CLASSIFICATION OF THE AUSLANDER-REITEN QUIVERS OF LOCAL GORENSTEIN ORDERS AND A CHARACTERIZATION OF THE SIMPLE CURVE SINGULARITIES

Alfred WIEDEMANN

Mathematisches Institut B der Universität Stuttgart, West Germany

Communicated by H. Bass Received 11 February 1985

In this paper we give a complete list of all finite Auslander-Reiten quivers of local Gorenstein orders Λ over a complete Dedekind domain R of finite lattice type (i.e. Λ is an injective indecomposable left lattice over itself and has – up to isomorphism – only finitely many indecomposable left lattices) [7, 19]. For each translation quiver Γ in this list, we indicate explicitly a Gorenstein order Λ with Γ as its Auslander-Reiten quiver. Moreover, in each case we describe the indecomposable Λ -lattices.

In particular, this list contains the Auslander-Reiten quivers of the plane simple curve singularities whose complete local rings can be viewed as Gorenstein orders over the power series ring in one variable over the complex numbers [9]. Briefly we recall a description of these singularities which turns out to be of interest in connection with the above translation quivers [1, 6, 21, 22]:

Consider the ring of invariants of a finite nontrivial subgroup of $SL_2(\mathbb{C})$ acting linearly on the power series ring $\mathbb{C}[\![U, V]\!]$. It has three generators X, Y, Z satisfying one relation $f(X, Y) + Z^2 = 0$ which defines in the neighbourhood of the origin a surface with the origin as an isolated singularity. The singularities occuring in this way as quotient singularity of a finite group are usually known as rational double points or Kleinian singularities. It is well known that the resolution graph of these singularities are the Dynkin diagrams \mathbb{A}_n , \mathbb{D}_n , \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 [6]. Then the intersection with the plane Z = 0 is a reduced simple plane curve singularity [1] characterized by Greuel-Knörrer [14]:

The complete local ring Λ of a reduced plane curve singularity has finitely many nonisomorphic torsion free modules of rank 1 if and only if $\Lambda \cong \mathbb{C}[X, Y]/f(X, Y)$ where $f(X, Y) + Z^2$ defines a Kleinian singularity.

Our characterization of the Auslander-Reiten quivers of the simple curve singularities uses one of the main results of [26] which we summarize as follows:

Let Λ be a basic *R*-order in the separable *K*-algebra A, where *K* is the quotient field of *R*, $A = K\Lambda$, and $\Lambda/\text{Rad }\Lambda$ is a product of skewfields. If $A = \prod_{i=1}^{s} (D_i)_{n_i}$,

where $(D_i)_{n_i}$ is the $n_i \times n_i$ -matrix ring over a finite-dimensional skewfield D_i over K, then both the number s of simple factors of A and all the numbers n_i , i = 1, ..., s are determined by the Auslander-Reiten quiver of A.

This result together with the knowledge of all the examples we shall present, gives rise to the following:

Theorem. Let Λ be any local not necessarily commutative Gorenstein R-order of finite lattice type in a product of skewfields such that the stable Auslander–Reiten quiver $\mathfrak{A}(\Lambda)_s$ has as tree class one of the Dynkin diagrams $\mathbb{A}_n, \mathbb{D}_n, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8$. Then its Auslander–Reiten quiver $\mathfrak{A}(\Lambda)$ coincides with the Auslander–Reiten quiver of the category of lattices over the complete local ring of a simple curve singularity given by one of the equations f(X, Y) = 0.

In Riedtmann's notation [16], $\mathfrak{A}(\Lambda)_s$ is one of the following:

	$\mathfrak{A}(\Lambda)_{s}$	type of the corresponding Kleinian singularity and defining polynomial $f(X, Y)$	
$\mathbb{Z}\mathbb{A}_1/\tau^{2\mathbb{Z}}$		\mathbb{A}_1 ,	$X^2 + Y^2$
$\mathbb{Z}\mathbb{A}_3/(\tau\varphi)^{\mathbb{Z}},$	$\varphi^2 = \mathrm{Id}$	A3,	$X^2 + Y^4$
$\mathbb{ZD}_m/(\tau\varphi)^{\mathbb{Z}},$	$m \ge 4, \ \varphi^2 = \mathrm{Id}$	\mathbb{A}_{2m-3} ,	$X^2 + Y^{2m-2} *$
$\mathbb{Z}\mathbb{A}_{2m}/\varrho^{\mathbb{Z}},$	$m \ge 1, \ \varrho^2 = \tau$	\mathbb{A}_{2m} ,	$X^2 + Y^{2m+1}$
$\mathbb{ZD}_n/\tau^{2\mathbb{Z}},$	$n \ge 4$ and even	\mathbb{D}_n ,	$X^2Y + Y^{n-1}$
$\mathbb{Z}\mathbb{A}_{2n-3}/(\tau\varphi)^{\mathbb{Z}},$	$n \ge 5$ and odd, $\varphi^2 = \text{Id}$	\mathbb{D}_n ,	$X^2Y + Y^{n-1} *$
$\mathbb{ZE}_6/(\tau\varphi)^{\mathbb{Z}},$	$\varphi^2 = \mathrm{Id}$	E ₆ ,	$X^{3} + Y^{4}$
$\mathbb{Z}\mathbb{E}_7/\tau^{2\mathbb{Z}}$		E7,	$X^3 + XY^3$
$\mathbb{ZE}_8/\tau^{2\mathbb{Z}}$		E ₈ ,	$X^{3} + Y^{5}$

(Here τ denotes the translation on the translation quiver $\mathbb{Z}\Delta$, Δ an oriented Dynkin diagram, φ and ϱ are automorphisms of $\mathbb{Z}\Delta$ satisfying the indicated relations induced by nontrivial automorphisms on Δ .)

* The discrepancy between the type of the Kleinian singularity and the tree class of the stable Auslander-Reiten quiver in these cases is explained in [9].

The paper is organized as follows:

In Section 1, using covering techniques, we derive necessary conditions relating the positions of projective and injective vertices for Auslander-Reiten quivers of arbitrary orders. In Section 2 we translate the results of Section 1 into concrete conditions for configurations of Gorenstein orders of finite type. Using these results, we derive in Section 3 a complete list of all possible finite Auslander-Reiten quivers of orders having exactly one projective vertex being simultaneously injective. In Section 4, we present for each translation quiver of Section 3 a Gorenstein order Λ having this translation quiver as Auslander-Reiten quiver.

Except for the Dynkin diagrams of type \mathbb{E}_6 , \mathbb{E}_7 , \mathbb{E}_8 – where the reader should consult [13, 14] – we also indicate the whole Auslander-Reiten quiver of Λ and give a

description of its indecomposable lattices. If Λ can be chosen to be commutative, we just take as Λ the local ring $\mathbb{C}[X, Y]/f(X, Y)$ of a simple plane curve singularity.

The computations of many of these Auslander-Reiten quivers are already discussed elsewhere [8, 9, 20, 23, 24]. Our computations were rather technical and very often had to be worked out in many steps. So we have not included a detailed description of all these computations.

1. Relations between projective and injective vertices in $\mathfrak{A}(A)$

Let R be a complete Dedekind domain with quotient field K, residue class field f, and let Λ be an R-order in a separable K-algebra $A = K\Lambda$ of finite lattice type. We denote by $\mathfrak{A}(\Lambda) = \Gamma$ the Auslander-Reiten quiver of Λ , and we consider Γ as fmodulated translation quiver in the sense of [3, 25]. Moreover let $\tilde{\Gamma}$ be the universal cover of Γ , and let $F: \tilde{\Gamma} \to \Gamma$ be the covering morphism [5]. We recall the definition of the powers of the functorial radical $\mathbf{r}^{\ell}(M, N)$, $l \ge 0$, of the Λ -morphism space from M to N as the $\operatorname{End}_{\Lambda}(M)$ - $\operatorname{End}_{\Lambda}(N)$ -submodule of $\operatorname{Hom}_{\Lambda}(M, N)$ which is generated by those morphisms from M to N which are compositions of l irreducible maps. Recall also that to each vertex x and each arrow $x \to y$ in $\tilde{\Gamma}$ there is associated the finite-dimensional skewfield $f_x = \operatorname{End}_{\Lambda}(Fx)/\operatorname{Rad}\operatorname{End}_{\Lambda}(Fx)$ over f and the finitedimensional f_x - f_y -bimodule $_xB_y = \operatorname{Irr}(Fx, Fy) = \mathbf{r}(Fx, Fy)/\mathbf{r}^2(Fx, Fy)$ resp. For vertices x, y in $\tilde{\Gamma}$ let H(x, y) be the morphisms from x to y in the mesh category $\mathfrak{f}(\tilde{\Gamma})$ of $\tilde{\Gamma}$ [5, 25]. By [25] there exists a covering functor for Λ : For x, y as above and Λ lattices M = Fx, N = Fy there exists a graded f-bilinear isomorphism

$$\mathbf{F}:\prod_{F_z=F_y}H(x,z)\to\prod_{l\geq 0}\mathbf{r}^l(M,N)/\mathbf{r}^{l+1}(M,N).$$

Our aim in this section is to find relations between the positions of projective and injective Λ -lattices in $\mathfrak{A}(\Lambda)$. First we consider an indecomposable Λ -lattice M and an indecomposable projective Λ -lattice Q. Then each morphism $\varphi: Q \to M$ factorizes over a projective cover $\psi: P_0(M) \to M$:

and φ can be extended to a projective cover of M if and only if α is a split monomorphism; otherwise $\alpha \in \mathbf{r}(Q, P_0(M))$.

This observation gives rise to the following definition for indecomposable Λ -lattices X and M, M nonprojective:

A. Wiedemann

$$\mathbf{r}P(X, M) = \sum_{\substack{Q \text{ arbitrary} \\ \text{projective}}} \mathbf{r}(X, Q) \cdot \mathbf{r}(Q, M)$$

consists of all Λ -morphisms from X to M which factor nontrivially over a projective lattice.

If we abbreviate $\operatorname{End}_{\Lambda}(X)/\operatorname{Rad}\operatorname{End}_{\Lambda}(X)$ by t(X) for X indecomposable, we have for Q indecomposable projective:

(1.1) $\dim_{t(Q)}(\operatorname{Hom}_{A}(Q, M)/\mathbf{r}P(Q, M)) = \operatorname{mult}_{P_{0}(M)}(Q)$ $= \operatorname{multiplicity} \text{ of } Q - \operatorname{up to isomorphism} - \text{ as direct}$ summand in the projective cover of M.

We now want to make a similar construction in the mesh category $\mathfrak{k}(\tilde{\Gamma})$ and recover this multiplicity there:

For a nonprojective vertex z in $\tilde{\Gamma}$ and an arbitrary vertex x we define $H_p(x, z)$ as quotient of H(x, z) modulo the f_x - f_z -subspace HP(x, z) generated by paths of the form

$$x \to \cdots \to q \to \cdots \to z,$$

where q is projective, and α has length at least 1.

Note that for indecomposable Λ -lattices M, N the radical filtration

 $\operatorname{Hom}_{\mathcal{A}}(M, N) \supseteq \mathbf{r}(M, N) \supseteq \mathbf{r}^{2}(M, N) \supseteq \cdots$

induces a filtration on the quotient $\text{Hom}_{\Lambda}(M, N)/\mathbf{r}P(M, N)$ with associated graded factors

 $\mathbf{r}'(M, N) + \mathbf{r}P(M, N)/(\mathbf{r}'^{+1}(M, N) + \mathbf{r}P(M, N)).$

In this situation we have the following:

Proposition 1. Let $F: \tilde{\Gamma} \to \Gamma$ and \mathbf{F} be as above, and let M = Fx, N = Fy. Then \mathbf{F} induces a graded t-linear bijection

$$\mathbf{F}_{\mathrm{p}}:\prod_{F_{z}=N}H_{\mathrm{p}}(x,z)\rightarrow\prod_{l\geq 0}\mathbf{r}^{l}(M,N)+\mathbf{r}P(M,N)/(\mathbf{r}^{l+1}(M,N)+\mathbf{r}P(M,N)).$$

Proof. Since F maps projective vertices of $\tilde{\Gamma}$ onto projective lattices, \mathbf{F}_p is well-defined; the surjectivity of \mathbf{F}_p is also clear.

Since Λ is of finite lattice type, there exists an $l_0 \in \mathbb{N}$ such that $\mathbf{r}^{l}(M, N) \subseteq \mathbf{r}P(M, N)$ for all $l \ge l_0$. For vertices x, y in $\tilde{\Gamma}$ we denote by $l_{x, y}$ the length of any path from x to y in $\tilde{\Gamma}$. Then by the injectivity of \mathbf{F} we conclude

$$\dim_{f_x} \left(\prod_{F_z = N} H_p(x, z) \right) = \sum_{\substack{F_z = N \\ l_{x,z} \le l_0}} (\dim_{f_x} H(x, z) - \dim_{f_x} HP(x, z))$$
$$= \sum_{\substack{F_z = N \\ l_{x,z} \le l_0}} \dim_{f_x} H(x, z) - \sum_{\substack{F_z = N \\ l_{x,z} \le l_0}} \dim_{f_x} HP(x, z)$$

308

 $= \operatorname{length}_{\operatorname{End}_{A}(M)}(\operatorname{Hom}_{A}(M, N)/\mathbf{r}^{l_{0}+1}(M, N))$ $- \operatorname{length}_{\operatorname{End}_{A}(M)}(\mathbf{r}P(M, N)/\mathbf{r}^{l_{0}+1}(M, N))$ $= \operatorname{length}_{\operatorname{End}_{A}(M)}(\operatorname{Hom}_{A}(M, N)/\mathbf{r}P(M, N)).$

Consequently, the injectivity of \mathbf{F}_{p} follows from its surjectivity. \Box

We summarize the above considerations and Proposition 1 as follows:

Proposition 2. (i) Let Q be an indecomposable projective Λ -lattice, N an arbitrary nonprojective indecomposable Λ -lattice. Then the following are equivalent:

(a) There exists a $\varrho \in \mathbf{r}^{l}(Q, N) \setminus \mathbf{r}^{l+1}(Q, N)$ which can be extended to a projective cover of N.

(b) $\mathbf{r}^{\prime}(Q, N) \setminus \mathbf{r}^{\prime+1}(Q, N) \not\subseteq \mathbf{r}P(Q, N).$

(c) There exist vertices q, y in $\tilde{\Gamma}$ with Fq = Q, Fy = N, $l_{q, y} = l$ and $H_p(q, y) \neq 0$.

(ii) In the situation of (i), the multiplicity of Q in the projective cover $P_0(N)$ of N is given by the number $\sum_{Fq=Q} \dim_{f_q} H_p(q, y)$, and $P_0(N)$ decomposes into $\sum_{q \text{ projective in } \bar{f}} \dim_{f_q} H_p(q, y)$ indecomposable direct summands.

For a projective vertex q of $\tilde{\Gamma}$ we shall consider later in this section those vertices y such that $l_{q,y}$ is maximal with $H_p(q, y) \neq 0$.

We start with a fixed simple Λ -module S with projective cover P_S and denote by I_S that indecomposable injective Λ -lattice with minimal overlattice I_S^+ satisfying $I_S^+/I_S \cong S$.

Lemma 1. If M is a A-lattice and $\varphi: M \to S$ an epimorphism, then φ factors over the projection $I_S^+ \to I_S^+/I_S \cong S$.

Proof. Since I_S is an injective lattice, the following pullback via φ decomposes:

Since Λ is of finite lattice type there exists an $l_1 \in \mathbb{N}$ such that

 $\mathbf{r}^{l}(X, I_{S}^{+}) \cdot \operatorname{Hom}_{A}(I_{S}^{+}, S) = 0$

for each Λ -lattice X and $l \ge l_1$. Moreover, since Hom $(P_S, S) \ne 0$, we can choose by Lemma 1 a nonzero morphism $\varrho \in \mathbf{r}^{l_0}(P_S, I_S^+)$ where l_0 is maximal with $\varrho \cdot \operatorname{Hom}_{\Lambda}(I_S^+, S) \ne 0$.

Lemma 2. (i) If P' is a projective Λ -lattice and $\tau \in \text{Hom}_{\Lambda}(P_S, P')$, $\varrho' \in \text{Hom}_{\Lambda}(P', I_S^+)$ such that $\varrho = \tau \varrho'$, then τ is a split monomorphism.

(ii) For an arbitrary Λ -lattice Y and each $\alpha \in \mathbf{r}(I_S^+, Y)$ there exists a projective Λ -

lattice P', a nonsplit morphism $\tilde{\varrho}: P_S \to P'$ and a morphism $\psi: P' \to Y$ such that $\varrho \alpha = \tilde{\varrho} \psi$, i.e., $\varrho \alpha$ factors properly over another projective.

Proof. (i) Trivial.

(ii) Let $P' = P_0(Y) \xrightarrow{\psi} Y$ be a projective cover of Y. Then there exists a $\tilde{\varrho}$ with $\tilde{\varrho}\psi = \varrho \alpha$. If $\varrho \alpha \cdot \operatorname{Hom}_{\Lambda}(Y, S) = 0$, then $\operatorname{Im} \tilde{\varrho} \subset \operatorname{rad}_{\Lambda} P_0(Y)$ and $\tilde{\varrho}$ is not split mono. Otherwise suppose that there exists a nonzero β in $\operatorname{Hom}_{\Lambda}(Y, S)$ with $\varrho \alpha \beta \neq 0$. By Lemma 1 there exist morphisms β' , σ' such that

commutes. Therefore $\rho\alpha\beta'\sigma'\neq 0$ and $\rho\alpha\beta'\cdot \text{Hom}(I_S^+, S)\neq 0$; moreover $\rho\alpha\beta'\in \mathbf{r}^{l_0+1}(P_S, I_S^+)$: contradiction to the maximality of l_0 . \Box

We summarize the above results in the following

Proposition 3. (i) If X is an indecomposable A-lattice with a morphism $\rho \in \operatorname{Hom}_{A}(P_{S}, X)$ satisfying $\rho \cdot \operatorname{Hom}_{A}(X, S) \neq 0$ and $\rho \alpha \cdot \operatorname{Hom}_{A}(Y, S) = 0$ for an arbitrary $\alpha \in \mathbf{r}(X, Y)$, then X is isomorphic to a direct summand of the unique minimal overlattice I_{S}^{+} of I_{S} .

(ii) If q is a projective vertex in $\tilde{\Gamma}$ and y is a vertex of $\tilde{\Gamma}$ with $l_{q,y}$ maximal satisfying $H_p(q, y) \neq 0$, then y is a successor of an injective vertex.

Proof. (i) follows immediately from the Lemmata above. (ii) is the direct translation of (i) using Proposition 1. \Box

2. Necessary conditions for the Auslander-Reiten quivers of Gorenstein orders

From now on we assume that Λ is a nonmaximal *R*-order and is an indecomposable injective lattice over itself, i.e. Λ is local but not necessarily commutative and Gorenstein in the terminology of [10].

If the Jacobson radical Rad Λ decomposes, then Λ is a Bäckström order with associated graph \mathbb{A}_3 or \mathbb{C}_2 [18], and its Auslander-Reiten quiver is described in [20]. Therefore we assume from now on that Rad Λ is indecomposable and Λ is of finite lattice type.

Then by [15] the stable Auslander-Reiten quiver $\mathfrak{A}(\Lambda)_s$ of Λ , i.e., the full subquiver of $\mathfrak{A}(\Lambda)$ of all nonprojective vertices has as tree class a Dynkin diagram Δ and is isomorphic to $\mathbb{Z}\Delta/G$ for G an admissible automorphism group of $\mathbb{Z}\Delta$ in the

sense of Riedtmann [16] or is described in [23] in case $\mathfrak{A}(\Lambda)$ contains a loop \mathfrak{A} . In this last case $\mathfrak{A}(\Lambda)$ is of the form

where the vertex 0 is projective-injective and the translation is the identity on the other vertices 1, ..., n. Obviously the stable Auslander-Reiten quiver is then isomorphic to the translation quiver

$$\mathbb{Z}\mathbb{A}_{2n}/\varrho^{\mathbb{Z}}, \quad \varrho^2 = \tau,$$

where ϱ is the automorphism of $\mathbb{Z}\mathbb{A}_{2n}$ induced by the nontrivial automorphism of \mathbb{A}_{2n} . Note that $\varrho^{r\mathbb{Z}}$ is admissible in the sense of Riedtmann for r > 1 only. So we call the automorphism group G of $\mathbb{Z}\Delta$ *l*-admissible (lattice-admissible) if G is admissible or Δ is of type \mathbb{A}_{2n} and $G = \varrho^{\mathbb{Z}}$ as above.

With the notation of Section 1, we get $\tilde{\Gamma}$ by adding suitable projective-injective vertices to $\mathbb{Z}\Delta$. Since Rad Λ is indecomposable, a projective vertex q of $\tilde{\Gamma}$ has a unique predecessor q^- corresponding to Rad Λ and a unique successor q^+ corresponding to the unique minimal overlattice Λ^+ of Λ in the quiver $\tilde{\Gamma}$; moreover $q^- = \tau q^+$.

We call q^+ a configuration vertex and the set of vertices

 $C = \{q^+ | q^+ \text{ is a successor of a projective vertex } q\}$

is called *configuration* of $\mathbb{Z}\Delta$ with respect to Λ .

If q is a projective-injective vertex of $\tilde{\Gamma}$ with successor q^+ , then for each nonprojective vertex x in $\tilde{\Gamma}$ we have an isomorphism of f_q -vectorspaces

$$H_{\mathbf{p}}(q, x) \cong {}_{q}B_{q^{+}} \otimes_{f_{q^{+}}} H_{\mathbf{p}}(q^{+}, x).$$

If $f_q \not\equiv f_{q^+}$, then Λ being of finite lattice type, the valuation $(\dim_{f_q q} B_{q^+}, \dim_{f_{q^+} q} B_{q^+})$ is of the form (1, n) or (n, 1) with n = 2 or n = 3 [2]. This implies either that Λ^+ decomposes – what we already excluded – or the middle term of the almost split sequence of Λ^+ contains *n* copies of Λ as direct summands. By rank arguments, we have n = 2 and an almost split sequence

$$0 \to \operatorname{Rad} \Lambda \to \Lambda^{(2)} \to \Lambda^+ \to 0.$$

Then Λ is a Bäckström order with associated graph \mathbb{B}_2 ; moreover Rad $\Lambda \cong \Lambda^+$ and Λ has – up to isomorphism – exactly the two nonisomorphic indecomposable lattices Λ and Rad Λ . Therefore we assume from now on that ${}_qB_{q^+}\cong f_q\cong f_{q^+}$ for each projective vertex q of $\tilde{\Gamma}$.

For q and x as above, we have under this hypothesis isomorphisms as f_q -vectorspaces

$$H_{\mathbf{p}}(q, x) \cong H_{\mathbf{p}}(q^+, x) \cong \mathfrak{k}(\mathbb{Z} \varDelta)(q^+, x) \cong H_{\mathbb{Z} \varDelta}(q^+, x),$$

where the last two terms stand for the morphisms from q^+ to x in the mesh category with respect to $\mathbb{Z}\Delta$. Altogether the computation of $H_p(q, x)$ is reduced to computations in the mesh category of $\mathbb{Z}\Delta$.

For each vertex z in $\mathbb{Z}\Delta$, we define the *cover vector* of z as the positive vector $(\dim_{f_z} H_{\mathbb{Z}\Delta}(z, y))_y$, where y runs over the vertices of $\mathbb{Z}\Delta$. (The cover vector consists essentially of the positive piece of the additive function starting at z in the terminology of Gabriel [11] and coincides with Bongartz's starting function of z [4, 5].) The *support* of the cover vector of z consists of those vertices y with $\dim_{f_z} H_{\mathbb{Z}\Delta}(z, y) > 0$. Note that for a projective vertex q of $\tilde{\Gamma}$ a nonzero path from q to any vertex of $\mathbb{Z}\Delta$ contributes to a projective cover of Fx in the sense of Proposition 2 if and only if x belongs to the support of the cover vector of q^+ .

We now make two important observations which also hold for arbitrary Gorenstein orders of finite lattice type:

First, if I is an injective indecomposable Λ -lattice with minimal overlattice I^+ , then -I being projective and I^+/I being simple - the projective cover of I^+ decomposes exactly into two indecomposable nonzero direct summands.

Second, by Propositions 2 and 3 this implies: If $c = q^+$ is a configuration vertex in $\mathbb{Z}\Delta$, there exists a unique vertex c' of $\mathbb{Z}\Delta$ in the support of the cover vector of c such that $l_{c,c'}$ is maximal. Moreover, c' is also a configuration vertex, i.e., there exists a projective vertex q' in $\tilde{\Gamma}$ such that $(q')^+ = c'$.

These observations imply immediately the following necessary conditions for a configuration of $\mathbb{Z}\Delta$. Similar conditions are given by Riedtmann for the algebra case in [17], cf. also [12].

Proposition 4. Let C be a configuration of $\mathbb{Z}\Delta$ with respect to a Gorenstein order of finite lattice type. Then C satisfies the following conditions:

(C₁) For each $c \in C$ there exists a unique $c' \in C$ with $H_{\mathbb{Z}\Delta}(c,c') \neq 0$ and $H_{\mathbb{Z}\Delta}(c,d) = 0$ for all successors d of c'.

(C₂) For each $x \in \mathbb{Z}\Delta$ there exists at least one $c \in C$ with $H_{\mathbb{Z}\Lambda}(c, x) \neq 0$.

3. The possible Auslander-Reiten quivers of local Gorenstein orders of finite lattice type

In this section we assume that Λ is a nonmaximal local Gorenstein order and that Λ is not a Bäckström order with associated graph \mathbb{A}_3 , \mathbb{B}_2 or \mathbb{C}_2 (cf. Section 2).

We now discuss the various possibilities for the structure of $\Gamma = \mathfrak{A}(\Lambda)$ using the results of the previous section.

Let $\mathfrak{A}(\Lambda)_s = \mathbb{Z}\Delta/G$ for an oriented Dynkin diagram Δ and an l-admissible automorphism group G of $\mathbb{Z}\Delta$.

We label the vertices of Δ by integers 1, 2, ..., n and associate to the vertices of $\mathbb{Z}\Delta$ coordinates $(i, \alpha) \in \{1, ..., n\} \times \mathbb{Z}$ such that $\tau(i, \alpha) = (i, \alpha - 1)$, and there is an arrow from (i, α) to (j, β) in $\mathbb{Z}\Delta$ if and only if

either
$$\alpha = \beta$$
 and $\stackrel{i}{\bullet} \xrightarrow{j}$ in Δ or $\alpha = \beta - 1$ and $\stackrel{j}{\bullet} \xrightarrow{i}$ in Δ .

For the various Δ 's we briefly sketch the support of the cover vector of a vertex c and indicate also the vertex c' as defined in Proposition 4; an explicit description of the cover vectors is e.g. given by Bongartz in [4].

Using Proposition 4 and $-\Lambda$ being local - by the fact that there is exactly one *G*-orbit of configuration vertices in $\mathbb{Z}\Delta$, we determine the possible Auslander-Reiten quivers Γ .

Obviously the support of any cover vector hits the τ -orbit of the end vertices 1 and *n* together twice. By condition (C₂) this implies that $\tau^2 \in G$. Therefore by condition (C₁) for a configuration vertex $c = (i, \alpha)$ we must have i = 1, 2, n-1 or *n*. For simplicity we may assume that either c = (1, 0) or c = (2, 0) is a configuration vertex.

If n is even, c = (1, 0) is a possible configuration vertex and

(1)
$$\Gamma_{\rm s} \cong \mathbb{Z} \mathbb{A}_n / \varrho^{\mathbb{Z}}, \quad \varrho^2 = \tau.$$

For $n \ge 4$, c = (2, 0) as configuration vertex is excluded by the following argument: G has to be of the form $(\rho\tau^s)^{\mathbb{Z}}$ with $\rho^2 = \tau$, $s \ge 0$. By condition (C_1) $\tau \notin G$, and we have $s \ge 1$; moreover $\tau^2 \in G$. On the other hand the elements of G are of the form

$$(\varrho\tau^s)^m = \varrho^m \tau^{sm} = \begin{cases} \tau^{(s+1/2)m} & \text{for even } m, \\ \varrho\tau^{sm+(m-1)/2} & \text{for odd } m. \end{cases}$$

But (s+1/2)m=2 is not possible for $s \ge 1$ and $m \in \mathbb{Z}$.

If *n* is odd and n > 3, *G* is of the form $(\varphi \tau^r)^{\mathbb{Z}}$, $\varphi^2 = \text{Id}$ and $r \ge 1$. This immediately excludes c = (1, 0) because this would force $\tau \in G$. For c = (2, 0) the *G*-orbit of *c* must contain c' = (n - 1, 1), and this forces $n \equiv 3 \pmod{4}$. This gives the following possibilities:

(2)
$$\Gamma_{\rm s} \cong \mathbb{Z} \mathbb{A}_n / (\varphi \tau)^{\mathbb{Z}}, \quad \varphi^2 = {\rm Id}, \quad n \equiv 3 \pmod{4},$$

(3)
$$\Gamma_{\rm s} \cong \mathbb{Z} \mathbb{A}_3 / \tau^{\mathbb{Z}}$$

The possible automorphism groups clearly are of the form $G = \tau^{s\mathbb{Z}}$, $s \ge 1$. Each support of a cover vector hits the τ -orbit of vertex 1 at most twice, therefore $\tau^2 \in G$. Possible configuration vertices are up to translation (1,0) or (2,0).

If (1,0) is a configuration vertex, then

(4)
$$\Gamma_{\rm s} \cong \mathbb{Z}\mathbb{B}_n/\tau^{\mathbb{Z}}.$$

If (2,0) is a configuration vertex then *n* has to be odd and

(5)
$$\Gamma_{\rm s} \cong \mathbb{Z}\mathbb{B}_n/\tau^{2\mathbb{Z}},$$

or for n=2, we get the same as for $\Delta = \mathbb{C}_2$ in case (6).

$$\Delta = \mathbb{C}_n: \qquad \stackrel{1}{\bullet} \xrightarrow{2} \xrightarrow{2} \xrightarrow{3} \xrightarrow{3} \xrightarrow{1} \cdots \xrightarrow{n-1} \xrightarrow{n-1} \xrightarrow{n} , \quad n \ge 2.$$

We have the same pattern of the supports as in case $\Delta = \mathbb{B}_n$ and get therefore:

If (1,0) is a configuration vertex, then

(6)
$$\Gamma_{\rm s} \cong \mathbb{Z}\mathbb{C}_n / \tau^{\mathbb{Z}}.$$

If (2,0) is a configuration vertex, then *n* is odd and

(7)
$$\Gamma_{\rm s} \cong \mathbb{Z}\mathbb{C}_n / \tau^{2\mathbb{Z}},$$

or for n=2, we get the same as for $\Delta = \mathbb{B}_2$ in case (4).

The admissible automorphism groups are of the form $G = \tau^{s\mathbb{Z}}$, $G = (\varrho \tau^s)^{\mathbb{Z}}$ or $G = (\sigma \tau^s)^{\mathbb{Z}}$, where ϱ and σ for n = 4 are induced by nontrivial automorphisms of \mathbb{D}_n and satisfy $\varrho^2 = \text{Id}$ and $\sigma^3 = \text{Id}$. Each support of a cover vector hits the τ -orbit of vertex 1 at most twice. Therefore G contains an element of the form $\varphi \tau^2$ for an automorphism φ of finite order of \mathbb{ZD}_n . Possible configuration vertices are up to translation (1,0) and (2,0), and we get the following:

If (1,0) is a configuration vertex, then

(8)
$$\Gamma_{\rm s} = \mathbb{Z} \mathbb{D}_n / (\varrho \tau)^{\mathbb{Z}}, \quad \varrho^2 = {\rm Id} \quad {\rm or}$$

(9)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{D}_n/\varrho^{\mathbb{Z}}.$$

If (2,0) is a configuration vertex, then *n* has to be even and either

(10)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{D}_n/\tau^{2\mathbb{Z}}, \text{ or }$$

(11)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{D}_n / (\varrho \tau^2)^{\mathbb{Z}}, \quad \varrho^2 = {\rm Id} \quad {\rm or}$$

(12)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{D}_4/(\sigma\tau^2)^{\mathbb{Z}}, \quad \sigma^3 = {\rm Id}.$$

Similar arguments and the structure of the supports of the cover vectors (cf. [4]) give the following possibilities for the remaining Dynkin diagrams:

(1,0) is a configuration vertex, and

(13) $\Gamma_{\rm s} = \mathbb{Z}\mathbb{E}_6/(\rho\tau)^{\mathbb{Z}}, \quad \rho^2 = {\rm Id},$

and ρ is induced by the nontrivial automorphism of \mathbb{E}_6 .

$$\Delta = \mathbb{E}_7: \qquad \stackrel{1}{\bullet} \xrightarrow{2} \stackrel{2}{\longrightarrow} \stackrel{3}{\bullet} \xrightarrow{3} \stackrel{4}{\longrightarrow} \stackrel{4}{\longrightarrow} \stackrel{6}{\longrightarrow} \stackrel{7}{\longrightarrow} \stackrel{7}{\bullet} \xrightarrow{4} \stackrel{6}{\longrightarrow} \stackrel{7}{\longrightarrow} \stackrel{7}{\bullet} \xrightarrow{5} \stackrel{6}{\longrightarrow} \stackrel{7}{\longrightarrow} \stackrel{7}{\rightarrow} \stackrel{$$

(7,0) is a configuration vertex, and

(1,0) is a configuration vertex, and

(15)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{E}_8/\tau^{2\mathbb{Z}}.$$

$$\Delta = \mathbb{F}_4: \qquad \stackrel{1}{\bullet} \xrightarrow{2} \xrightarrow{2} \xrightarrow{(1,2)} \stackrel{3}{\bullet} \xrightarrow{4} \stackrel{4}{\bullet}$$

is not possible.

$$\Delta = \mathbb{G}_2 \colon \stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{2}{\longrightarrow}$$

(1,0) is a configuration vertex, and

(16)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{G}_2/\tau^{2\mathbb{Z}}$$

or (2,0) is a configuration vertex, and

(17)
$$\Gamma_{\rm s} = \mathbb{Z}\mathbb{G}_2/\tau^{2\mathbb{Z}}$$

4. The realization of the possible Auslander-Reiten quivers of local Gorenstein orders of finite lattice type

For all the possible Auslander-Reiten quivers of local Gorenstein orders we listed in the previous section we now give concrete examples.

We work over power series rings in one variable over a field in order to avoid arithmetic difficulties in the ground ring R. In all cases, except for $\Delta = \mathbb{G}_3$ we work with the real numbers \mathbb{R} , the complex numbers \mathbb{C} or the Hamiltonian quaternions \mathbb{H} . Mostly one can take arbitrary fields, however in the cases $\Delta = \mathbb{B}_n$ or \mathbb{C}_n one has to be careful.

Besides the ground ring R we indicate a maximal R-order in A = KA containing Λ and then describe the R-order Λ such that $\mathfrak{A}(\Lambda)_s = \Gamma_s$ occurs in the list of Section 3. Then we describe the indecomposable Λ -lattices and write down $\mathfrak{A}(\Lambda)$ explicitly.

Case (1). $R = \mathbb{C}[t^2]$, maximal order $\Omega = \mathbb{C}[t]$, $\Lambda = R + t^{2m}\Omega$, $m \ge 1$.

Let $\Lambda_i = R + t^{2i}\Omega$ for i = 0, ..., m; in particular, $\Lambda_0 = \Omega$. $\mathfrak{A}(\Lambda)$ is shown in Diagram 1.

Diagram 1.

For m = 0, Λ is a maximal order.

For $m \ge 1$, Λ is the local ring of the singularity associated to the Kleinian singularity of type \mathbb{A}_{2m} . (Shortly we write from now on "local ring of the singularity of type Δ ".)

Case (2). $R = \mathbb{C}[t^2], \Omega = \mathbb{C}[t]$, maximal order $\Omega \prod \Omega$.

Put n = 2m + 3, with $m \ge 1$. Λ is as ring generated by the elements (1, 1), (t, t^{n-2}) and $(0, t^2)$ in $\Omega \prod \Omega$. Let

$$U_{l} = \{0\} \oplus (R + t^{2l+1}\Omega), \quad 0 \le l \le m,$$

$$\Lambda_{l} = \{(f,g) \in \Omega^{(2)} | f - g \in t\Omega \text{ and } g \in U_{l}\}, \quad 0 \le l \le m-1,$$

$$V_{l} = \{(f,g) \in \Lambda | g \in t^{2(m-l)}\Omega\}, \quad 0 \le l \le m-1,$$

$$W_{l} = \tau U_{l}, \quad 0 \le l \le m.$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 2.

to identify along the dotted lines, moreover identify the upper and lower half of the picture

318

A is the local ring of the singularity of type \mathbb{D}_n . m = 0 will be handled together with case (8).

Case (3). This will be a special case of the orders we consider in case (9) and will be handled there.

Case (4). $R = \mathbb{R}[t]$, maximal order $\Omega = \mathbb{C}[t]$, $\Lambda = \Lambda_n = R + t^n \Omega$, $n \ge 1$. Let $\Lambda_i = R + t^i \Omega$, $1 \le i \le n$. $\mathfrak{A}(\Lambda)$ is shown in Diagram 3.

 $\mathfrak{A}(\Lambda)$:

 $\mathfrak{A}(\Lambda)_{s} = \mathbb{Z}\mathbb{B}_{n}/\tau^{\mathbb{Z}} \text{ for } n \geq 2.$

Diagram 3.

 Λ is a Bäckström order with associated graph \mathbb{B}_2 in case n = 1.

Case (5). $R = \mathbb{R}[t^2]$, let $\Omega_1 = \mathbb{R}[t]$, $\Omega_2 = \mathbb{C}[t]$. As usual let $\mathbb{C} = \mathbb{R}(i)$, $i^2 = -1$. Maximal order $\Omega_1 \prod \Omega_2$,

$$\Lambda = \{ (a_0 + a_1 t + \Omega_1 t^2, a_0 + b_1 t + \dots + (b_{n-1} + ia_1) t^{n-1} + t^n \Omega_2) \\ \in \Omega_1 \prod \Omega_2 | a_0, a_1, b_1, \dots, b_{n-1} \in \mathbb{R} \}, \quad n \ge 2.$$

In a more suggestive way we write Λ as

$$\begin{bmatrix} \mathbb{R} & \mathbb{R} \\ \mathbb{R}t & \mathbb{R}t \\ \vdots \\ \Omega_1 t^2 & (\mathbb{R} + i\mathbb{R})t^{n-1} \\ ; & \Omega_2 t^n \end{bmatrix}$$

Similarly we define the following:

$$U_0 = \{0\} \oplus \Omega_2,$$

$$U_l = \{0\} \oplus (\mathbb{R}[t] + \Omega_2 t^l), \quad 1 \le l \le n - 1,$$

$$V_{l} = \begin{bmatrix} \mathbb{R} & \mathbb{R}t^{n-1-l} \\ \Omega_{1}t & (\mathbb{R}+i\mathbb{R})t^{n-1} \\ \vdots & \Omega_{2}t^{n} \end{bmatrix}, \quad 0 \le l \le n-2,$$

$$A_{l} = \begin{bmatrix} \mathbb{R} = \mathbb{R} \\ \Omega_{1}t & \mathbb{R}t \\ \vdots \\ \vdots & \Omega_{2}t^{l} \end{bmatrix}, \quad 1 \le l \le n-1,$$

$$W_{n-1} = \Omega_{1} \bigoplus \{0\},$$

$$W_{l} = \begin{bmatrix} \mathbb{R} = \mathbb{R} \\ \Omega_{1}t & \mathbb{R}t \\ \Omega_{1}t & \mathbb{R}t \\ \vdots \\ \vdots & \Omega_{1}t & (\mathbb{R}+i\mathbb{R})t^{l} \\ \vdots & \Omega_{2}t^{l+1} \end{bmatrix}, \quad 0 \le l \le n-2.$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 4.

乳(Λ):

Diagram 4.

Case (6). We view \mathbb{C} as subring of $(\mathbb{R})_2$ by

$$\alpha + i\beta \mapsto \begin{bmatrix} \alpha & \beta \\ -\beta & \alpha \end{bmatrix} \text{ for } \alpha, \beta \in \mathbb{R}.$$

 $R = \mathbb{R}[t]$, maximal order $\Omega = (R)_2$, $\Lambda = \mathbb{C}[t] + \Omega t^n$, $n \ge 1$. Let $\Lambda_i = \mathbb{C}[t] + \Omega t^i$. $\mathfrak{A}(\Lambda)$ is shown in Diagram 5.

 $\mathfrak{A}(\Lambda)$:

For n = 1, Λ is a Bäckström oder with associated graph \mathbb{C}_2 ,

 $\mathfrak{A}(A)_{s} \cong \mathbb{Z}\mathbb{C}_{n}/\tau^{\mathbb{Z}} \text{ for } n \ge 2.$

Case (7). For the quaternions \mathbb{H} we do the same construction as in case (5) for the reals \mathbb{R} : $R = \mathbb{R}[t^2]$, let $\tilde{\Omega}_1 = \mathbb{H}[t]$, $\tilde{\Omega}_2 = (\mathbb{C}[t])_2$.

We view \mathbb{H} as subring of $(\mathbb{C})_2$ of the form

$$\begin{cases} \begin{bmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{bmatrix} \middle| \alpha, \beta \in \mathbb{C}, \bar{x} = \text{complex conjugate of } x \end{cases}.$$

If $\tilde{i} = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$, then $\mathbb{H}(\tilde{i}) = (\mathbb{C})_2$. Maximal order: $\tilde{\Omega}_1 \prod \tilde{\Omega}_2$,
 $\Lambda = \{(a_0 + a_1t + \tilde{\Omega}_1t^2, a_0 + b_1t + \dots + (b_{n-1} + \tilde{i}a_1)t^{n-1} + \tilde{\Omega}_2t^n) \in \Omega_1 \prod \Omega_2 \middle| a_0, a_1, b_1, \dots, b_{n-1} \in \mathbb{H} \}, n \ge 2.$

The lattices are similar to the lattices in case (5). However the lattices U_0 and W_0 yield under this translation lattices which decompose into two isomorphic indecomposables. This causes the reversion of the valuations. The Auslander-Reiten quiver of Λ is similar to the Auslander-Reiten quiver in case (5), and

$$\mathfrak{A}(\Lambda)_{s} \cong \mathbb{ZC}_{2n-1}/\tau^{\mathbb{Z}}.$$

Case (8). $R = \mathbb{C}[t]$, maximal order $R^{(2)}$. Put n = 2m for $m \ge 1$.

$$\Lambda = R \stackrel{m}{=} R = \{(f,g) \in R^{(2)} | f - g \in Rt^m\}.$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 6.

$$\mathfrak{A}(\Lambda)_{s} \cong \begin{cases} \mathbb{Z} \mathbb{A}_{1} / \tau^{2\mathbb{Z}} & \text{for } m = 1, \\ \mathbb{Z} \mathbb{A}_{3} / (\varphi \tau)^{\mathbb{Z}}, \varphi^{2} = \text{Id} & \text{for } m = 2, \\ \mathbb{Z} \mathbb{D}_{m+1} / (\varrho \tau)^{\mathbb{Z}}, \varrho^{2} = \text{Id} & \text{for } m \ge 3. \end{cases}$$

 Λ is the local ring of the singularity of type \mathbb{A}_{n-1} . Moreover Λ is a Bäckström order with associated graph \mathbb{A}_3 for m=1, and m=2 covers the remaining case of case (2).

Case (9). $R = \mathbb{C}[t]$, maximal order: $(R)_2$.

For $m, l \ge 0$, we put

$$\Lambda_{m,l} = \left\{ \begin{bmatrix} f & g \\ ht & k \end{bmatrix} \in (R)_2 \middle| f - k \in Rt^m, g - h \in Rt^l \right\}.$$

Then $\Lambda_{m,l}$ is a ring if and only if l = m or l = m - 1. Moreover $\Lambda_{m,m}$ and $\Lambda_{m,m-1}$ are Bass orders [10, 19] with minimal overorder $\Lambda_{m,m-1}$ and $\Lambda_{m-1,m-1}$ respectively. $\mathfrak{A}(\Lambda_{m,m})$ and $\mathfrak{A}(\Lambda_{m,m-1})$ are shown in Diagram 7.

Diagram 7.

Note. $\Lambda_{0,0}$ is hereditary, $\Lambda_{1,0}$ is a Bäckström order with associated graph \mathbb{A}_3 , and $\Lambda_{1,1}$ covers case (3).

For $m \ge 2$,

$$\mathfrak{A}(\Lambda_{m,m})_{s} \cong \mathbb{Z}\mathbb{D}_{2m+1}/\tau^{\mathbb{Z}}$$
 and $\mathfrak{A}(\Lambda_{m,m-1})_{s} \cong \mathbb{Z}\mathbb{D}_{2m}/\tau^{\mathbb{Z}}$.

Case (10). $R = \mathbb{C}[t]$, maximal order $R^{(3)}$.

Let $m \ge 1$ and $A \subset R^{(3)}$ be generated as ring by the elements (1, 1, 1), $(t, 0, t^m)$ and (0, t, t) in $R^{(3)}$.

We define the following:

$$U_{l} = \{(0, f, g) \in R^{(3)} | f - g \in Rt^{l} \}, \quad 1 \le l \le m,$$

$$W_{l} = \tau U_{l}, \quad 1 \le l \le m,$$

$$V_{l} = \{(f, g, h) \in A | g \in Rt^{m-l} \}, \quad 0 \le l \le m-1,$$

$$A_{l} = \{(f, g, h) \in R^{(3)} | f - g \in Rt \text{ and } g - h \in Rt^{l} \}, \quad 1 \le l \le m,$$

$$X_{1} = \{(f, g, 0) \in R^{(3)} | f - g \in Rt \},$$

$$X_{2} = \{(f, 0, g) \in R^{(3)} | f - g \in Rt \},$$

$$Y_{1} = \{0\} \oplus R \oplus \{0\},$$

$$Y_{2} = \{(0, 0)\} \oplus R.$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 8.

Diagram 8.

 Λ is the local ring of the singularity of type \mathbb{D}_{2m+2} . Note the similarity between Λ and the group ring $\mathbb{Z}_p C_{p^2}$ of the cyclic group of order p^2 over the *p*-adics [24].

Case (11). $R = \mathbb{C}[t^2], \Omega = \mathbb{C}[t]$, maximal order $\Omega \prod (\Omega)_2$. Let $m \ge 1$ and let

$$A = \left\{ \begin{pmatrix} a_0 + a_1 t + \Omega t^2, \\ a_0 + b_1 t + \dots + b_{m-1} t^{m-1} + \Omega t^m & c_0 + c_1 t + \dots + c_{m-1} t^{m-1} + \Omega t^m \\ t(c_0 + c_1 t + \dots + (a_1 + c_{m-1}) t^{m-1}) + \Omega t^{m+1} & a_0 + b_1 t + \dots + b_{m-1} t^{m-1} + \Omega t^m \end{bmatrix} \right)$$
$$\left| a_0, a_1, b_1, \dots, b_{m-1}, c_0, \dots, c_{m-1} \in \mathbb{C} \right\}$$

324

In a more suggestive way we write

$$\Lambda = \begin{bmatrix} \mathbb{C} & & \Omega & & \Omega \\ \mathbb{C}t_{\bullet} & & & \Omega \\ \Omega t^{2}; & & \Omega t & & \Omega \end{bmatrix} \end{bmatrix}.$$

Similarly we describe the following indecomposable lattices for $m \ge 1$ and l = m or l = m - 1.

$$A_{m,l} = \begin{bmatrix} \Omega & & \Omega \\ \Omega t & & \Omega \end{bmatrix},$$

$$W_{m,l} = \begin{bmatrix} \mathbb{C} & & \Omega \\ \Omega t, & \mathbb{C} & & \Omega \\ \Omega t; & \mathbb{C} & \Omega t \end{bmatrix},$$

$$U_{l,m} = \begin{bmatrix} \mathbb{C} & & \mathbb{C} & & \Omega \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \Omega t; & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \mathbb{C} & \mathbb$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 9.

$$\mathfrak{A}(\Lambda)_{s} \cong \mathbb{ZD}_{4m}/(\varrho\tau^{2})^{\mathbb{Z}}, \quad \varrho^{2} = \mathrm{Id}.$$

If we take for $m \ge 2$

$$\Lambda = \begin{bmatrix} \mathbb{C} & \Omega & \Omega \\ \mathbb{C}t^{*} & \Omega & \mathbb{C}t^{*} \\ \Omega t^{2}; & \Omega t & \Omega \end{bmatrix}$$

we similarly get

$$\mathfrak{A}(\Lambda)_{s} \cong \mathbb{Z}\mathbb{D}_{4m-2}/(\varrho\tau^{2})^{\mathbb{Z}}, \quad \varrho^{2} = \mathrm{Id}.$$

Case (12). $R = \mathbb{C}[t]$, maximal order $\Omega = (R)_3$,

$$\Lambda = \left\{ \begin{bmatrix} a + Rt & b + Rt & R \\ Rt & a + Rt & c + Rt \\ -(b + c)t + Rt^2 & Rt & a + Rt \end{bmatrix} \middle| a, b, c \in \mathbb{C} \right\}$$

$$= \begin{bmatrix} R & R \cdot R \\ Rt & R \\ Rt &$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 10.

 $\mathfrak{A}(\Lambda)$:

Diagram 9.

Diagram 10.

In the cases (13), (14) and (15) one can take as Λ the local ring of the singularity of type \mathbb{E}_6 , \mathbb{E}_7 and \mathbb{E}_8 respectively. The Auslander-Reiten quivers are given in [9] explicitly. Moreover the indecomposable lattices are described in [13, 14], and it is left to the reader to find their positions in the Auslander-Reiten quiver.

For the last two cases (16) and (17) let f be a field with an extension field f of degree |f:f|=3.

Case (16). R = t[t], maximal order $\Omega = (R)_3$.

The isomorphism $f \cong t^{(3)}$ as t-spaces induces a representation of f on $t^{(3)}$ and therefore an inclusion $f \hookrightarrow (t)_3$. Thus we view f as subring of $(t)_3$. Moreover let $x \in (t)_3 \setminus f$. We define

$$\Lambda = f + (f + xf)t + \Omega t^2.$$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 11.

থ(Λ):

Case (17). $R = \mathfrak{f}[t]$, maximal order $\Omega = \mathfrak{f}[t]$. Let $y \in \mathfrak{f} \setminus \mathfrak{f}$, and let

 $\Lambda = \mathbf{f} + (\mathbf{f} + y\mathbf{f})\mathbf{f} + \Omega t^2.$

 $\mathfrak{A}(\Lambda)$ is shown in Diagram 12.

In the cases (16) and (17)

$$\mathfrak{A}(\Lambda)_{s} \cong \mathbb{Z}\mathbb{G}_{2}/\tau^{2\mathbb{Z}}$$

Finally let us mention that, if $K\Lambda = \prod_{i=1}^{s} (D_i)_{n_i}$ as in the introduction, then if all n_i are 1 and $\mathfrak{A}(\Lambda)$ has only trivial valuations, $\mathfrak{A}(\Lambda)$ occurs as Auslander-Reiten quiver of a simple curve singularity.

This shows the theorem in the introduction.

References

- V.I. Arnol'd, Critical points on smooth functions, Proc. Int. Congress Math. Vancouver, Vol. 1 (1974) 19-39.
- [2] R. Bautista and S. Brenner, On the number of terms in the middle of an almost split sequence, in: Representations of Algebras, Lecture Notes in Math. 903 (Springer, Berlin, 1981) 1-8.
- [3] R. Bautista and S. Brenner, Replication numbers for non-Dynkin sectional subgraphs in finite Auslander-Reiten quivers and some properties of Weyl roots, Proc. London Math. Soc. (3) 47 (1983) 429-462.
- [4] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984) 117-136.
- [5] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982) 331-378.
- [6] E. Brieskorn, Die Auflösung der rationalen Singularitäten holomorpher Abbildungen, Math. Ann. 178 (1968) 255-270.
- [7] C.W. Curtis and I. Reiner, Methods in Representation Theory (Wiley, New York, 1981).
- [8] E. Dieterich, Construction of Auslander-Reiten quivers for a class of group rings, Math. Z. 184 (1983) 43-60.
- [9] E. Dieterich and A. Wiedemann, The Auslander-Reiten quiver of a simple curve singularity, Trans. Amer. Math. Soc., to appear.
- [10] Ju.A. Drozd and V.V. Kirichenko, On representations of rings, lying in matrix algebras of the second kind, Ukrain. Math. Z. 19 (1967) 107-112.
- [11] P. Gabriel, Auslander-Reiten sequences and representation finite algebras, in: Representation Theory I, Lecture Notes in Math. 831 (Springer, Berlin, 1980) 1-71.

 $\mathfrak{A}(\Lambda)$:

- [12] P. Gabriel and Chr. Riedtmann, Group representations without groups, Comment. Math. Helv. 54 (1979) 240-287.
- [13] E.L. Green and I. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978) 53-84.
- [14] G.-M. Greuel and H. Knörrer, Einfache Kurvensingularitäten und torsionsfreie Moduln, Math. Ann. 270 (1985) 417-425.
- [15] D. Happel, U. Preiser and C.M. Ringel, Vinberg's characterization of Dynkin diagrams using subadditive functions with application to Dtr-periodic modules, in: Representation Theory II, Lecture Notes in Math. 832 (Springer, Berlin, 1980) 280-294.
- [16] Chr. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv. 55 (1980) 199-224.
- [17] Chr. Riedtmann, Representation-finite selfinjective algebras of class A_n , in: Representation Theory II, Lecture Notes in Math. 832 (Springer, Berlin, 1980) 449-520.
- [18] C.M. Ringel and K.W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra 60 (1979) 11-42.
- [19] K.W. Roggenkamp, Lattices over orders. II, Lecture Notes in Math. 142 (Springer, Berlin, 1970).
- [20] K.W. Roggenkamp, Auslander-Reiten species of Bäckström orders, J. Algebra 85 (1983) 449-476.
- [21] P. Slodowy, Simple singularities and simple algebraic groups, Lecture Notes in Math. 815 (Springer, Berlin, 1980).
- [22] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Math. 366 (Springer, Berlin, 1974).
- [23] A. Wiedemann, Orders with loops in their Auslander-Reiten graph, Comm. Algebra 9 (1981) 641-656.
- [24] A. Wiedemann, The Auslander-Reiten graph of integral blocks with cyclic defect two and their integral representations, Math. Z. 179 (1982) 407-429.
- [25] A. Wiedemann, The existence of covering functors for orders and consequences for stable components with oriented cycles, J. Algebra 93 (1985) 292-309.
- [26] A. Wiedemann, An integral version of the Igusa-Todorov algorithm, J. London Math. Soc. (2) 32 (1985) 75-87.