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In this paper we give a complete list of  all finite Auslander-Reiten quivers of local 
Gorenstein orders A over a complete Dedekind domain R of finite lattice type (i.e. A 
is an injective indecomposable left lattice over itself and has - up to isomorphism - 
only finitely many indecomposable left lattices) [7, 19]. For each translation quiver 
F in this list, we indicate explicitly a Gorenstein order A with F as its 
Auslander-Reiten quiver. Moreover, in each case we describe the indecomposable 

A-lattices. 
In particular, this list contains the Auslander-Reiten quivers of  the plane simple 

curve singularities whose complete local rings can be viewed as Gorenstein orders 
over the power series ring in one variable over the complex numbers [9]. Briefly we 
recall a description of  these singularities which turns out to be of interest in connec- 

tion with the above translation quivers [1,6, 21,22]: 
Consider the ring of  invariants of  a finite nontrivial subgroup of  SL2(C) acting 

linearly on the power series ring CRU, VB. It has three generators X, Y, Z satisfying 
one relation f(X, Y)+ Z 2= 0 which defines in the neighbourhood of the origin a 
surface with the origin as an isolated singularity. The singularities occuring in this 
way as quotient singularity of a finite group are usually known as rational double 
points or Kleinian singularities. It is well known that the resolution graph of these 
singularities are the Dynkin diagrams /A n, [Dn, N:6, ~:7, ~:8 [6]. Then the intersection 
with the plane Z = 0 is a reduced simple plane curve singularity [1] characterized by 

Greuel-Kn6rrer [ 14]: 
The complete local ring A of a reduced plane curve singularity has finitely many 

nonisomorphic torsion free modules of rank 1 if and only if A -~qX, Y]/f(X, Y) 
where f(X, Y)+ Z 2 defines a Kleinian singularity. 

Our characterization of the Auslander-Reiten quivers of the simple curve singu- 
larities uses one of the main results of [26] which we summarize as follows: 

Let A be a basic R-order in the separable K-algebra A,  where K is the quotient 
field of R, A =KA, and A/RadA  is a product of skewfields. If  A = IlSi=l(Di)m, 
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where (Di),,, is the n i × ni-matrix ring over a finite-dimensional skewfield Di over 
K, then both the number s of  simple factors of  A and all the numbers hi, i = 1, ..., s 
are determined by the Auslander-Reiten quiver of  A. 

This result together with the knowledge of all the examples we shall present, gives 
rise to the following: 

Theorem. Let A be any local not necessarily commutative Gorenstein R-order o f  
finite lattice type in a product o f  skewfields such that the stable Auslander-Reiten 
quiver 9~(A)s has as tree class one o f  the Dynkin diagrams/A n, f13 n, [156, [t:7, lEa- Then 
its Auslander-Reiten quiver ~(A) coincides with the Auslander-Reiten quiver o f  
the category o f  lattices over the complete local ring o f  a simple curve singularity 
given by one o f  the equations f (X ,  Y )=  O. 

In Riedtmann's notation [16], ~(A)s is one o f  the following: 

9a(A)s 
type of the corresponding 
Kleinian singularity and 
defining polynomial f (X,  Y) 

Z/A1/r2z AI ' X 2 + y2 
7//A 3/(r~p)z, (p2 = Id A3 ' X 2 + y4 
27Dm/(~(p) 2, m_>4, ~o2=Id A2m_3, X2+ y2m-2 , 
27/'A2m/~O z, m E  1, p 2 = z  /A2m, X2+ y2m+l 
7/Dn/7: 2~-, n_>4 and even Dn ' X2y+ y n - l  

ZA2n- 3/(r~P) z, n_> 5 and odd, ~2 = Id D n, X 2 y+ y n -  1 , 
27lE 6/(2.(p)Z, (if2= Id lE6, X 3 + y4 
ZlE7/1"2Z lE7, X3 + X y 3  
ZE8/r 2z ~-8, X 3 + y5 

(Here r denotes the translation on the translation quiver ZA, A an oriented Dynkin 
diagram, ~0 and Q are automorphisms of ZA satisfying the indicated relations in- 
duced by nontrivial automorphisms on A.) 

* The discrepancy between the type of the Kleinian singularity and the tree class 
of  the stable Auslander-Reiten quiver in these cases is explained in [9]. 

The paper is organized as follows: 
In Section 1, using covering techniques, we derive necessary conditions relating 

the positions of projective and injective vertices for Auslander-Reiten quivers of ar- 

bitrary orders. In Section 2 we translate the results of Section 1 into concrete condi- 
tions for configurations of Gorenstein orders of  finite type. Using these results, we 
derive in Section 3 a complete list of all possible finite Auslander-Reiten quivers of 
orders having exactly one projective vertex being simultaneously injective. In 
Section 4, we present for each translation quiver of Section 3 a Gorenstein order 
A having this translation quiver as Auslander-Reiten quiver. 

Except for the Dynkin diagrams of type 11:6, lE7, lE8 - where the reader should con- 
sult [13, 14] - we also indicate the whole Auslander-Reiten quiver of  A and give a 
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description of  its indecomposable lattices. If A can be chosen to be commutative, 
we just take as A the local ring C~X, Y]/f(X, Y) of  a simple plane curve singularity. 

The computations of  many of these Auslander-Reiten quivers are already dis- 
cussed elsewhere [8, 9, 20, 23, 24]. Our computations were rather technical and very 
often had to be worked out in many steps. So we have not included a detailed 
description of all these computations. 

1. Relations between projective and injective vertices in 9g(A) 

Let R be a complete Dedekind domain with quotient field K, residue class field 
L and let A be an R-order in a separable K-algebra A = KA of finite lattice type. 
We denote by ~(A) = F the Auslander-Reiten quiver of A,  and we consider F as f- 
modulated translation quiver in the sense of [3, 25]. Moreover let P be the universal 
cover of F, and let F : / ~ F  be the covering morphism [5]. We recall the definition 
of the powers of the functorial radical r/(M, N),  1_>0, of the A-morphism space 
from M to N as the EndA(M)-EndA(N)-submodule of HomA(M,N)  which is 
generated by those morphisms from M to N which are compositions of  l irreducible 
maps. Recall also that to each vertex x and each arrow x ~ y  in/~ there is associated 
the finite-dimensional skewfield f x =  EndA(Fx)/Rad EndA(Fx) over l a n d  the finite- 
dimensional fx-fy-bimodule xBy = Irr(Fx, Fy) = r(Fx, Fy)/r2(Fx, Fy) resp. For ver- 
tices x, y in/~ let H(x, y) be the morphisms from x to y in the mesh category R/~) 
o f /~  [5, 25]. By [25] there exists a covering functor for A: For x, y as above and A- 
lattices M =  Fx, N= Fy there exists a graded f-bilinear isomorphism 

F :  H H(x,z)~H rt(M,N)/rt+l(M,N) • 
Fz=Fy 1>__0 

Our aim in this section is to find relations between the positions of projective and 
injective A-lattices in 9~(A). First we consider an indecomposable A-lattice M and 
an indecomposable projective A-lattice Q. Then each morphism ~ 0 : Q ~ M  fac- 
torizes over a projective cover ~:Po(M)-+M: 

P0(M) 

~0 
Q ,M 

there exists an a such that ct~ = ~0, 

and ~0 can be extended to a projective cover of M if and only if a is a split monomor- 
phism; otherwise a e r(Q, Po(M)). 

This observation gives rise to the following definition for indecomposable A- 
lattices X and M, M nonprojective: 
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rP(X, M ) =  ~ r(X, Q)-r(Q,  M )  
Q arbitrary 
projective 

consists of  all A-morphisms from X to M which factor nontrivially over a projective 
lattice. 

If we abbreviate EndA(X)/Rad End,t(X) by t(X) for X indecomposable, we 
have for Q indecomposable projective: 

(1.1) dimt(a)(Hom A (Q, M)/rP(Q, M)) = multpo(g)(Q) 

= multiplicity of Q - up to isomorphism - as direct 

summand in the projective cover of M. 

We now want to make a similar construction in the mesh category t(/~) and 
recover this multiplicity there: 

For a nonprojective vertex z in/~ and an arbitrary vertex x we define Hp(x, z) as 
quotient of H(x, z) modulo the fx-fz-subspace HP(x, z) generated by paths of the 
form 

a # 
x ~ -" ~ q ~  "- ~ z ,  

where q is projective, and a has length at least 1. 
Note that for indecomposable A-lattices M, N the radical filtration 

HomA (M, N) _~ r(M, N) _~ r2(M, N)  _~-.- 

induces a filtration on the quotient HomA(M, N)/rP(M, N) with associated graded 
factors 

rl(M, N) + rP(M, N)/ ( r  l+ I(M, N) + rP(M, N)). 

In this situation we have the following: 

Proposition 1. Let F" P---, F and F be as above, and let M= Fx, N= Fy. Then F in- 
duces a graded f-linear bijection 

Fp" H Hp(x ,z )~H rI(M,N)+rP(M,N)/(rI+I(M,N)+rP(M,N)). 
F z = N  I>_0 

Proof. Since F maps projective vertices o f / ~  onto projective lattices, Fp is well- 
defined; the surjectivity of Fp is also clear. 

Since A is of finite lattice type, there exists an 10eN such that 
rt(M, N) c_ rP(M, N) for all 1_> 10. For vertices x, y in r we denote by Ix,y the length 
of any path from x to y in r .  Then by the injectivity of F we conclude 

dimA ( FzI~= NHp(x" z)) = Fz= N ~ (dimfx H(x' z) - dimA HP(x' z)) 
I,. - < lo  

= ~ dimAH(x,z)-  ~ dimAHP(x,z) 
Fz = N Fz  = N 
&~ <-to &~ <-to 
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= lengthEndAtM)(HomA (M, N ) / r  l° +l(M, N)) 

- lengthEndAM)(rP(M, N ) / r  l° + I(M, N)) 

= lengthEndm(M)(Homn (M, N)/rP(M, N)). 

Consequently, the injectivity of Fp follows from its surjectivity. [] 

We summarize the above considerations and Proposition 1 as follows: 

Proposition 2. (i) Let Q be an indecomposable projective A-lattice, N an arbitrary 
nonprojective indecomposable A-lattice. Then the following are equivalent: 

(a) There exists a ~ ¢ rt(Q, N ) \ r  t+ I(Q, N )  which can be extended to a projective 
cover o f  N. 

(b) r/(Q, N) \ r t+ i(Q, N)  ~ rP(O, N). 

(c) There exist vertices q,y  in F with Fq=Q,  F y = N ,  lq, y= l  and Hv(q,y)4:O. 
(ii) In the situation o f  (i), the multiplicity o f  Q in the projective cover Po(N) o f  

N is given by the number ~',Fq=QdimfqHp(q,y), and Po(N) decomposes into 

~]q projective in r dimA Hp(q, y) indecomposable direct summands. 

For a projective vertex q of P we shall consider later in this section those vertices 
y such that lq, y is maximal with Hp(q,y):/:O. 

We start with a fixed simple A-module S with projective cover Ps and denote by 
I s that indecomposable injective A-lattice with minimal overlattice I~ satisfying 
I~/ Is=S.  

Lemma 1. I f  M • a A-lattice and ~p : M ~ S an epimorph&m, then ~p factors over the 
projection I ~  I~/Is =- S. 

Proof. Since I s is an injective lattice, the following pullback via ~ decomposes: 

0 ~I s , M '  ~M ,0  

0 , I  s , I ~  , S  ,0. [] 

Since A is of finite lattice type there exists an Ii ~ N such that 

rl(X, I~'). HOmA(I ~, S)=O 

for each A-lattice X and 1>_l 1. Moreover, since Hom(Ps, S)=/=O, we can choose 
by Lemma 1 a nonzero morphism o¢rt"(Ps, I~) where 10 is maximal with 
Q. HomA (I~-, S) =g= 0. 

Lemma 2. (i) I f P '  is a projective A-lattice and r ~ Horn A (Ps, P'),  Q' ¢ HomA (P', I ~  
such that ~ = ~ ' ,  then r is a split monomorphism. 

(ii) For an arbitrary A-lattice Y and each a ~ r(I~-, Y) there exists a projective A-  
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lattice P', a nonsplit morph&m d ' P s ~ P  ' and a morph&m ~ : P ' ~  Y such that 
Qa = ~¢/, i.e., pa factors properly over another projective. 

Proof. (i) Trivial. 
(ii) Let P' Po(Y) ¢/ = •, Y be a projective cover of Y. Then there exists a ~ with 

~ u = Q a .  If pa-HomA(Y,  S)=O, then I m ~ C r a d  A Po(Y) and ~ is not split mono. 
Otherwise suppose that there exists a nonzero/~ in HomA(Y, S) with Qtz]~0. By 
Lemma 1 there exist morphisms ]~', a '  such that 

# 
Y , S  

i; 

commutes. Therefore Qa~'tr '  ¢ 0 and ~oa,8' • Hom(I~, S) ¢ O; 
Qafl'~rl"+l(Ps, I~): contradiction to the maximality of l 0. [] 

moreover 

We summarize the above results in the following 

Proposition 3. (i) I f  X is an indecomposable A-lattice with a morphism 
Q ~ HOmA (Ps, X )  satisfying Q. Horn A (X, S) =/: 0 and Qa. HomA (Y, S) = 0 for  an 
arbitrary a ~ r(X, Y), then X is isomorphic to a direct summand o f  the unique 
minimal overlattice 12 o f  Is. 

(ii) I f  q is a projective vertex in r and y is a vertex o f  P with lq, y maximal satisfy- 
ing Hp(q, y)=/= O, then y is a successor o f  an injective vertex. 

Proof. (i) follows immediately from the Lemmata above. (ii) is the direct translation 
of  (i) using Proposition 1. [] 

2. Necessary conditions for the Auslander-Reiten quivers of Gorenstein orders 

From now on we assume that A is a nonmaximal  R-order and is an indecom- 
posable injective lattice over itself, i.e. A is local but not necessarily commutative 
and Gorenstein in the terminology of [10]. 

If  the Jacobson radical Rad A decomposes, then A is a B/ickstr6m order with 
associated graph /A 3 or C2 [18], and its Auslander-Rei ten quiver is described in 
[20]. Therefore we assume from now on that Rad A is indecomposable and A is of  
finite lattice type. 

Then by [15] the stable Auslander-Reiten quiver ~(A)s of A, i.e., the full sub- 
quiver of  ~(A) of all nonprojective vertices has as tree class a Dynkin diagram d 
and is isomorphic to Z A / G  for G an admissible automorphism group of ZA in the 

sense of Riedtmann [16] or is described in [23] in case ~(A) contains a loop o ~ .  
In this last case ~(A) is of the form 
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......_---... 1 ~ 2 n - 1 ._..._..~n 
Oo o o . . . o ...._.... o , ~  , n _ _ l ,  

where the vertex 0 is projective-injective and the t ranslat ion is the identity on the 

other  vertices 1, . . . ,  n. Obviously the stable Aus lander-Rei ten  quiver is then isomor-  

phic to the t ransla t ion quiver 

7//~2n/~O 71, ~O 2 ----- 2", 

where • is the au tomorph ism of  Z/A2n induced by the nontr ivial  au tomorphism of  

/AEn. Note that  QrZ is admissible in the sense of  Riedtmann for r > 1 only. So we call 
the au tomorph ism group G of  77A 1-admissible (lattice-admissible) if G is admissible 

or A is of  type /~2n  and G = ~2~ as above. 

With the no ta t ion  of  Section l,  we ge t /~  by adding suitable projective-injective 

vertices to Yd .  Since Rad A is indecomposable ,  a projective vertex q of r has a 

unique predecessor q -  corresponding to R a d d  and a unique successor q+ cor- 

responding to the unique minimal  overlattice A + of  A in the quiver/~;  moreover  
q -  = r q  +. 

We call q+ a configuration vertex and the set of  vertices 

C =  {q+lq+ is a successor of  a projective vertex q} 

is called configuration of  7/A with respect to A.  

If  q is a projective-injective vertex o f /~  with successor q+, then for each nonpro-  

jective vertex x in P we have an i somorphism of  fq-Vectorspaces 

np(q, x)-~ qnq+ (~fq+ np(q+, x). 

I f fq~fq+,  then A being of  finite lattice type, the valuat ion (dimf,, qBq+, dim/,,, qBq+) 
is of the form (1,n) or (n, 1) with n = 2  or n = 3  [2]. This implies either that  A + 

decomposes - what  we already excluded - or the middle term of  the almost split 

sequence of  A + contains n copies of  A as direct summands.  By rank arguments,  we 

have n = 2 and an almost split sequence 

0 ~  Rad A ~ A  (2) --*A + ~ 0 .  

Then A is a B~ickstr6m order with associated graph [~2; m o r e o v e r  Rad A ~-A + and 
A has - up to i somorphism - exactly the two nonisomorphic  indecomposable lat- 

tices A and Rad A. Therefore  we assume f rom now on that  qBq+ =_fq=fq+ for  

each projective vertex q of  F. 
For q and x as above, we have under this hypothesis isomorphisms as 

f q-Vectorspaces 

Hp ( q, x) = Hp(q +, x) ~ t( 7/ A )( q +, x) = H~_A ( q +, X), 
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where the last two terms stand for the morphisms from q+ to x in the mesh 
category with respect to 7/d. Altogether the computation of  Hp(q, x) is reduced to 
computations in the mesh category of 7/A. 

For  each vertex z in 7/A, we define the cover vector of z as the positive vector 
(dim A Hz~(z, y))y, where y runs over the vertices of 7/A. (The cover vector con- 
sists essentially of  the positive piece of the additive function starting at z in the 
terminology of  Gabriel [11] and coincides with Bongartz's starting function of  z 
[4, 5].) The support of the cover vector of  z consists of  those vertices y with 
dim A Hz,a (z, y) > 0. Note that for a projective vertex q o f /~  a nonzero path from q 
to any vertex of  ZA contributes to a projective cover of Fx in the sense of  Proposi- 
tion 2 if and only if x belongs to the support of  the cover vector of  q+. 

We now make two important observations which also hold for arbitrary Goren- 
stein orders of  finite lattice type: 

First, if I is an injective indecomposable A-lattice with minimal overlattice I +, 
then - I being projective and 1+/1 being simple - the projective cover of  1 + de- 
composes exactly into two indecomposable nonzero direct summands.  

Second, by Propositions 2 and 3 this implies: If  c=  q+ is a configuration vertex 
in ZA, there exists a unique vertex c' of ;TA in the support of the cover vector of 
c such that lc, C, is maximal. Moreover, c' is also a configuration vertex, i.e., there 
exists a projective vertex q '  in P such that (q')+ = c'. 

These observations imply immediately the following necessary conditions for a 
configuration of  7/A. Similar conditions are given by Riedtmann for the algebra case 
in [17], cf. also [121. 

Proposition 4. Let C be a configuration o f  ZA with respect to a Gorenstein order 
or  finite lattice type. Then C satisfies the fol lowing conditions: 

(Cl) For each c e C  there exists a unique c ' e C  with Hz~(c,c'):/=O and 
Hza (c, d) = 0 f o r  all successors d o f  c'. 

(C2) For each x ~ ZA there exists at least one c ~ C with Hza (c, x)=/= O. 

3. The possible Auslander-Reiten quivers of local Gorenstein orders of finite lattice 
type 

In this section we assume that A is a nonmaximal local Gorenstein order and that 
A is not a B/ickstr6m order with associated graph A 3, 132 or C2 (cf. Section 2). 

We now discuss the various possibilities for the structure of F =  9a(A) using the 
results of the previous section. 

Let 9.1(A)s=ZA/G for an oriented Dynkin diagram A and an l-admissible 
automorphism group G of ZA. 

We label the vertices of d by integers 1, 2 , . . . ,  n and associate to the vertices of 
ZA coordinates (i, a) e {1, . . . ,  n} × 7/such that r(i, a) = (i, a - 1), and there is an arrow 
from (i, a) to (j, fl) in 7/A if and only if 
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i j j i 
e i t h e r a = ] / a n d •  , • i n A  or a = f l - 1  a n d •  , • i n A .  

For the various d ' s  we briefly sketch the support  o f  the cover vector o f  a vertex 

c and indicate also the vertex c '  as defined in Propos i t ion  4; an explicit descript ion 

o f  the cover vectors is e.g. given by Bongartz in [4]. 

Using Propos i t ion  4 and - A being local - by the fact that  there is exactly one 
G-orbit  of  conf igura t ion  vertices in ZA, we determine the possible 

Aus lander -Rei ten  quivers F. 

1 2 3 n - 1  n 
d = A n  : • ,e ,e ~... ~e ~e 

~n+1 -i ,~+i-I ) 

/ 
3 • 
/ 

2 • 
/ 

I • 

n • / 

o:(i,~) 

Obviously the support  of  any cover vector hits the r-orbit  of  the end vertices 1 
and  n together twice. By condi t ion (C2) this implies that  r E e G. Therefore  by con- 

di t ion (C1) for a conf igura t ion  vertex c =  (i, or) we must  have i =  1, 2, n -  1 or n. For  
simplicity we may assume that  either c =  (1, 0) or c--(2,  0) is a conf igura t ion  vertex. 

If  n is even, c =  (1, 0) is a possible conf igura t ion  vertex and 

(1) Fs ~ ZA, , /~  z , tQ2 = r .  

For  n _> 4, c = (2, 0) as conf igurat ion vertex is excluded by the following argument :  
G has to be of  the form (Qrs) z with Q2= r, s>_0. By condi t ion (C1) r e  G, and we 

have s_> 1; moreover  tEe  G. On the other  hand the elements o f  G are of  the fo rm 

f r  s+l/2)m for even m, 
(Qrs)m =LOm~sm = (Orsm+(m-1)/2 for odd m. 

But (s + 1/2)m = 2 is not  possible for s >_ 1 and m e Z. 
If  n is odd and n > 3, G is o f  the form (tprr) Z, ~2 = Id and r >_ 1. This immediately  

excludes c -- (1, 0) because this would force r e G. For  c = (2, 0) the G-orbit  o f  c mus t  

conta in  c ' = ( n -  1, 1), and this forces n - 3  (mod 4). This gives the following 

possibilities: 

(2) Fs ~ Z / ~  n / ( (p r )z ,  (p2 = Id, n -- 3 (mod 4), 

(3) Q = 27A 3 / r  Z. 
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A =[Bn:  
l 2 3 n - I  n 

' • '"- ~• '• n_>2. 
(2, 1) 

- -  1 

lrl D ' 

/ 
° 

.o 

3 ,'f 
/ 

2 • / 
~.i ,eg+n-! ) 

The  poss ible  a u t o m o r p h i s m  g roups  c lear ly  are  o f  the  fo rm G = r sz, s_> 1. Each  

s u p p o r t  o f  a cover  vec tor  hits the  r -o rb i t  o f  vertex 1 at  mos t  twice,  the re fore  1-2 C G .  

Poss ib le  c o n f i g u r a t i o n  vertices are up  to  t r ans l a t i on  (1, 0) or  (2, 0). 

I f  (1, O) is a c o n f i g u r a t i o n  ver tex,  t h e n  

(4) F s ---- ZIB n/r  z. 

I f  (2, 0) is a c o n f i g u r a t i o n  vertex t hen  n has  to  be o d d  and  

(5) Fs--- 7 / B n / r  2Z , 

or  for  n = 2, we get the  same  as for  d = C 2 in case (6). 

1 2 3 n - I  n 
A = C  n " ' " ' " '"- ~ "  ' " ,  /'/_>2. 

(1,2) 

W e  have the  same  p a t t e r n  o f  the  suppor t s  as in case A -- IB,, and  get there fore :  

I f  (1, O) is a c o n f i g u r a t i o n  vertex,  t h e n  

(6) F~ _- Z C . / r  z. 

I f  (2, 0) is a c o n f i g u r a t i o n  vertex,  t h e n  n is odd  a n d  

(7) F s --- Z C n / r  2z, 

or  for  n : 2, we get the  same  as for  d = [B 2 in case (4). 

n-I 
1 2 3 n~2y 

.r,_ _ A l l _  
_ 

>'To=(i,~ ) 
2 • 

e/x__ i g n-2 

C T ~  

(i,~+n-2) 
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" 
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The admissible au tomorph ism groups are of  the form G =  r s~-, G= (ors) ~- or  
G = (0.rs) Z, where ~o and 0. for  n = 4 are induced by nontrivial  au tomorphisms  of  [D n 
and satisfy Q2= Id and 0.3= Id. Each support  of  a cover vector hits the r-orbit o f  
vertex 1 at most twice. Therefore  G contains an element of  the form ~p'r 2 for an 
au tomorph i sm ¢p of  finite order of  7/[I3 n. Possible conf igurat ion vertices are up to 
t ranslat ion (1, 0) and (2, 0), and we get the following: 

I f  (1,0) is a configurat ion vertex, then 

( 8 )  F s = Z [ D n / ( Q O  z ,  Q2=Id  o r  

(9) Fs= ZDn/Q z. 

I f  (2, 0) is a conf igurat ion vertex, then n has to be even and either 

(10) F s = Z D n / r  2Z, or 

(11) Fs=FIDn/(Qr2)  ~', Q2=Id  or  

(12) F s = 7 / D 4 / ( 0 . l " 2 )  Z, 0 .3 = Id. 

Similar arguments  and the structure of  the supports  of  the cover vectors (cf. [4]) 
give the following possibilities for the remaining Dynkin  diagrams:  

1 2 3 5 6 

4 ° 

(1, O) is a configurat ion vertex, and 

(13) ~s=~'[F6/(~0l') 2~, 0 2 = I d ,  

and Q is induced by the nontrivial au tomorph ism of  E6. 

1 2 3 4 
A =IF7 :  • ~ • ~ • ~ • 

6 7 
) • ) • 

5 • 
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(7, 0) is a configuration vertex, and 

( 1 4) F~ = Z~:7/r 2z. 

1 2 
A =Es:  • ' • 

3 4 5 7 8 

1 
6 *  

(1,0) is a configuration vertex, and 

(15) F s = Z ~ s / r  2z. 

A =[]2 4" 
1 2 3 4 

(1,2) 

is not possible. 

ZI =(~2:  
l 2 

(1,3) 

(1, 0) is a configuration vertex, and 

(16) F s = Z(I3 2 / z  2z 

or (2, 0) is a configuration vertex, and 

( 1 7) Fs =/ff([~2/r 2z. 

4. The realization of  the possible Auslander-Reiten quivers of  local Gorenstein 
orders of  finite lattice type 

For all the possible Auslander-Reiten quivers of local Gorenstein orders we listed 
in the previous section we now give concrete examples. 

We work over power series rings in one variable over a field in order to avoid 
arithmetic difficulties in the ground ring R. In all cases, except for A = G3 we work 
with the real numbers [R, the complex numbers C or the Hamiltonian quaternions 
IH. Mostly one can take arbitrary fields, however in the cases A = ~3 n or Cn one has 
to be careful. 

Besides the ground ring R we indicate a maximal R-order in A = KA containing 
A and then describe the R-order A such that 9.1(A)s = F~ occurs in the list of Section 
3. Then we describe the indecomposable A-lattices and write down 92(A) explicitly. 

Case (1). R=C~t2j ,  maximal order g2=CVtL A =R +t2m~d, m>_ 1. 
Let Ai=R+t2i£2 for i = 0 , . . . , m ;  in particular, A0=~2. ~(A) is shown in Dia- 

gram 1. 



Classification of the Auslander-Reiten quivers 317 

~[(Z)s  ~- 7//~2m/~0 Z, 

A0 , . -  identify 

Ao"" 
I 

\ 
AI 

/ 
A2 

Am 

! 

ho  "~ 
I / \  
! 

, A 1 
I " , , ,y  

A2 

A m - 2  A m - 2  

\ /  
Am-I 

/ \  
I 
I 

\ 
Am-l 

/ 
I 

Am * ! 

to identify along 
the dotted lines 

0 2 = l  - . 

Diagram 1. 

For m = 0, A is a maximal order. 
For m _  1, A is the local ring of the singularity associated to the Kleinian 

singularity of type A2m- (Shortly we write from now on "local ring of the singu- 
larity of type A" . )  

Case (2). R = C I t  2 ], Q = Cfltn, maximal  order f2 I-I I2. 
Put n = 2 m +  3, with m>_ 1. A is as ring generated by the elements (1, 1), (t,t n-2) 

and (0, t 2) in f2 I-I f2. Let 

Ul={O}®(R+t21+lf2), O<_l<_m, 

At= {(f,g)ef2(2)lf-getf2 and ge Ut}, O<_l<_m- 1, 

Vt={(f,g)~Alg~t2(m-t)O}, O<_l<__m-1, 

Vet=rU t , O<l<_m. 

92(A) is shown in Diagram 2. 
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~t(A): 

U m  I I 
I 

\ 
I 
I 
I 

/,, 
W m - 1  i i 

i 

A 

Vm-I A m 

Um-I 

/ ",,, 
I Am-I 
I / 

Um-2 

Hi 

/ 
Uo I 

I 

\ 
Ao 

/ 
Wo I 

I 

\ 

\ / 
Wm- 2 

\ / 
Wo 

/ 

\ 

/ 
Vm- 2 

\ 

Vo 

\ 

/ \ /  
Ao 

\ / \  
Uo 

/ \ /  
Vo A 1 

Vm-I A m 

Um : Wm 

A 

~(A)s=7/,/A4m+3/(~OT) ~-, q7 2 :  Id.  

\ 

I U~ 
I \ 

Vm_ l 

/ 
I 
l 

F r m -  I I 
l \1 
\ 

Am-l 

/ 
U~_2 

A!  

/ 
l 
I Uo , 
I \ 

Ao 

/ ,  
! 
I Wo ! 
I \ 

Vo 

Vm- l 

:/ 
! 
I U~ , 

. J  

to identify 
along the 
dotted lines, 
moreover 
identify the 
upper and 
lower half 
of the 
picture 

Diagram 2. 
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A is the local ring of  the singularity of  type D n. m = 0 will be handled together 

with case (8). 

Case (3). This will be a special case of  the orders we consider in case (9) and will 

be handled there. 

Case (4). R = IR[t], maximal order g2=C[t] ,  A = A n = R +  tnl2, n>_ 1. 
Let Ai=R+tiQ, l<i<n.  ~(A)  is shown in Diagram 3. 

for n>_2. 9a(A)s = Z B , / r  z 

A n -  1 

A// 

x~ f2 
2 " /  

Diagram 3. 

A is a B~ickstr6m order  with associated graph [B 2 in case n = 1. 

Case (5). R =  ~Ita],  let £21 = E~t], £22 = C~t]. As usual let C =  ~(i), i a=  - 1 .  Maximal 

order  ~'~1 I'I ~c~2, 

A = {(ao + alt + Ql t2, a o + bit  + "" + (bn_ ~ + ial) t  n- I + tnQ2) 

~.('21 [l £221ao, a l , b l , . . . , b n _ l ~  }, n>_2. 

In a more suggestive way we write A as 

~t  Rt 
• 

~"~1/2 ( ~ +  i~)t n-1 
; ~22 t n 

Similarly we define the following: 

Uo={O}®Q2, 
Ut= {O}@(tR~t]+[22tt), l <_l<_n-1, 
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IP. IRt n - I - 1 

(~  + i ~) t  n -  
Q 2  tn  

E''] At= I21t /Rt 

; 1-22 tt 

] , O < _ l < _ n - 2 ,  

l < l < n - 1 ,  

w~_~ =o,® {o}, 

IRt 
Olt, ~ i  

Q~t (~ + ilR)t t 
; O2t /+  1 

, O < _ l < _ n - 2 .  

9a(A) is shown in Diagram 4. 

9a(A): 

Al 

! 

Wo 

! 

! Vo ! 

\ I  \ / \ 
Ul 

/ \ / 
A2 

U n - 2  

/ \ 
! 

V n _  2 ' A n _  1 I 

' A 

9~(A)s ~ Z[~2n - 1/T2v- 

/ 

\ 

Uo 

Diagram 4. 

/ 

\ 

\ 

/ 

! 

! W0 ! 

! 
! 

AI , 
! 

\ 
Ul 

/ 
Vl 

U n - 2  

/ 
! 
I ~ - - 2  t 
! 

-1 

' A 

to identify 
along the 
dotted lines 
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Case (6). We view C as subring of (JR)2 by 

a + i / ~ - ' [  a-,o Pa] f o r a ,  B e R .  

R = IR~t], maximal order f2 = (R)2, A = Cit] + f2t n, n _ 1. Let Ai = CH + f2t i. 9.1(A) is 
shown in Diagram 5. 

A1-/ 2 

O 

I I 

An-  1 

Diagram 5. 

For n = 1, A is a B/ickstr6m oder with associated graph C2, 

~(A)s-= 71Cn/r z for n_> 2. 

Case (7). For the quaternions IH we do the same construction as in case (5) for the 
reals ~: R=IPit2B, let f21 =lH[t|, g ' 2 2 = ( C [ t | ) 2  . 

We view IH as subring of (C)2 of the form 

I[ - ~  fla] [a'fl~C'x=c°mplex c°njugate ° f  xl" 

If [= [~ °1, then H(D = (C)2. Maximal order: f21 II f22, 

A = { (a 0 + a I t + f21 t2, ao + bl t +... + (b, _ 1 + ~al)t ~- 1 + f~2tn) 

e£21H~21ao, al,bl,. . . ,bn_l~lH}, n>_2. 

The lattices are similar to the lattices in case (5). However the lattices U0 and W0 
yield under this translation lattices which decompose into two isomorphic indecom- 
posables. This causes the reversion of the valuations. The Auslander-Reiten quiver 
of A is similar to the Auslander-Reiten quiver in case (5), and 

~-~(A)s ~- 7/C2n - 1/'t 'Z" 
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Case (8). R = C[t], maximal  order  R (2). Put  n = 2m for m _> 1. 

m 
A = R - - R =  {(f,g)~R(2)]f-geRtm}. 

~(A) is shown in Diagram 6. 

I- 
R ® { 0 } "  . . . . .  ; { 0 } ® R  

e ~  f j  
J 

A 

R 

o'" 
m - I  

m R  

Diagram 6. 

R ~  

2// 
R 

~ R  

f7/ /A / ' t  -2Z for m = I, I 

~ ( A )  s ~ .~Z/A 3/((ff~.)Z, (fiE _ Id  f o r  m = 2, 

(_Z[Dm+l/(~or)Z,~o2=Id for m > 3 .  

A is the local ring of  the singulari ty of  type/A,,_ I. Moreover  A is a Bfickstr6m 

order with associated g r aph /A  3 for m = 1, and  m = 2  covers the remaining case of  

case (2). 

Case (9). R = Cnt], maximal  order:  (g)2 .  

For m, l_> 0, we put  

Am't = I[ hft g ] ~ (R)2 l f - k ~ Rtm' g -  h ~ Rtt 

Then Am, ! is a ring if and only if l =  m or 1 = m - 1. Moreover  Am, m and Am, m_ 1 are 

Bass orders [10, 19] with minimal  overorder Am, m_ ! and A m_ I , m - 1  respectively. 

~(Am, m) and ~(Am, m_ 1) are shown in Diagram 7. 
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9~(Am, m): 

A m - l , m - I  

Zm, m-I  

A m , ~  / 

7 
I 
I 
I 
I 

~t(Am, m - l ) 

I 
I 
I 
I 

J 

Diagram 7. 

Note. Ao,0 is hereditary, A 1.o is a Bfickstr6m order with associated graph/A 3, and 
A 1,1 covers case (3). 

For m_>2, 

~[(Am, m)s~ff_[D2m+ l/T ~ and  ~(Am, m_l)s-~_D2m/~ "Z. 

Case (10). R = q t ] ,  maximal  order R (3). 
Let m___ 1 and  A C R  (3) be generated as ring by the elements (1, 1, 1), (t,O,t m) and 

(0, t, t) in R t3). 

We define the following: 

Ul= {(O,f,g)eR(3)[f-geRtl}, l <_l<m, 
WI = rUI, l<_l<m, 
Vl={(f,g,h)~AIgeRtm-t}, O<_l<_m-1, 
Al={(f,g,h)eR(a)lf-g~Rt and g-heRtt}, 
X I =  {(f,g,O)eR(3)lf-g~Rt}, 
X2= {(f O, g)eR(3)[f-geRt}, 
Y, ={o}@R@{o}, 

l<_l<_m, 

r2= {(o,o)} @R. 

9.1(11) is shown in Diagram 8. 
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~(A): 
I 
I 
I 

,/ 
,~ ~ 

I 

\ 

/ 
A2 

Vm-2 

\ 

/ 
Am 

\ 
I 
! 

~(A)s -~ ~D2m + 2/l"2Z 

r2 xl : 
I \ / ~\ / 

YI ~ A1 ' X2 -----~ Vo .... ' 

/ \ / \ 

\ / \ / 

w~_l 

V1 A 2 

Am-I  Vm-2 

/ \ /  
Um- I 

\ 

/ 
Vm-1 Am ', 

I 

Um : Um 

A 

Diagram 8. 

A is the local ring o f  the singularity o f  type ~2m+2 • Note the similarity between 
A and the group ring ZpCv2 of  the cyclic group of  order  p2 over the p-adics [24]. 

Case (11). R = C[t2], £2 = Cgt], maximal  order g2 I]  (g'2)2. Let m_> 1 and let 

A = I(ao + + Qt 2, all 

a o + b i t + . . . + b m _ z t m _ l + Q t  m 

t(Co + C~t + "" + (al + Cm_ l)tm- l ) + ~ t  m+ l 

ao, al ,bl ,  . . . ,bm-l ,Co, . . . ,cm-I  e C  1 

Co+c,t +... +cm_,:-'  + ~ : ] )  
ao+bl t+"  +bm_j tm- l  +g2tmJ/ 
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In a more suggestive way we write 

A =  [ C t  
m g2t2.~'...~.g2t 

Similarly we describe the following indecomposable lattices for m >_ 1 and l - m  or 

l = m - 1 .  

l ° "×°1 Am, I = , 
Qt ~ 

Wm, i = g2t, C..../. 
g2t; "'~ £2t 

L~,; t:,~ 

9.1(A) is shown in Diagram 9. 

9.1(A)s= 7/D4m/(Q.r2)Z~ ' Q2= Id. 

If we take for m _  2 

I ° 1 g2t2; ""~_- I2t 

we similarly get 

~(A)s_~_D4rn_2/(~o'£2) 7/, co2=Id. 

Case (12). R = Cit], maximal order g2 = (R)3, 

f [  a+ Rt b+ Rt 
A = Rt a + Rt 

- ( b  + c ) t  + Rt 2 Rt 

i = R t  R . 

R.t Rt 
• e e  e e *  e e e e "  • • e •  • 

R] c+Rt  
a+Rt  

a,b, c eC  t 

~(A) is shown in Diagram 10. 



326 A. Wiedemann 

l!l(A): 

along the i . . . 
dotted lines 1 

) Urn-2,m-1 
I 

I 

/ 
I 
I \ /Am-1’m-2 

Am-l,m-2 i 

I 

\ I Ym-l’m-\ 

i A&-l,,-1 ~ 
I 

I’ 
I 
I 

Wm,m-l i 

/^ Urn-l,m-1 

1 
I 
I 

\ I Ym-l’m-k 

I um- I,m AL,m- 1 

i Um-2,m-1 

\ /$ 
A I 

m-&m-2 ; 

/^ IA__ I 

m 1,m 1 

Wm,m-l i 

A i 
m,m-1 ; 

I 

Diagram 9. 
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9.1(/1): A 

R R /I l 

R R ~1  R, R~"~... I , 
LR.t...nt...R./.) Rt 

LRt Rt] R 

/ 
L R~ Rt~R J R, Rtj 

R ~  R 
m'%n 

T to identify with twist T 

Diagram 10. 

~ ( A )  s ~- 7/[]3 4 / ( t r r  2)~', a 3 = Id .  

In the cases (13), (14) and (15) one can take as A the local ring of  the singularity 
of  type E 6, E7 and  E s respectively. The Auslander-Rei ten  quivers are given in [9] 
explicitly. Moreover  the indecomposable  lattices are described in [13, 14], and it is 
left to the reader to f ind their positions in the Auslander-Rei ten  quiver. 

For the last two cases (16) and (17) let f be a field with an extension field f of  
degree If : f l =3-  

Case (16). R = flit], maximal  order £2 = (R)3 .  

The i somorphism f---f(3) as f-spaces induces a representation of  f on f(3) and 
therefore an inclusion [~(r )3 .  Thus we view f as subring of  (f)3- Moreover let 
x e (03 \ f. We define 

A = f + (f + x f ) t +  f2t 2. 

9.1(/1) is shown in Diagram 11. 

~(A): 

A Ei !] 

A 

/ \ 
(f + xf) + f2t f + £2t 

to identify 

A .  

T 

0 
1 

0 

Diagram 11. 
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Case  (17). R = flit], maximal  order  g 2 -  flitJ. Let y e f \ f, and let 

A = f + (t  + y f ) t  + g2t 2. 

9.1(A) is shown in Diagram 12. 

~I(A): 

f .  (1, 1) + £-2(2)t 

A 

/ \  
f + y f + Q t  f + t 2 t  

(2 f .  (1, 1) + g2(2)t 

T to identify T 

In the cases (16) and (17) 

~ ( A )  s = 7/(132/~.2~. 

Diagram 12. 

Finally let us mention that, if K A  = I-IS= ~ (Di ) , , ,  as in the introduction, then if all 
n i are 1 and 92(A) has only trivial valuations, ~(A) occurs as Auslander-Reiten 
quiver of  a simple curve singularity. 

This shows the theorem in the introduction. 
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