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Abstract

We present a modification of a double projection algorithm proposed by Solodov and Svaiter for solving variational
inequalities. The main modification is to use a different Armijo-type linesearch to obtain a hyperplane strictly
separating current iterate from the solutions of the variational inequalities. Our method is proven to be globally
convergent under very mild assumptions. If in addition a certain error bound holds, we analyze the convergence
rate of the iterative sequence. We use numerical experiments to compare our method with that proposed by Solodov
and Svaiter.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the following variational inequality to find € C such that
(F(x™),y —x*)>0 forallyecC, 1)

whereC is a nonempty closed convex seti# andF is a continuous mapping frof" into itself, and
(-, -) denotes the usual inner productii. Let S denote the solution set of the variational inequality.
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Throughout this paper, we assume t8& nonempty and has the property
(F(y),y—x")>0 forallyeC and allx* € S. 2

The property (2) holds i is monotone or more generally pseudomontoneCin the sense of
Karamardiar3].

Projection-type algorithms have been extensively studied in the literaturg,3eend the references
therein. As one of the efficient methods, the algorithm introducd@Ohconsists of two steps. First, a
hyperplane is constructed which strictly separates current iterate from the solutions of the problem (1).
The construction of this hyperplane requires an Armijo-type linesearch. Then the next iterate is produced
by projecting the current iterate onto the intersection of the feasibl€ satd the hyperplane. This
method is also called double-projection algorithm due to the fact that one needs to implement double
projections in each iteration. In a similar way, we introduce a different double-projection algorithm for
variational inequalities. The main difference of our method from th§t @fis the procedure of Armijo-
type linesearch (see (3) in the next section). Moreover, we also prove that there is a close link between
the natural residual function and the distance from the current iterate to the intersection of the feasible set
C and the hyperplane produced by the algorithm (see expression (12) and Lemma 2.2). This observation
makes our convergence analysis have a more direct feature. We also present numerical tests to compar
our method and that if10].

To devise algorithms, for variational inequalities, some researchers consider extragradient projection
methods. These kind of methods are first proposed by Korpel@jchVe refer the reader fd.2] and
[13] for some recent developments. As a contrast to the extragradient projection methods, the double-
projection methods are developed in a different ways, including the way generating the next iterate and
the argument on the convergence analysis.

The organization of this paper is as follows. In the next section, we present the algorithm details and
prove several critical lemmas for convergence analysis in Section 3. Numerical results are reported in the
last section.

2. Algorithm and preliminary results

Let IT¢ denote the projector ont@ and letu >0 be a parameter. A well-known fact is that the
solution setS of the problem (1) coincides with the roots of the natural residual funetjom which is
defined by

ru(x) :==x — p(x,n), wherep(x, p) = Ic(x — uF(x)).
Algorithm 2.1. Choosexg € C and three parametess> 0, u € (0, 1/0) andy € (0, 1). Seti = 0.
Stepl. Compute,(x;). If r,(x;) = 0, stop; else go to Step 2.
Step2. Computer; = x; — n;7,(x;), wheren; = %, with k; being the smallest nonnegative integer

satisfying

(F(xi) = F(xi = ru(xi), rux) ollru(e) 1. 3)
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Step3. Computey; 1 = II¢, (x;), whereC; := C N H; with H; = {v : h;(v) <0} being a hyperplane
defined by the function

hi() = (mru(e) + F (@), v = 20) + 0 (L= n) [ruGe) 12 = i n(F (52, (i) 4

Leti =i 4+ 1 and return to Step 1.

It can be seen that the linesearch in step 2 is well defined. Indeedysin@@ 1) andF is continuous,
F(x;) — F(x; — y*r,(x;)) and henceF (x;) — F(x; — y*r,(x;)), r,(x;)) converge to zero dstends to
oo. On the other hand, as a consequence of steg(d;) > 0 (otherwise, the procedure stops). Therefore
there exists a nonnegative integesatisfying (3).

Now let us compare the above algorithm with algorithmd1f]. In the step of the Armijo-type
linesearch[10] uses a different procedure which replaces (3) by the following one:

(F(xi = 7 ()., ru(xi) > ollr ) |12, ®)

where the parameter> 0 is required to be strictly less than 1, apds assumed to be equal to 1 in
their Algorithm 2.1 or changes according to the value;ah each iteration in their Algorithm 2.2. The
choice of the hyperplane in step 3 is also different from thg10j. To devise extragradient projection
algorithm for variational inequality12] considers the following Armijo-type linesearch procedutés
the smallest nonnegative intedesatisfying

(F(x) — F(x = (), ru(x) <ollru ()12, (6)

with ¢ € (0, 1) being a parameter. It can be seen that this linesearch has the same expression with (3).
However, (6) requires be strictly less than 1 which is crucial for the convergence analygiinwhile
the parametes in our algorithm can take any positive scalar. In fact, our numerical experiments in the
last section take = 4.

In the rest of this section, we prove several lemmas which are important for the convergence analysis
in the next section.

Lemma 2.1. For everyx € C,

(F(x), ru(0) = Hiru ()12, 7
Proof. Note thatp(x, x) is defined to b@lc(x — uF(x)) andr,(x) = x — p(x, p). It follows that
(x = plx, ) —pF(x),y — px,)<0 forallyeC;

in particular, takingy = x, we obtain the desired inequality]

Lemma 2.2. Let x* solve the variational inequalityl) and the functiom:; be defined by4). Then
hi(xi)=n; (™t = o) |lr(x) 1% and h; (x*) <O0. In particular, if r,(x;) # 0thenh; (x;) > 0.
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Proof. Sincez; = x; — n;ru(x;),

hi (xi) = (nra(xi) + F(2), xi — zi) 4+ 1, (L= i) I G 12 = mi e F (x3), 70(x))
=i (F(20), ra(x)) + 0 llru ) 12 = 0 gl F (x0), ru(x))
>n;(L— w(F (x7), ru(x)) + 1;(L— o) 17 (x) |12
>0t = o) () 12,

where the first inequality follows from (3) and the last one follows from Lemma 2/.(1f) # 0 then
hi(x;) >0 because: < 1/q. It remains to be proved that (x*)<0. Sincer,(x;) = x; — p(x;, u) and
p(xi, ) = Ic(x; — pF(x;)), we have

(ru(xi) — pF (x;), x* — x; +ru(x;)) <0;
on the other hand, assumption (2) implies that

(WF (xi), x* — x;) = (F (x;), x* — x;) <O0.
Adding the last two expressions, we obtain that

(ru(xi), x* = x; +ru(x)) — p(F(x;), ru(x;)) <0.
It follows that

(miru(x) + F(zi), x* — zi) = (miru(x) + F(zi), x* — xi + n;7u(x;))
= 02|l N2 4 1y (i), X = x0) 4 (F(zi), x* = 23)
<n2Uru GlI? + mi i F (), ru () — i llru ) |12,

Thush; (x*) <0 is verified. O

Lemma 2.3. Let C be a closed convex setli¥i, h be a real-valued function oR”, and K be the set
{x € C : h(x)<0}. If Kis nonempty and h is Lipschitz continuous on C with modats®, then

dist(x, K)>6"*maxh(x),0} forall x € C, (8)
wheredist(x, K) denotes the distance from x to K

Proof. Clearly (8) holds for alk € K. Hence, it suffices to show that (8) holds for everg C\K. Let
x € C butx ¢ K. SinceK is closed, there exists(x) € K such that|x — y|| = dist(x, K). It follows
from the Lipschitz continuity oh that

[h(x) — h(y(x))|<0llx — y(x)| = 0dist(x, K).
Sincex ¢ K andy(x) € K, we havei(x) > 0 andh(y(x)) <0. Thus we have
h(x) <h(x) — h(y(x)) = |h(x) — h(y(x))|<Odist(x, K),

and hence the conclusion followsO
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Lemma 2.4. Let X be a nonempty closed convex $et ITx (x) andx™ € X. Then
I1F = x*12< llx — x*% = Jlx — %12

Proof. Since||x —x*[|12 = |lx — x*||2 + |lx — X||® + 2(X — x, x — x*) and sincgx — x, x* — X) >0, the
conclusion follows immediately. OJ

3. Convergence and convergence rate

Theorem 3.1. If F is continuous ot€ and condition (2) holds, then either Algorithm 2.1 terminates in a
finite number of iterations or generates an infinite sequéngeconverging to a solution of (1).

Proof. Letx* be a solution of the variational inequality problem. We assume that Algorithm 2.1 generates
aninfinite sequencl; }. In particulary, (x;) # Oforeveryi. Sincex; 1 1=II¢, (x;), itfollows from Lemma
2.4 that

2 2 2 2_
Ixips — P < lxi = x*)12 = lxips — xi 12 = [lx — x*[1? — dist(x;, Ci). €)

It follows that the sequendeélx; 1 — x*||} is nonincreasing, and hence is a convergent sequence. There-
fore, {x;} is bounded and

lim dist(x;, C;) = 0. (10)

11— 00

SinceF (x) and hencep(x, 1) are continuous, we have the sequefieér;, 1)} and hence the sequence
{z;} is bounded. Thus the continuity &fimplies that{ F(z;)} is a bounded sequence, that is, for some
M >0,

||’7ﬂ’#(xi) + F(Zz)” <M, for all ;. (ll)

Clearly each functiork; is Lipschitz continuous o with modulusM. Applying Proposition 2.3 and
noting thatx; ¢ C;, we obtain that

dist(x;, Ci)>MYh; (x;), for all i. (12)
It follows from (9), (12) and Lemma 2.2 that
dist(xi, Ci) =M~ hi(xi) > M2t = o ) 12,
Thus (10) implies that
lim ;| (xi)[|* = 0. (13)
1—> 00
If lim sup;_, ., n; >0, then we must have lim ipf, », [|r,(x;)|| = 0. Sincer,,(x) is continuous andl; } is
a bounded sequence, there exists an accumulation paoihtx;} such that,(x) = 0. This implies that
X solves the variational inequality (1). Replacingby x in the preceding argument, we obtain that the
sequencé||x; — x|} is nonincreasing and hence converges. Sinise&n accumulation point gk; }, some

subsequence ¢flx; — x||} converges to zero. This shows that the whole sequghge- x|} converges
to zero, and hence lim, o x; = x.
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Suppose now thatlim, o, 7;=0. Letx be any accumulation point ¢f; }: there exists some subsequence
{xi;} converging tor. By the choice ofy;, (3) implies that

ollra i) 12 < (F i) — Fxi, — 9% ), rx)
= (F(xi;) = F(xi; =77 0, ruxi ), i)
<IF(xi;) = Fxiy — 37 M rua DlHra (i), for all j,

Since{r,(x;)} is bounded ané is continuous, we obtain by letting— oo thatr,(x) = 0. Applying the
similar argument in the previous case, we get that limx; =x. O

Before ending this section, we provide a result on the convergence rate of the iterative sequence
generated by Algorithm 2.1. To establish this result, we need a certain error bound to hold locally (see
(14) below). The research on error bound is a large topic in mathematical programming. One can refer
to the survey[6] for some sufficient conditions ensuring the existence of error bounds and for the roles
played by error bounds in the convergence analysis of iterative algorithms; more recent developments on
this topic are included in Chapter 6 in the excellent bfigk A condition similar to (14) has also been
used in[9] (see expression (5) therein) to analyze the convergence rate in very general framework.

Theorem 3.2. In addition to the assumptions in the above theqrérf is Lipschitz continuous with
modulusL > 0 and if there exist positive constants ¢ anguch that

dist(x, S)<c|lru(x)||, for all x satisfying||r,(x)|l <, (14)

then there is a constaat> 0 such that for sufficiently large i
1

dist(x;, §) < .
’ i + dist 2(xg, S)

Proof. Puty := min{1/2, L=1ys}. We first prove thag, > n for all i. By the construction of;, we have
n; € (0, 1]. If 5; = 1, then clearly;; > 1/2>#5. Now we assume that < 1. Sincey; = 7%, it follows that
the nonnegative integér > 1. Thus the construction &f implies that

(F(x) = F(xi =y~ (), ru(e) > ollru () 112, (15)

It follows from the Lipschitz continuity ofF that

ollru () 1% < (F(xi) — F(xi — 3~ Siru(xi), ru(x))
<Ly Yy () 12

Thereforey; > L™ 1yo>1.
Letx* € ITs(x;). By the proof of the above theorem and (14), we obtain that for sufficiently large
dist(x; 11, ) < [lxir1 — x* [P <Ixi — x*12 = M 720 (™t = 0)?[lry () || *
< = x 12 = M 7202 = )Pl () )1
<dist(x;, §) — M~%n?(u= 1 — 0)cdist(x;, )%
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Write o for M—242(u~1 — 6)?c—*. Applying Lemma 6 if{8, Chapter 2]we have

dist(x;, §) <dist(xg, S) /\/ ai dis(xg, S) + 1= 1/\/ ai 4 dist™?(xo, ).

This completes the proof.O

4. Numerical experiments

In this section, we present some numerical experiments for the proposed algorithmaiLhe bbdes
are run on a PC (with CPU Intel P4) underivas Version 6.5.1.199709 (R13) Service Pack 1 which
contains Optimization Toolbox Version 2.3. We compare the performance of our alg@tihAigorithm
2.2]and[12, Algorithm NVE-2] We take||r (x)|| <10~* as the termination criterion. We choose 0.5,
o =4 andu = 0.2 for our algorithm;s = 0.3 andy = 0.5 for Algorithm 2.2 in[10] ands = 0.4 and
y = 0.8 for Algorithm NVE-2 in[12]. The choices of the parameters for the latter two algorithms are
what the corresponding references proposed. Example 1 is te$igd.ikExample 2 contains test results
for several nonlinear variational inequality problems. We thank an anonymous referee for pointing out
some problems in the original numerical test results which helps us to correct some bugs in the original

MaTLAB code and for suggesting us to test more nonlinear problems to compare our algorithm with some
known algorithms in the literature.

Example 1. Consider the affine variational inequality (1) with= [0, 1]" and F (x) = M x + d where
4 -2

1 4 -2 j
M = 1 4 -2 and d=
1 4 -1

The initial pointxg is chosen to be the origin. We uséto denote the total number of times thHais
evaluated Table 1.

Example 2. Nonlinear variational inequality problems. Mathiesen'’s test problem is testq7ii0}
PMnashB5andPMnashl@are called Nash—Cournot NCP (with=5 andn = 10, respectively) and tested

Table 1
Example 1
Algorithm 2.1 [10, Algorithm 2.2] [12, Algorithm NVE-2]
iter.(nf) CPU iter. af) CPU iter.qf) CPU
n =10 22 (33) 0.141 21 (65) 0.151 30 (331) 0.221
n =50 23(32) 0.251 23 (71) 0.261 34 (375) 0.34
n =100 24 (32) 0.551 23 (71) 0.541 36 (397) 0.781
n =200 24 (31) 2.304 25 (77) 2.423 37 (408) 3.305

n =500 25 (32) 24.9 25 (77) 26.1 38 (419) 38.605
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Table 2
Example 2
Algorithm 2.1 [10, Algorithm 2.2] [12, Algorithm NVE-2]
Iter.(nf) CPU Iter.ff) CPU Iter.qf) CPU
Mathiesen 19 (51) 0.14 12 (35) 0.15 204 (2522) 1.472
PMnash5 11 (67) 0.14 21 (67) 0.18 31 (807) 0.34
PMnash10 10 (31) 0.12 17 (54) 0.16 33 (595) 0.351
Harnash5 9 (55) 0.1 18 (58) 0.181 25 (651) 0.271
Harnash10 34 (169) 0.271 39 (122) 0.33 71 (1412) 0.811

in [7,10]. Harker[2] defined and testedarnash5andHarnash10with » = 5 andn = 10, respectively.
For Mathiesen'’s test problem, we ugg= (0.3, 0.4, 0.3) as the initial point, while the initial point of
other test problems isg = (1, ..., 1) (Table 2.
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