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Abstract

Wepresent amodificationof adoubleprojectionalgorithmproposedbySolodovandSvaiter for solvingvariational
inequalities. The main modification is to use a different Armijo-type linesearch to obtain a hyperplane strictly
separating current iterate from the solutions of the variational inequalities. Our method is proven to be globally
convergent under very mild assumptions. If in addition a certain error bound holds, we analyze the convergence
rate of the iterative sequence.We use numerical experiments to compare our method with that proposed by Solodov
and Svaiter.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following variational inequality to findx∗ ∈ C such that

〈F(x∗), y − x∗〉�0 for all y ∈ C, (1)

whereC is a nonempty closed convex set inRn andF is a continuous mapping fromRn into itself, and
〈·, ·〉 denotes the usual inner product inRn. Let Sdenote the solution set of the variational inequality.
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Throughout this paper, we assume thatS is nonempty andF has the property

〈F(y), y − x∗〉�0 for all y ∈ C and allx∗ ∈ S. (2)

The property (2) holds ifF is monotone or more generally pseudomontone onC in the sense of
Karamardian[3].
Projection-type algorithms have been extensively studied in the literature, see[13] and the references

therein. As one of the efficient methods, the algorithm introduced in[10] consists of two steps. First, a
hyperplane is constructed which strictly separates current iterate from the solutions of the problem (1).
The construction of this hyperplane requires anArmijo-type linesearch. Then the next iterate is produced
by projecting the current iterate onto the intersection of the feasible setC and the hyperplane. This
method is also called double-projection algorithm due to the fact that one needs to implement double
projections in each iteration. In a similar way, we introduce a different double-projection algorithm for
variational inequalities. The main difference of our method from that of[10] is the procedure of Armijo-
type linesearch (see (3) in the next section). Moreover, we also prove that there is a close link between
the natural residual function and the distance from the current iterate to the intersection of the feasible set
C and the hyperplane produced by the algorithm (see expression (12) and Lemma 2.2). This observation
makes our convergence analysis have a more direct feature. We also present numerical tests to compare
our method and that in[10].
To devise algorithms, for variational inequalities, some researchers consider extragradient projection

methods. These kind of methods are first proposed by Korpelevich[4]. We refer the reader to[12] and
[13] for some recent developments. As a contrast to the extragradient projection methods, the double-
projection methods are developed in a different ways, including the way generating the next iterate and
the argument on the convergence analysis.
The organization of this paper is as follows. In the next section, we present the algorithm details and

prove several critical lemmas for convergence analysis in Section 3. Numerical results are reported in the
last section.

2. Algorithm and preliminary results

Let �C denote the projector ontoC and let� >0 be a parameter. A well-known fact is that the
solution setSof the problem (1) coincides with the roots of the natural residual functionr�(·) which is
defined by

r�(x) := x − p(x, �), wherep(x, �) := �C(x − �F(x)).

Algorithm 2.1. Choosex0 ∈ C and three parameters� >0, � ∈ (0,1/�) and� ∈ (0,1). Seti = 0.

Step1. Computer�(xi). If r�(xi) = 0, stop; else go to Step 2.
Step2. Computezi = xi − �ir�(xi), where�i = �ki , with ki being the smallest nonnegative integer

satisfying

〈F(xi) − F(xi − �kr�(xi)), r�(xi)〉��‖r�(xi)‖2. (3)
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Step3. Computexi+1 = �Ci
(xi), whereCi := C ∩ Hi with Hi = {v : hi(v)�0} being a hyperplane

defined by the function

hi(v) := 〈�ir�(xi) + F(zi), v − zi〉 + �i(1− �i)‖r�(xi)‖2 − �i�〈F(xi), r�(xi)〉. (4)

Let i = i + 1 and return to Step 1.
It can be seen that the linesearch in step 2 is well defined. Indeed, since� ∈ (0,1) andF is continuous,

F(xi) − F(xi − �kr�(xi)) and hence〈F(xi) − F(xi − �kr�(xi)), r�(xi)〉 converge to zero ask tends to
∞. On the other hand, as a consequence of step 1,r�(xi) >0 (otherwise, the procedure stops). Therefore
there exists a nonnegative integerki satisfying (3).
Now let us compare the above algorithm with algorithms in[10]. In the step of the Armijo-type

linesearch,[10] uses a different procedure which replaces (3) by the following one:

〈F(xi − �kr�(xi)), r�(xi)〉��‖r�(xi)‖2, (5)

where the parameter� >0 is required to be strictly less than 1, and� is assumed to be equal to 1 in
their Algorithm 2.1 or changes according to the value of�i in each iteration in their Algorithm 2.2. The
choice of the hyperplane in step 3 is also different from that in[10]. To devise extragradient projection
algorithm for variational inequality,[12] considers the followingArmijo-type linesearch procedure:ki is
the smallest nonnegative integerk satisfying

〈F(xi) − F(xi − �kr�(xi)), r�(xi)〉��‖r�(xi)‖2, (6)

with � ∈ (0,1) being a parameter. It can be seen that this linesearch has the same expression with (3).
However, (6) requires� be strictly less than 1 which is crucial for the convergence analysis in[12], while
the parameter� in our algorithm can take any positive scalar. In fact, our numerical experiments in the
last section take� = 4.
In the rest of this section, we prove several lemmas which are important for the convergence analysis

in the next section.

Lemma 2.1. For everyx ∈ C,

〈F(x), r�(x)〉��−1‖r�(x)‖2. (7)

Proof. Note thatp(x, �) is defined to be�C(x − �F(x)) andr�(x) = x − p(x, �). It follows that

〈x − p(x, �) − �F(x), y − p(x, �)〉�0 for all y ∈ C;

in particular, takingy = x, we obtain the desired inequality.�

Lemma 2.2. Let x∗ solve the variational inequality(1) and the functionhi be defined by(4). Then
hi(xi)��i(�

−1 − �)‖r�(xi)‖2 andhi(x
∗)�0. In particular, if r�(xi) �= 0 thenhi(xi) >0.
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Proof. Sincezi = xi − �ir�(xi),

hi(xi) = 〈�ir�(xi) + F(zi), xi − zi〉 + �i(1− �i)‖r�(xi)‖2 − �i�〈F(xi), r�(xi)〉
= �i〈F(zi), r�(xi)〉 + �i‖r�(xi)‖2 − �i�〈F(xi), r�(xi)〉
��i(1− �)〈F(xi), r�(xi)〉 + �i(1− �)‖r�(xi)‖2
��i(�

−1 − �)‖r�(xi)‖2,
where the first inequality follows from (3) and the last one follows from Lemma 2.1. Ifr�(xi) �= 0 then
hi(xi) >0 because� <1/�. It remains to be proved thathi(x

∗)�0. Sincer�(xi) = xi − p(xi, �) and
p(xi, �) = �C(xi − �F(xi)), we have

〈r�(xi) − �F(xi), x
∗ − xi + r�(xi)〉�0;

on the other hand, assumption (2) implies that

〈�F(xi), x
∗ − xi〉 = �〈F(xi), x

∗ − xi〉�0.
Adding the last two expressions, we obtain that

〈r�(xi), x
∗ − xi + r�(xi)〉 − �〈F(xi), r�(xi)〉�0.

It follows that

〈�ir�(xi) + F(zi), x
∗ − zi〉 = 〈�ir�(xi) + F(zi), x

∗ − xi + �ir�(xi)〉
= �2i ‖r�(xi)‖2 + �i〈r�(xi), x

∗ − xi〉 + 〈F(zi), x
∗ − zi〉

��2i ‖r�(xi)‖2 + �i�〈F(xi), r�(xi)〉 − �i‖r�(xi)‖2.
Thushi(x

∗)�0 is verified. �

Lemma 2.3. Let C be a closed convex set inRn, h be a real-valued function onRn, and K be the set
{x ∈ C : h(x)�0}. If K is nonempty and h is Lipschitz continuous on C with modulus� >0, then

dist(x, K)��−1max{h(x),0} for all x ∈ C, (8)

wheredist(x, K) denotes the distance from x to K.

Proof. Clearly (8) holds for allx ∈ K. Hence, it suffices to show that (8) holds for everyx ∈ C\K. Let
x ∈ C but x /∈ K. SinceK is closed, there existsy(x) ∈ K such that‖x − y‖ = dist(x, K). It follows
from the Lipschitz continuity ofh that

|h(x) − h(y(x))|��‖x − y(x)‖ = �dist(x, K).

Sincex /∈ K andy(x) ∈ K, we haveh(x) >0 andh(y(x))�0. Thus we have

h(x)�h(x) − h(y(x)) = |h(x) − h(y(x))|��dist(x, K),

and hence the conclusion follows.�
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Lemma 2.4. Let X be a nonempty closed convex set, x̄ = �X(x) andx∗ ∈ X. Then

‖x̄ − x∗‖2�‖x − x∗‖2 − ‖x − x̄‖2.
Proof. Since‖x̄ − x∗‖2= ‖x − x∗‖2+ ‖x − x̄‖2+ 2〈x̄ − x, x − x∗〉 and since〈x̄ − x, x∗ − x̄〉�0, the
conclusion follows immediately.�

3. Convergence and convergence rate

Theorem 3.1. If F is continuous onC and condition (2) holds, then either Algorithm 2.1 terminates in a
finite number of iterations or generates an infinite sequence{xi} converging to a solution of (1).
Proof. Letx∗ be a solution of the variational inequality problem.Weassume thatAlgorithm2.1 generates
an infinite sequence{xi}. In particular,r�(xi) �= 0 for everyi. Sincexi+1=�Ci

(xi), it follows fromLemma
2.4 that

‖xi+1 − x∗‖2�‖xi − x∗‖2 − ‖xi+1 − xi‖2 = ‖xi − x∗‖2 − dist2(xi, Ci). (9)

It follows that the sequence{‖xi+1− x∗‖2} is nonincreasing, and hence is a convergent sequence. There-
fore,{xi} is bounded and

lim
i→∞ dist(xi, Ci) = 0. (10)

SinceF(x) and hencep(x, �) are continuous, we have the sequence{p(xi, �)} and hence the sequence
{zi} is bounded. Thus the continuity ofF implies that{F(zi)} is a bounded sequence, that is, for some
M >0,

‖�ir�(xi) + F(zi)‖�M, for all i. (11)

Clearly each functionhi is Lipschitz continuous onC with modulusM. Applying Proposition 2.3 and
noting thatxi /∈ Ci , we obtain that

dist(xi, Ci)�M−1hi(xi), for all i. (12)

It follows from (9), (12) and Lemma 2.2 that

dist(xi, Ci)�M−1hi(xi)�M−1(�−1 − �)�i‖r�(xi)‖2.
Thus (10) implies that

lim
i→∞ �i‖r�(xi)‖2 = 0. (13)

If lim supi→∞ �i >0, then we must have lim infi→∞ ‖r�(xi)‖ = 0. Sincer�(x) is continuous and{xi} is
a bounded sequence, there exists an accumulation pointx̄ of {xi} such thatr�(x̄) = 0. This implies that
x̄ solves the variational inequality (1). Replacingx∗ by x̄ in the preceding argument, we obtain that the
sequence{‖xi − x̄‖} is nonincreasing and hence converges. Sincex̄ is an accumulation point of{xi}, some
subsequence of{‖xi − x̄‖} converges to zero. This shows that the whole sequence{‖xi − x̄‖} converges
to zero, and hence limi→∞ xi = x̄.
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Supposenow that limi→∞ �i=0. Letx̄ beanyaccumulationpoint of{xi}: thereexists somesubsequence
{xij } converging tox̄. By the choice of�i , (3) implies that

�‖r�(xij )‖2< 〈F(xij ) − F(xij − �
kij

−1
r�(xij )), r�(xij )〉

= 〈F(xij ) − F(xij − �−1�ij
r�(xij )), r�(xij )〉

�‖F(xij ) − F(xij − �−1�ij
r�(xij ))‖‖r�(xij )‖, for all j ,

Since{r�(xi)} is bounded andF is continuous, we obtain by lettingj → ∞ thatr�(x̄) = 0. Applying the
similar argument in the previous case, we get that limi→∞xi = x̄. �

Before ending this section, we provide a result on the convergence rate of the iterative sequence
generated by Algorithm 2.1. To establish this result, we need a certain error bound to hold locally (see
(14) below). The research on error bound is a large topic in mathematical programming. One can refer
to the survey[6] for some sufficient conditions ensuring the existence of error bounds and for the roles
played by error bounds in the convergence analysis of iterative algorithms; more recent developments on
this topic are included in Chapter 6 in the excellent book[1]. A condition similar to (14) has also been
used in[9] (see expression (5) therein) to analyze the convergence rate in very general framework.

Theorem 3.2. In addition to the assumptions in the above theorem, if F is Lipschitz continuous with
modulusL >0 and if there exist positive constants c and� such that

dist(x, S)�c‖r�(x)‖, for all x satisfying‖r�(x)‖��; (14)

then there is a constant� >0 such that for sufficiently large i,

dist(xi, S)�
1√

�i + dist−2(x0, S)
.

Proof. Put� := min{1/2, L−1��}. We first prove that�i > � for all i. By the construction of�i , we have
�i ∈ (0,1]. If �i = 1, then clearly�i >1/2��. Now we assume that�i <1. Since�i = �ki , it follows that
the nonnegative integerki �1. Thus the construction ofki implies that

〈F(xi) − F(xi − �−1�ir�(xi)), r�(xi)〉 > �‖r�(xi)‖2. (15)

It follows from the Lipschitz continuity ofF that

�‖r�(xi)‖2< 〈F(xi) − F(xi − �−1�ir�(xi)), r�(xi)〉
�L�−1�i‖r�(xi)‖2.

Therefore�i > L−1����.
Let x∗ ∈ �S(xi). By the proof of the above theorem and (14), we obtain that for sufficiently largei,

dist2(xi+1, S)�‖xi+1 − x∗‖2�‖xi − x∗‖2 − M−2�2i (�−1 − �)2‖r�(xi)‖4
�‖xi − x∗‖2 − M−2�2(�−1 − �)2‖r�(xi)‖4
�dist2(xi, S) − M−2�2(�−1 − �)2c−4dist(xi, S)4.
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Write � forM−2�2(�−1 − �)2c−4. Applying Lemma 6 in[8, Chapter 2], we have

dist(xi, S)�dist(x0, S)/

√
�i dist2(x0, S) + 1= 1/

√
�i + dist−2(x0, S).

This completes the proof.�

4. Numerical experiments

In this section, we present some numerical experiments for the proposed algorithm. TheMATLAB codes
are run on a PC (with CPU Intel P4) under MATLAB Version 6.5.1.199709 (R13) Service Pack 1 which
containsOptimizationToolboxVersion 2.3.We compare the performance of our algorithm[10,Algorithm
2.2] and[12, Algorithm NVE-2]. We take‖r(x)‖�10−4 as the termination criterion.We choose� = 0.5,
� = 4 and� = 0.2 for our algorithm;� = 0.3 and� = 0.5 for Algorithm 2.2 in[10] and� = 0.4 and
� = 0.8 for Algorithm NVE-2 in [12]. The choices of the parameters for the latter two algorithms are
what the corresponding references proposed. Example 1 is tested in[11]. Example 2 contains test results
for several nonlinear variational inequality problems. We thank an anonymous referee for pointing out
some problems in the original numerical test results which helps us to correct some bugs in the original
MATLAB code and for suggesting us to test more nonlinear problems to compare our algorithm with some
known algorithms in the literature.

Example 1. Consider the affine variational inequality (1) withC = [0,1]n andF(x) = Mx + d where

M =




4 −2
1 4 −2

1 4 −2
· · ·

1 4


 and d =




−1
−1
· · ·
−1


 .

The initial pointx0 is chosen to be the origin. We usenf to denote the total number of times thatF is
evaluated (Table 1).

Example 2. Nonlinear variational inequality problems. Mathiesen’s test problem is tested in[5,7,10].
PMnash5andPMnash10are called Nash–Cournot NCP (withn = 5 andn = 10, respectively) and tested

Table 1
Example 1

Algorithm 2.1 [10, Algorithm 2.2] [12, Algorithm NVE-2]

iter.(nf) CPU iter.(nf) CPU iter.(nf) CPU

n = 10 22 (33) 0.141 21 (65) 0.151 30 (331) 0.221
n = 50 23 (32) 0.251 23 (71) 0.261 34 (375) 0.34
n = 100 24 (32) 0.551 23 (71) 0.541 36 (397) 0.781
n = 200 24 (31) 2.304 25 (77) 2.423 37 (408) 3.305
n = 500 25 (32) 24.9 25 (77) 26.1 38 (419) 38.605
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Table 2
Example 2

Algorithm 2.1 [10, Algorithm 2.2] [12, Algorithm NVE-2]

Iter.(nf) CPU Iter.(nf) CPU Iter.(nf) CPU

Mathiesen 19 (51) 0.14 12 (35) 0.15 204 (2522) 1.472
PMnash5 11 (67) 0.14 21 (67) 0.18 31 (807) 0.34
PMnash10 10 (31) 0.12 17 (54) 0.16 33 (595) 0.351
Harnash5 9 (55) 0.1 18 (58) 0.181 25 (651) 0.271
Harnash10 34 (169) 0.271 39 (122) 0.33 71 (1412) 0.811

in [7,10]. Harker[2] defined and testedHarnash5andHarnash10with n = 5 andn = 10, respectively.
For Mathiesen’s test problem, we usex0 = (0.3,0.4,0.3) as the initial point, while the initial point of
other test problems isx0 = (1, . . . ,1) (Table 2).
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