P(u$, M$1 , v$, M$2) with the sequences as above for any
prefix s( j) of u1w j

1u2w j
2 } } } uk w j

k v1w j
k+1v2w j

k+2 } } } vlwl
k , we get (from Lemma 2.5(c)

applied repeatedly) that M0 [ s( j)) M ( j) for some M ( j) and that M ( j)�M (k) for
j�k. Thus we can ``pump'' the wi 's; that is, for every j�0,

M0 [u1w j
1u2w j

2 } } } uk w j
k) M ( j)

1 [v1w j
k+1 v2 w j

k+2 } } } vlw j
k+l) M ( j)

2 .

Note that M ( j)
1 =M1+ j } 2w1w2 } } } wk

, so 2w1w2 } } } wk
( p1)=0 for every p1 # P1 , so

M ( j)
1 # M1 for every j # N; similarly, M ( j)

2 # M2 for every j # N.
We call a pair (u, M1 , v, M2) P(u$, M$1 , v$, M$2) useful if M1( p2)<M$1( p2) for

every p2 # P2 (that is, 2w1w2 } } } wk
( p2)>0 for every p2 # P2). The existence of a useful

pair is obviously a sufficient condition for a positive answer to the considered
problem instance (since the relevant wi 's can be pumped indefinitely).

Now observe that if we have a positive answer to our problem, then there must
be an infinite sequence

(u(1), M (1)
1 , v(1), M (1)

2 ) , (u(2), M (2)
1 , v(2), M (2)

2 ) , (u(3), M (3)
1 , v(3), M (3)

2 ), ...

of elements of D such that for every n and every p2 # P2 we have M (n)
1 ( p2)<

M (n+1)
1 ( p2). Thus, the existence of a useful pair is guaranteed due to the fbp, so it

is also a necessary condition for a positive answer.
The desired semidecidability is then clear due to the possibility of generating all

pairs (u, M1 , v, M2) , (u$, M$1 , v$, M$2) # D and checking if any constitutes a useful
pair. K

3. TRACE EQUIVALENCE

In this section we demonstrate the decidability of the trace equivalence problem
and the undecidability of the trace finiteness problems.

3.1. Decidability of (Strong and Weak) Trace Equivalence

Here we demonstrate the decidability of the following:

Given a marking M0 of a net N labelled by action set 7 and given
a state r0 of a finite-state LTS R, defined over the same action set 7,
is T(M0)=T(r0)?

To do this, we show decidability for the trace inclusion problem in both direc-
tions, T(M0) �T(r0) and T(r0)�T(M0). Without loss of generality we suppose
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that R has no { labels and is deterministic; that is, for each state r and each label
a there is at most one r$ such that r w�a r$. This can be achieved using the standard
=-move elimination and subset construction algorithms for nondeterministic finite
automata (cf., e.g., [7]).

Theorem 3.1. T(M0)�T(r0) is decidable.

Proof. First, we can observe the semidecidability of the complementary problem
T(M0 )�3 T(r0 ). For this, it suffices to generate all sequences from (7"[{])* and
to stop when some w # T(M0 )"T(r0 ) is found; semidecidability of this final test is
obvious.

Now define the binary relation S=[(M� , r) : T(M� )�T(r)] between |-markings
of the net and states of the LTS and define the ordering � on S by (M� , r)�(M� $, r$)
iff M� �M� $ and r=r$. By Lemma 2.6, S has finitely many maximal elements, and by
Lemmas 2.8 and 2.13(a), S is the downwards closure of these maximal elements.
Now observe the following simple fact: If a set X of pairs (M� , r) satisfies the
condition

(V) For any (M� , r) # X and any a, M� $ such that M� $ w�a M� $ there is r$ such
that r w�a r$ and (M� $, r$) # X (we put r$=r when a={),

then X�S.

It is also clear from Lemma 2.5(a) (along with Lemmas 2.7(a) and 2.8) that if X
is the downwards closure of its maximal elements then it suffices to verify (V) only
for its maximal elements.

Since S satisfies (V) (recall that for each r and a there is at most one r$ such that
r w�a r$), to demonstrate T(M0 )�T(r0 ) it suffices to generate a (finite) set S$ of
pairwise incomparable elements (M� , r) such that its downwards closure satisfies
(V) and contains (M0 , r0) (this last condition is obviously decidable).

Thus, we have demonstrated the semidecidability and, therefore, the decidability,
of the trace inclusion problem T(M0 )�T(r0 ). K

Theorem 3.2. T(r0 )�T(M0 ) is decidable.

Proof. We describe a terminating algorithm for constructing a tree of the
following description. Each node of the tree is labelled by a pair (r, M) , where r
is a state of R and M is a set of pairwise incomparable |-markings of N (and,
hence, is finite). The edges in the tree are labelled by 7"[{]. The tree is defined
inductively as

1. We start with the root node which we label (r0 , [M0 ]) .

2. From a given node (r, M) , we add one a-labelled edge for each transi-
tion r w�a r$. (By our assumption on R, a{{ and r$ is uniquely determined by a.)
This edge leads to a node which we label by (r$, M$)=(r$, max(C(=Oa (M)))) .
Note that by Lemma 2.15, we can construct max(C(=Oa [M� ])) for each M� # M

and then take the maximal elements amongst all of these. This gives us our desired
M$, since
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M$=max(C(=Oa (M)))

=max \C \ .
M� # M

=Oa [M� ]++
=max \ .

M� # M

C(=Oa [M� ])+ (by Lemma 2.10)

=max \ .
M� # M

max(C(=Oa [M� ]))+ (by Lemma 2.11).

3. A node (r, M) will be deemed a leaf (that is, we do not add the edges
described in step 2) if

�� M=< (in which case the leaf is deemed to be unsuccessful ); or

�� M{<, and either r has no successors in R, or there is an ancestor
(r, M$) with M$�M (in which case the leaf is deemed to be successful ).

By Corollary 2.17, this tree must be finite, and thus, our algorithm is guaranteed to
terminate.

Having constructed the tree, the relevant question can be answered as follows: if
there is an unsuccessful leaf (r, <) then T(r0 )�3 T(M0 ); otherwise T(r0 )�T(M0 ).
To verify the correctness of this algorithm, we first note the following.

Claim. For any node (r, M) in the tree reached from the root (r0 , [M0]) by
a path labelled by w{=, we have r0 w�w r and M=max(C(=Ow [M0 ])).

Proof of the claim. It is clear from the construction that r0 w�w r. We prove that
M=max(C(=Ow [M0])) by induction on |w|. For w=a, the result follows from the
definition of M. Suppose then that (r0 , [M0]) w�w (r, M) w�a (r$, M$). Then,

M$=max(C(=Oa (M)))

=max(C(=Oa (max(C(=Ow [M0 ]))))) (by induction)

=max(C(=Oa (=Ow [M0]))) (by Lemma 2.14)

=max(C(==Owa ([M0]))). K

Certainly if M{< then M�C(M){<, so (by Lemma 2.8) max(C(M)){<.
Thus, if we have an unsuccessful leaf (r, max(C(=Ow [M0 ])))=(r, <) at the end
of a path labelled w, then =Ow [M0 ]=<; that is, w � T(M0 ), whereas r # T(r0 ), so
indeed, T(r0 ) �3 T(M0 ).

Suppose then that all leaves are successful, and, despite this, T(r0 )�3 T(M0 ).
Choose some w # T(r0"T(M0) of minimal length. It can be written as w=u1u2 v
with u2 {=, where the tree has the path (r0 , [M0]) w�

u1 (r, M$) w�
u2 (r, M)

with M$�M. Then we must have that v # T(r), but v � �M� # ===O
u1u2

[M0] T(M� )=
�M� # M T(M� ) (by Lemma 2.13(c)). But then, by Lemma 2.13(a), v � �M� # M$ T(M� )
=�M� # =O

u1
[M0 ] T(M� ) (again by Lemma 2.13(c)), so u1v # T(r0 )"T(M0 ), which

contradicts the minimality of the length of w. K
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3.2. Undecidability of Strong Trace Finiteness

In this subsection we demonstrate that it is undecidable whether or not a given
{-free net is trace-equivalent to some (unspecified) finite automaton. In fact, our
construction shows that the undecidability result holds for any equivalence which
refines trace equivalence and is refined by simulation equivalence; the construction
can also be easily modified to extend the undecidability to ready-simulation equiv-
alence (see, e.g., [3] for definitions; the modification is described in [13]).
However, trace equivalence is our only concern here. This undecidability result
contrasts with the decidability result for bisimilarity presented in the next section;
it also contrasts with the decidability result of Valk and Vidal-Naquet [23] for the
regularity of the trace set in the case where the transitions are uniquely labelled.

To demonstrate this result, we rely on the undecidability of the halting problem
for Minsky counter machines. To a counter machine C (zero input values are
supposed), we construct a net NC with initial marking M0 (inspired by [10] as
modified in [6]) for which we can demonstrate

1. If the counter machine C halts, then M0 is trace equivalent to some finite-
state process r;

2. If the machine C does not halt, then M0 is not trace equivalent to any
finite-state process r.

Remark. The above-mentioned extension of the undecidability result follows
from the fact that ``trace equivalence'' can be replaced by ``simulation equivalence''
(or even ``ready-simulation equivalence'' for the modified construction) in case 1
above.

Formally, a Minsky machine can be defined as a sequence of labelled instructions,

X1 : comm1

X2 : comm2

} } }

Xn&1 : commn&1

Xn : halt

representing a simple program which uses counters c1 , c2 , ..., cm , where each of the
first n&1 instructions is either of the form

X : c j :=c j+1; goto X$

or of the form

X : if cj=0 then goto X$

else cj :=cj&1; goto X".
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Here we suppose that a Minsky machine C starts executing with the value 0 in each
of the counters and the control at label X1 . When the control is at label Xk

(1�k<n), the machine executes instruction commk , modifying the contents of the
counters and transferring the control to the appropriate label mentioned in the
instruction. The machine halts if and when the control reaches the halt instruction
at label Xn . We recall now the well-known fact that the halting problem for Minsky
machines is undecidable [20]; there is no algorithm which decides whether or not
a given Minsky machine halts.

Given a Minsky machine C, we define the net NC=(P, T, F, 7, l ) with initial
marking M0 as

v The set of places is P=[c1 , c2 , ..., cm , X1 , X2 , ..., Xn , U].

v The initial marking M0 will consist of just one token, located on the
place X1 ; in general, a marking will have a token on some place Xi repre-
senting the Minsky machine at that particular instruction label, and some number
of tokens on each of the places cj representing those particular values for the
counters.

v The set of actions labelling the transitions is 7=[i, d, z], denoting the
machine events increment, decrement, and zero, respectively.

v For every instruction of the form

X : c j :=cj+1; goto X$

the net has a transition labelled by i with the single input place X and the two
output places X$ and cj ; see Fig. 1(i).

v For every instruction of the form

X : if cj=0 then goto X$

else c j :=cj&1; goto X"

the net has a transition labelled by d with the two input places X and cj , and the
single output place X"; and two transitions labelled by z, the first with the single

FIG 1. Constructions for NC .
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input place X and the single output place X$, and the second with the two input
places X and cj , and the single output place U ; see Fig.1(ii).

v there are three further transitions associated with the place U (for ``univer-
sal''). They each have U as both their single input place and their single output
place, and they are labelled by i, d, and z, respectively; see Fig. 1(iii).

The net NC simulates the Minsky machine C in a weak sense; there is a unique
computation of the net corresponding to the computation of the machine, but there
can be ``invalid'' transition sequences. These arise due to z-transitions being performed
when the relevant counter place cj is not empty (and the appropriate d-transition
is in fact the ``valid'' transition). Note that invalid z-transitions can lead equally well
to the universal place from which any action is possible forevermore. Thus, T(M0 )
consists of all ``valid computation sequences'' (that is, all prefixes of the computa-
tion of C ) plus all sets wz[i, d, z]* such that wd is a valid computation sequence.
From this it is clear that T(M0 ) is regular if C halts; this fact is more carefully
demonstrated in the following.

Lemma 3.3. If C halts then M0 is trace equivalent to some finite-state process r0 .

Proof. The backbone of the LTS R containing r0 consists of a (finite) path
corresponding to the (valid) computation of C (which halts by assumption);
see Fig. 2. The states of R correspond to markings of NC ; and the initial state of
this path is r0 and corresponds to the initial marking M0 of NC . Outside of this
path there is one further state u with three ``loops'' labelled by i, d, and z. From any
state on the path which has an outgoing arc labelled by d, we have a further arc
labelled by z leading to the state u.

It is obvious then that T(M0 )=T(r0 ). K

For the opposite direction, we can assume without loss of generality that in
any infinite computation of C we can find for any q # N a subcomputation during
which some counter is decreased q times in succession. This is possible, for
example, by including three extra counters a1 , a2 , and a3 , and replacing each
original instruction

Xi : commi ,

FIG. 2. Construction for R.
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by the sequence of eight instructions:

Xi : a1 :=a1 +1; goto Y 1
i V increment a1

Y 1
i : if a1 =0 then goto Y 3

i V while a1>0 do

else a1 :=a1&1; goto Y 2
i V decrement a1

Y 2
i : a2 :=a2+1; goto Y 1

i V increment a2

Y 3
i : if a2=0 then goto Y 6

i V while a2>0 do

else a2 :=a2&1; goto Y 4
i V decrement a2

Y 4
i : a1 :=a1+1; goto Y 5

i V increment a1

Y 5
i : a3 :=a3+1; goto Y 3

i V increment a3

Y 6
i : if a3 =0 then goto Y 7

i V while a3>0 do

else a3 :=a3&1; goto Y 6
i V decrement a3

Y 7
i : commi

The effect of this transformation is to maintain in counter a1 the number of
commands executed by the Minsky machine, and before executing each command,
to cause the counter a3 to be set to this value, and then, to be repeatedly decremented
down to 0. This clearly leads to longer and longer sequences of decrement actions,
without changing the (non-)halting behaviour of the original program.

Lemma 3.4. If C does not halt, then T(M0 ) is different from the trace set of any
finite-state process r0 .

Proof. Suppose that T(M0 )=T(r0 ) for some finite-state process r0 taken from
a q-state LTS R. Then r0 also must allow the prefix of a valid computation
sequence of C which includes a contiguous sequence of q decrement actions. Using
the pumping lemma for finite-state machines [7], this means that r0 must be able to
reach a state by following a valid computation sequence of C from which it can
follow an arbitrary number of decrement actions, which clearly is not possible for
NC starting in M0 . Hence, T(M0 ){T(r0 ) which contradicts our assumption. K

Based on the two lemmas and the undecidability of the halting problem for
Minsky machines, we can derive our undecidability result.

Theorem 3.5. It is undecidable whether or not a given {-free net is trace equiv-
alent to some (unspecified ) finite-state LTS.

4. BISIMULATION EQUIVALENCE

In this section we demonstrate the decidability of the strong bisimulation equiv-
alence and finiteness problems, and the undecidability of the weak bisimulation
equivalence and finiteness problems. We start by describing a general decision
technique which we shall use.
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Given a transition system L=(S, 7, [w�a ]a # 7) , we define the class of all
n-incompatible processes (taken from other transition systems) as Inc

L
n =

[E : \F # S : Et3 n F ]. With this concept defined, the following useful observations
can be made.

Proposition 4.1. For any n, EtF implies that Etn F and E �% * Inc
L( F )
n . In

addition, the reverse implication holds under the further proviso that tn&1 coincides
with tn (and hence, with t) over L(F ).

Proof. The left-to-right implication is obvious. For the right-to-left implication,
it is straightforward to verify that, assuming tn&1=tn on L(F ), the relation

[(E$, F $) : E$ # L(E), F $ # L(F ), E$tn F $, E$ �% * Inc
L(F )
n ]

is a strong bisimulation. The crucial point to observe is that whenever we have that
E"tn&1 F" and E" � Inc

L(F )
n we must have that E"tn F". K

Corollary 4.2. For any two states r and r$ of an n-state LTS R, rtn&1 r$ iff
rtn r$ (iff rtr$). Therefore, for any process E and any state r of R,

Etr iff Etn r and E �% * Inc
R
n .

Proof. As ti+1�ti , and ti=ti+1 implies ti= ti+k for any k�0, these
equivalence relations must stabilize within the first n steps over any n-state LTS. K

Corollary 4.3. To demonstrate the decidability of Etr for any specified class
of processes E for which Etn r is decidable, it suffices to demonstrate the decidability
of the (non-)reachability problem E �% * Inc

R
n .

Proof. Immediate. K

Further development and applications of this technique are presented in [15, 16].
Before we proceed with our decidability proofs, we define a few further useful

concepts and make various important observations. We say that a marking L of a
net N is n-bounded iff L( p)�n for each place p. For every n-bounded marking L,
we define L�n to be the set of all markings M such that L( p)=min(n, M( p)) for
each place p, and we note the following.

Lemma 4.4. For every n-bounded marking L and every M # L�n, Ltn M.

Proof. By a simple induction on n. K

Note that for every marking M there is a unique n-bounded marking LM , defined
by LM( p)=min(n, M( p)), such that M # L �n

M ; that is, M # L�n iff L=LM . Also,
there are clearly only finitely many n-bounded markings, all of which we may
effectively list.

Next, given a net N and an n-state LTS R, we let

(N, R)-Inc=Inc
R
n & [M : M is a marking of N].
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This is the set of markings of N which are not strongly n-bisimilar to (that is, not
in the relation tn with) any state of R. By Lemma 4.4, Mtn LM , so M # (N, R)-
Inc iff L�n

M �(N, R)-Inc. Hence, (N, R)-Inc can be expressed as the union

(N, R)-Inc=L�n
1 _ L�n

2 _ } } } _ L�n
k ,

where L1 , L2 , ..., Lk are all of the n-bounded markings appearing in (N, R)-Inc;
we can effectively construct this union, since by Proposition 2.2 we can decide if
each n-bounded marking L is in (N, R)-Inc.

4.1. Decidability of Strong Bisimulation Equivalence

The decidability proof for strong bisimulation equivalence is based on the general
method described above. Given a marking M0 of a net N and a state r0 of an
n-state LTS R, the question M0 tn r0 is decidable (by Proposition 2.2). Therefore
by Corollary 4.3, it suffices to show the decidability of the question as to whether
the set (N, R)-Inc is reachable from M0 . From the above characterisation of
(N, R)-Inc, it then suffices to show the decidability as to whether the set L�n is
reachable from M0 , where L is an arbitrary n-bounded marking.

Theorem 4.5. The problem M0 tr0 is decidable.

Proof. From the above considerations, it suffices to show the decidability of the
following:

Given an n-bounded marking L, is there some M # L�n such that M0 �* M?
But this problem is easily reducible to the reachability problem (Theorem 2.3);

for each place p such that L( p)=n we can add an extra transition which just
removes a token from p, and then ask if L is reachable. K

4.2. Decidability of Strong Bisimulation Finiteness

We now prove that it is decidable whether or not a given marking M0 of a given
net N is strongly bisimilar to some (unspecified) finite-state process. We refer to this
problem as the strong bisimulation finiteness problem, or the strong b-finiteness
problem for short.

Formally, we say that a marking M is b-finite iff R(M) contains only finitely
many equivalence classes with respect to t; otherwise we say that M is b-infinite,
that is, if there exist infinitely many markings M1 , M2 , M3 , ... reachable from M
such that Mi t3 Mj for i{ j. Since the strong equivalence problem is decidable, the
strong b-finiteness problem is obviously semidecidable; it suffices to generate all
finite-state processes r0 and to check if M0 tr0 . Therefore, it suffices to show that
b-infiniteness is semidecidable.

We fix a labelled Petri net N=(P, T, F, 7, l) and introduce some notation. Let
P=P1 _ P2 , where P1 , P2 are disjoint and P2 {<. For mappings M1 : P1 � N

and M2 : P2 � N, (M1 , M2) denotes the marking of N whose projection onto P1 is
M1 while the projection onto P2 is M2 . We say ``a marking (M1 , M2) of N '' instead
of ``a partition P1 , P2 {< of P and mappings M1 : P1 � N, M2 : P2 � N.'' In
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addition, by (M, &) we mean that there is a partition P=P1 _ P2 as above, but
(M, &) is considered as a marking (M : P1 � N) of the subnet of N obtained by
removing all places from P2 , together with their adjacent arcs; this is behaviourally
equivalent to putting | on all places of P2 . By Lemma 4.4 then, for any n�0, if
M$( p)�n for each place p then (M, M$)tn (M, &).

Lemma 4.6. If (M, M1)t(M, M2)t(M, M3)t } } } and M1<M2<M3< } } }
(where < is defined pointwise) then (M, M1)t(M, &).

Proof. For every n�0 there is an index i such that Mi ( p)�n for each p. Then
(M, &)tn (M, Mi ) holds and, since (M, M1)t(M, Mi), we also have (M, &)
tn (M, M1). Therefore, (M, &)tn (M, M1) for every n�0, and so, by Proposi-
tion 2.1, (M, &)t(M, M1). K

Lemma 4.7. A marking M0 is b-infinite iff there exists a marking (M, &) and an
increasing chain of markings M1<M2<M3< } } } with (M, Mi) # R(M0 ) for every
i�1 such that

1. (M, &) is b-infinite; or

2. (M, &) is b-finite and (M, Mi)t3 (M, &) for every i�1.

Proof. ( O ) If M0 is b-infinite, then there exists an infinite set of pairwise non-
bisimilar reachable markings. Consider any infinite sequence of such markings. By
Lemma 2.4, there is an infinite subsequence (M, M1), (M, M2), (M, M3), ... with
M1<M2<M3< } } } . If (M, &) is b-infinite then case 1 holds. If (M, &) is b-finite
then we can assume that (M, Mi)t3 (M, &) for every i�1 (since the markings
(M, Mi ) are pairwise non-bisimilar, at most one of them can be bisimilar to
(M, &), and we can simply drop this marking from the sequence) and thus case 2
holds.

( o ) Let M=[(M, Mi) : i�1]. If M contains infinitely many pairwise non-
bisimilar markings, then M0 is b-infinite, and we are done. So assume that M

contains infinitely many pairwise bisimilar markings. By Lemma 4.6, all of these
markings must be bisimilar to (M, &), and so case 2 cannot hold. Thus case 1
holds; that is, (M, &) is b-infinite and, therefore, M0 must be b-infinite, since it has
a reachable marking which is bisimilar to (M, &). K

Theorem 4.8. It is decidable whether or not a marking M0 of a net N is strongly
b-finite.

Proof. By induction on the number of places of N. If N has no places, then M0

is the unique mapping M : < � N, and it is certainly b-finite, since R(M0 )=[M0].
Assume then that N has some places. As noted above, it suffices to show semi-
decidability of the b-infiniteness problem; and for this, Lemma 4.7 shows that it
suffices to enumerate all markings (M, &) of N (for all partitions P1 , P2 with
P2 {<), and to show that it is semidecidable whether or not there exists a chain
as specified in the lemma such that one of the two conditions of the lemma holds.

Given a marking (M, &), we can decide by the induction hypothesis if it is b-finite
or b-infinite. Moreover,
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1. The existence of a chain M1<M2<M3< } } } such that (M, Mi) # R(M0 )
for every i�1 is surely semidecidable; just put M1=M2=[(M, M$) : M$ is arbitrary]
and apply Lemma 2.18.

2. If (M, &) is b-finite, then the existence of a chain M1<M2<M3< } } }
such that (M, Mi) # R(M0 ) and (M, Mi)t3 (M, &) for every i�1 is also semi-
decidable: if (M, &) is b-finite then (M, &)tr for a state r of some finite-state LTS
R; we may assume that this R is known. (We may simply enumerate every finite
state LTS R and decide whether Mtr for each state r of R.) Let n denote the
number of states of R.

Claim. There exists a chain M1<M2<M3< } } } such that (M, Mi) # R(M0 )
and (M, Mi)t3 (M, &) for every i�1 iff there exists an n-bounded marking L of N
satisfying two conditions:

(a) L # (N, R)-Inc; and

(b) there exists a chain M1<M2<M3< } } } and markings M$1 , M$2 , M$3 , ... #
L�n such that M0 �*(M, Mi) �* M$i for every i�1.

Proof of the claim. ( O ) Let M1<M2<M3< } } } be a chain such that
(M, Mi) # R(M0) and (M, Mi)t3 (M, &) for every i�1. There exists an index i0

such that for every i�i0 , Mi ( p)�n for each p. For i�i0 we have (M, Mi)t3

(M, &) by assumption (and so (M, Mi)t3 r), but (M, Mi)tn (M, &) (and so
(M, Mi)tn r). Thus by Corollary 4.2, there exists an n-bounded marking Li #
(N, R)-Inc such that (M, Mi) �* L�n

i . Since there are only finitely many n-bounded
markings, there exists an n-bounded marking L and infinitely many indices i1<i2<i3

< } } } such that L=Li1
=Li2

=Li3
= } } } . Thus L satisfies condition (a), and the

subchain Mi1
<Mi2

<Mi3
< } } } satisfies condition (b).

( o ) Let Mi be an arbitrary marking of the chain given by (b); we need to
prove that (M, Mi)t3 (M, &). From (b) we have that (M, Mi) �* L�n and from
(a) we have that L�n�(N, R)-Inc, so (M, Mi) �*(N, R)-Inc. Hence by
Corollary 4.2, (M, Mi )t3 r, so (M, Mi)t3 (M, &). K

It remains to prove the semidecidability of conditions (a) and (b) for a given
n-bounded marking L. Condition (a) is semidecidable by Proposition 2.2. For
condition (b), set M1=[(M, M$) : M$ is arbitrary] and M2=L�n and apply
Lemma 2.18. K

4.3. Undecidability of Weak Bisimulation Equivalence

We next show that the question M0 rr0 is undecidable. In fact, we prove
that neither of the problems M0 rr0 and M0 r3 r0 is semidecidable. From the
proof of this result, we actually get a fixed 7-state transition system Rfix with a
distinguished state rfix such that M0rrfix is undecidable. In fact, even M0r4 rfix

is undecidable.
As the basis for our reduction, we use the following undecidable problem from

Petri net theory:
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Containment Problem. Given two Petri nets N1 and N2 defined over the same
set of places and initial marking M, is RN1

(M)�RN2
(M)?

The undecidability of this problem was first demonstrated by Rabin (see [4]) by
means of a reduction from Hilbert's 10th problem. A reduction from the halting
problem for Minsky machines can be found in [10]. In the next section we shall
need to describe the latter reduction in more detail.

Let two Petri nets N1=(P, 7, T1 , F1 , l1) and N2=(P, 7, T2 , F2 , l2) be given,
along with a common initial marking M. Without loss of generality, we assume that

v |RN2
(M)|�2; and

v 0 � RN1
(M) & RN2

(M).

We shall describe the construction of a new net N with initial marking M0 such that

1. if RN1
(M)�3 RN2

(M) then M0rr1 , where r1 is taken from the finite
transition system R shown in Fig. 3; and

2. if RN1
(M)�RN2

(M) then M0 rr5 , where r5 is again taken from R.

(The state r0 of R is used in the next section.) We can note the following about the
states of R:

v r4r3 1 r9 , since r4 =O
c

but r9 =3O
c

.

v r3r3 2 r7 , since r7 =O
b r9 would have to be matched by r3 =O

b r4 , but r4r3 1 r9 .

v r2r3 3 r5 , since r5 =O
a r7 would have to be matched by r2 =O

a r3 , but r3r3 2 r7 .

v r1r3 4 r5 , since r1 =O
{ r2 would have to be matched by r5 =O

{ r5 , but r2r3 3 r5 .

In particular, r1 r3 r5 .
When defining N we use the following notion: A place p is a run-place of a set

T of transitions if ( p, t) and (t, p) are both arcs for every t # T. In particular, the
transitions of T can occur only when p holds at least one token.

Figure 4 shows a schema of the net N. To construct it, we first take the disjoint
union of N1 and N2 , relabelling all transitions by {. We assume that the places of

FIG. 3. The finite-state system R.
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FIG. 4. Constructing the net N from N1 and N2 .

Ni (for i=1, 2) are given by Pi=[ pi : p # P], and the transitions of Ni are given
by Ti=[ti : t # T]. As a part of the initial marking M0 , we put M on N1 and
on N2 .

We then add further places and transitions as indicated. The place q1 is a run-
place of T1 (graphically represented by a double pointed white arrow) and contains
initially one token. This token can be moved by a {-transition to a place q$1 , and
then by an a-transition to q2 , which is a run-place of T2 . From q2 , the token can
be moved by another {-transition to q$2 and by a b-transition to q3 , which is a
run-place of an additional set of transitions. This set contains:

v a {-transition for every pair ( p1 , p2) ( p # P); the transition has p1 and p2

as input places, and no output place; when it occurs, it simultaneously decreases the
marking of p1 and p2 ; and

v a c-transition for each place pi of N1 and N2 ; the transition has pi as the
unique input and output place.

We denote a marking of N as a vector with three components: the first and third
components are the projections of the marking onto N1 and N2 , respectively, while
the second indicates which place of the set [q1 , q$1 , q2 , q$2 , q3] currently holds a
token. The initial marking M0 of N is (M, q1 , M).

From this initial marking M0 , the net N can execute {-transitions corresponding
to the transitions of N1 . If at some moment the {-transition occurs taking the q1

token to q$1 , then a marking (M1 , q$1 , M) is reached, the submarking M1 becomes
``frozen,'' and the only available transition is the a-transition leading to the marking
(M1 , q2 , M). From here, N can then execute {-transitions corresponding to the
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transitions of N2 . Again, if at some moment the {-transition occurs taking the q2

token to q$2 , then a marking (M1 , q$2 , M2) is reached, and the submarking M2

becomes ``frozen'' as well. The following proposition is then easy to prove.

Proposition 4.9. 1. If RN1
(M)�3 RN2

(M) then M0 rr1 .

2. If RN1
(M)�RN2

(M) then M0 rr5 .

Proof. A weak bisimulation containing the pair (M0 , r1) if RN1
(M)�3 RN2

(M)
and the pair (M0 , r5) if RN1

(M)�RN2
(M) consists of the following pairs. (In the

following, we restrict M1 to range only over RN1
(M) and M2 to range only over

RN2
(M); M$1 and M$2 are not so restricted.)

(a) ( (M1 , q1 , M), r1 ) , where RN1
(M1)�3 RN2

(M)

and RN1
(M1) & RN2

(M){<;

(b) ( (M1 , q1 , M), r2 ) , where RN1
(M1) & RN2

(M)=<;

(c) ( (M1 , q1 , M), r5) , where RN1
(M1)�RN2

(M);

(d) ( (M1 , q$1 , M), r2) , where M1 � RN2
(M);

(e) ( (M1 , q$1 , M), r5) , where M1 # RN2
(M);

(f ) ( (M1 , q2 , M2), r3) , where M1 � RN2
(M2);

(g) ( (M1 , q2 , M2), r6 ) , where M1 # RN2
(M2){[M1];

(h) ( (M1 , q2 , M2), r7) , where RN2
(M2)=[M1];

(i) ( (M1 , q$2 , M2), r3) , where M1 {M2 ;

( j) ( (M1 , q$2 , M2), r7) , where M1=M2 ;

(k) ( (M$1 , q3 , M$2), r4) , where M$1{M$2 ;

(l) ( (M$1 , q3 , M$2), r8) , where M$1=M$2{0;

(m) ( (0, q3 , 0), r9).

This collection of pairs does indeed constitute a weak bisimulation. We consider
here only two interesting cases of matching transitions:

v If we take a pair from group (c): ( (M1 , q1 , M), r5) , where RN1
(M1)�

RN2
(M), then the transition r5 w�a r6 is matched by the transition (M1 , q1 , M) =Oa

(M$1 , q2 , M), where M1 O M$1 ; that is, M$1 # RN1
(M1), so M$1 # RN1

(M0) (since
M1 # RN1

(M0)), and M$1 # RN2
(M) (since RN1

(M1)�RN2
(M)) and RN2

(M){[M$1 ]
(since by our earlier assumption, |RN2

(M)|�2). Thus, the resulting pair is in group ( g).

v If we take a pair from group ( j): ( (M1 , q$2 , M2), r7) , where M1=M2 , then
the transition r7 w�b r8 is matched by the transition (M1 , q$2 , M2) w�b (M1 , q3 , M2).
By our earlier assumption that 0 � RN1

(M) & RN2
(M), we have that M1=M2 {0.

Thus, the resulting pair is in group (l).

The remaining cases are more readily verified. K
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Theorem 4.10. Neither the weak equivalence problem Mrr nor the weak non-
equivalence problem Mr3 r are semidecidable.

Proof. This follows from the undecidability of the containment problem, using
Proposition 4.9 and the fact established above that r1r3 r5 . K

Thus the problem Mrr5 is undecidable. Moreover, we may observe in the above
proof that, since r1 r3 4 r5 , even the problem Mr4 r5 is undecidable. The 7-state
transition system Rfix promised at the beginning of the section is obtained by remov-
ing r0 , r1 , and r2 from R, together with their adjacent arcs; the state rfix is then r5 .

4.4. Undecidability of Weak Bisimulation Finiteness

In this section we demonstrate the undecidability of the weak b-finiteness
problem; that is, given a marking M0 of a net N, is there a state r0 of a finite-state
LTS R such that M0 rr0? To do this, we again use the halting problem for Minsky
counter machines; now it is convenient to recall that this problem is undecidable
even when restricted to two counters both initialised with the value zero.

As already mentioned, we rely on a reduction from [10]. For our aims here, it
suffices to recall that there is an algorithm given in the proof of Theorem 3.7 of
[10, p. 291] which is specified as follows. (To understand this algorithm requires
Definitions 3.2 and 3.5 of [10].)

Input: a 2-counter machine C.

Output: two nets N1 and N2 defined over the same set of places P including two
distinguished places px and p y, and initial marking M, satisfying M( px)=
M( p y)=0. (In fact, N1 and N2 are almost identical, differing only in that
N1 has an additional transition which is not present in N2 .) These two nets
satisfy the following property: if M x, y denotes the marking which differs
from M only in the places px and p y, where the values are x and y, respec-
tively, then for every x, y�0,

C halts on the input (x, y) iff RN1
(Mx, y) �3 RN2

(Mx, y).

Now let C be an arbitrary 2-counter machine. We construct another 2-counter
machine C$ which on input (x, 0) runs as follows: first, it checks if x=2k for some
k�0; if this is the case, then it sets the counters to 0 and simulates C; otherwise
it halts. We thus have:

v if C halts on input (0, 0), then C$ halts on every input (x, 0), x�0;

v if C does not halt on input (0, 0), then C$ halts on input (x, 0) iff x is not
a power of 2.

For C$, we can construct the above described nets N1 and N2 . To these, we apply
the prior construction depicted in Fig. 4; thus, we get a net N with a predefined
initial marking M0 . We modify this net in the following way (depicted in Fig. 5).
First, we remove the token from q1 . Second, we add the following new places and
transitions:
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FIG. 5. Constructing the net N$ from N.

v a place q0 , initially marked with one token;

v a d-transition with q0 as the only input place, and q0 , px
1, and px

2 as the out-
put places (in particular, q0 is a run-place for this transition);

v an e-transition, with q0 as input place and q1 as output place.

Let N$ be the result of this final modification. From its initial marking M$0 , N$
can repeatedly execute the d-transition, through which it puts an arbitrary number
of tokens x on the places px

1 and px
2 . It may then execute the e-transition, after

which the place q1 holds a token, and N$ behaves like the net we would obtain by
applying the construction of the last section to the nets N1 and N2 with initial
marking Mx, 0.

Proposition 4.11. M$0 is weakly b-finite iff the 2-counter machine C halts on
input (0, 0).

Proof. Let R be the finite-state transition system of Fig. 3.

( O ) Assume that C does not halt on input (0, 0); thus C$ halts on input
(x, 0) iff x is not a power of 2. Therefore, RN1

(Mx, 0)�RN2
(M x, 0) iff x=2k for some

k�0.

For any x, given the unique marking M reached after executing the d-transition
x times in N$, by Proposition 4.9 we have

1. if x is not a power of 2, then M =O
e M$ for some M$rr1 . (In fact,

M w�
e M$.)

2. if x is a power of 2, then there is no such M$. (If M =O
e M$ then

M$rr5r3 r1 .)
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We prove by contradiction that M$0 is not weakly b-finite. Assume that M$0 rr$0 ,
where r$0 is a state in some n-state LTS R$. Let r$ be a state such that r$0 w�

u r$,
where u is a sequence of actions whose projection onto the set of observable actions
is d 2 n

. By the pumping lemma, r$0 ww�vw i x r$ for sequences v, w, x and for every i�0,
where u=vwx and the projection of w onto the set of observable actions is a non-
empty sequence of d's. Our contradiction then becomes apparent: by 1 we have that
there is r" in R$ such that r$ =O

e r" and r"rr1 ; yet by 2 we have that there can be
no such r".

( o ) Assume that C halts on input (0, 0); then C$ halts on every input (x, 0),
x�0. Therefore, after the occurrence of the e-transition we always have RN1

(M x, 0)
�3 RN2

(M x, 0), regardless of the value of x. Hence, by the first clause of Proposi-
tion 4.9 it is clear that M$0 rr0 , so M$0 is weakly b-finite. K

Theorem 4.12. Neither the weak b-finiteness problem nor the weak b-infiniteness
problem is semidecidable.

Proof. By Proposition 4.11, C does not halt on input (0, 0) iff M$0 is weakly
b-infinite. So the weak b-infiniteness problem is not semidecidable. We can also
change C$ in the following way: if x is not a power of 2, then C$ enters an infinite
loop. In this case, C does not halt on input (0, 0) iff the net M$0 is weakly b-finite.
So the weak b-finiteness problem is not semidecidable either. K
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