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In this paper we give a complete list of all finite Auslander-Reiten quivers of local
Gorenstein orders A over a complete Dedekind domain R of finite lattice type (i.e. A
is an injective indecomposable left lattice over itself and has — up to isomorphism —
only finitely many indecomposable left lattices) [7, 19]. For each translation quiver
I' in this list, we indicate explicitly a Gorenstein order A with I' as its
Auslander-Reiten quiver. Moreover, in each case we describe the indecomposable
A-lattices.

In particular, this list contains the Auslander-Reiten quivers of the plane simple
curve singularities whose complete local rings can be viewed as Gorenstein orders
over the power series ring in one variable over the complex numbers [9]. Briefly we
recall a description of these singularities which turns out to be of interest in connec-
tion with the above translation quivers [1,6,21,22]:

Consider the ring of invariants of a finite nontrivial subgroup of SL,(C) acting
linearly on the power series ring C[U, V]. It has three generators X, Y, Z satisfying
one relation f(X, Y)+ Z%=0 which defines in the neighbourhood of the origin a
surface with the origin as an isolated singularity. The singularities occuring in this
way as quotient singularity of a finite group are usually known as rational double
points or Kleinian singularities. It is well known that the resolution graph of these
singularities are the Dynkin diagrams A,, D,, E¢, E5, Eg [6]. Then the intersection
with the plane Z =0 is a reduced simple plane curve singularity [1} characterized by
Greuel-Knorrer [14]:

The complete local ring A of a reduced plane curve singularity has finitely many
nonisomorphic torsion free modules of rank 1 if and only if A=C[X, Y]/A(X, Y)
where f(X, Y)+ Z?* defines a Kleinian singularity.

Our characterization of the Auslander-Reiten quivers of the simple curve singu-
larities uses one of the main resuits of [26] which we summarize as follows:

Let A be a basic R-order in the separable K-algebra A, where K is the quotient
field of R, A =KA, and A/Rad A is a product of skewfields. If 4 =[[;_,(D)n,
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306 . A. Wiedemann

where (D)), is the n; X n;-matrix ring over a finite-dimensional skewfield D; over
K, then both the number s of simple factors of A and all the numbers n;, i=1,...,s
are determined by the Auslander-Reiten quiver of A.

This result together with the knowledge of all the examples we shall present, gives
rise to the following:

Theorem. Let A be any local not necessarily commutative Gorenstein R-order of
finite lattice type in a product of skewfields such that the stable Auslander—Reiten
quiver A(A) has as tree class one of the Dynkin diagrams A,, D,, Ee, B4, Eg. Then
its Auslander—Reiten quiver A(A) coincides with the Auslander—Reiten quiver of
the category of lattices over the complete local ring of a simple curve singularity
given by one of the equations f(X,Y)=0.

In Riedtmann’s notation [16], A(A), is one of the following:

type of the corresponding

A(A), Kleinian singularity and
defining polynomial f(X, Y)

ZA, /72 Ay, X2+Y?
ZAs/(te)?, p*=Id As, X2+ y4
ZD,,/(t¢)}, m=4, p*=1d Aoz, XZ+YI-2 %
ZA,,, /0%, m=1, o*>=1 Ao, X2+ y2m+l
ZD, /t*%, n=4 and even Dy, Xly+yn!
ZAs,_3/(t9)%, n=S5 and odd, ¢>=1d D,, X2y+Yynt o
ZE¢ /(1) p*=1d Es, X3 +yt
ZE, /t* E,, X +XxvY3
ZEg /7% Es, X343

(Here 7 denotes the translation on the translation quiver Z4, A an oriented Dynkin
diagram, ¢ and g are automorphisms of ZA satisfying the indicated relations in-
duced by nontrivial automorphisms on 4.)

* The discrepancy between the type of the Kleinian singularity and the tree class
of the stable Auslander-Reiten quiver in these cases is explained in [9].

The paper is organized as follows:

In Section 1, using covering techniques, we derive necessary conditions relating
the positions of projective and injective vertices for Auslander-Reiten quivers of ar-
bitrary orders. In Section 2 we translate the results of Section 1 into concrete condi-
tions for configurations of Gorenstein orders of finite type. Using these results, we
derive in Section 3 a complete list of all possible finite Auslander-Reiten quivers of
orders having exactly one projective vertex being simultaneously injective. In
Section 4, we present for each translation quiver of Section 3 a Gorenstein order
A having this translation quiver as Auslander-Reiten quiver.

Except for the Dynkin diagrams of type Eg4, E5, Eg — where the reader should con-
sult [13, 14] — we also indicate the whole Auslander-Reiten quiver of A and give a
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description of its indecomposable lattices. If A can be chosen to be commutative,
we just take as A the local ring CLX, Y]/f(X, Y) of a simple plane curve singularity.

The computations of many of these Auslander-Reiten quivers are already dis-
cussed elsewhere [8, 9, 20, 23,24]. Our computations were rather technical and very
often had to be worked out in many steps. So we have not included a detailed
description of all these computations.

1. Relations between projective and injective vertices in (A1)

Let R be a complete Dedekind domain with quotient field K, residue class field
f, and let A4 be an R-order in a separable K-algebra A =KA of finite lattice type.
We denote by A(A)=17 the Auslander-Reiten quiver of A, and we consider I” as f-
modulated translation quiver in the sense of [3,25]. Moreover let I” be the universal
cover of I, and let F: "I be the covering morphism [5]. We recall the definition
of the powers of the functorial radical r'(M, N), /=0, of the A-morphism space
from M to N as the End,(M)-End,(N)-submodule of Hom ,(M, N) which is
generated by those morphisms from M to N which are compositions of / irreducible
maps. Recall also that to each vertex x and each arrow x—y in I there is associated
the finite-dimensional skewfield f, = End ,(Fx)/Rad End ,(Fx) over f.and the finite-
dimensional f,-f,-bimodule ,B,=Irr(Fx, Fy)=r(FXx, Fy)/r*(Fx, Fy) resp. For ver-
tices x, y in I let H(x, y) be the morphisms from x to y in the mesh category ¥/")
of I [5,25]. By [25] there exists a covering functor for A: For x, y as above and A-
lattices M =Fx, N=Fy there exists a graded f-bilinear isomorphism

F: [[ Hx 2~ ] r'o, Ny (M, N).
Fz=Fy (=0

Our aim in this section is to find relations between the positions of projective and
injective A-lattices in A(A). First we consider an indecomposable A-lattice M and
an indecomposable projective A-lattice Q. Then each morphism ¢: Q—>M fac-
torizes over a projective cover y : Py(M)—M:

Po(M)
a v there exists an « such that ay =g,
4
O—M

and ¢ can be extended to a projective cover of M if and only if « is a split monomor-
phism; otherwise a € r(Q, Py(M)).

This observation gives rise to the following definition for indecomposable A-
lattices X and M, M nonprojective:
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rPX,M)=_ ), ©(X,Q0)-1(Q M)
Q arbitrary
projective

consists of all A-morphisms from X to M which factor nontrivially over a projective
lattice.

If we abbreviate End,(X)/Rad End ,(X) by #(X) for X indecomposable, we
have for Q indecomposable projective:

(1.1) dim,,(Hom,4(Q, M)/rP(Q, M)) = multp 1) (Q)
= multiplicity of Q — up to isomorphism ~ as direct
summand in the projective cover of M.

We now want to make a similar construction in the mesh category ¥(°) and
recover this multiplicity there:
For a nonprojective vertex z in I~ and an arbitrary vertex x we define H,(x, 2) as

quotient of H(x, z) modulo the f,-f,-subspace HP(x, z) generated by paths of the
form '

a B

x—-).--—)q—-)...—-)z,

where ¢ is projective, and ¢ has length at least 1.
Note that for indecomposable A-lattices M, N the radical filtration

Hom, (M, N)2r(M, N) 2r* (M, N) 2 ---

induces a filtration on the quotient Hom (M, N)/rP(M, N) with associated graded
factors

r'(M, N) + rP(M, N)/(¢'* ' (M, N) + rP(M, N)).

In this situation we have the following:

Proposition 1. Let F: '=I" and F be as above, and let M=Fx, N=Fy. Then F in-
duces a graded {-linear bijection

F,: [ Hy,(x2)~ ] r'(MN)+rPM, N)/(x'* (M, N) +rP(M, N)).
Fz=N 1=0

Proof. Since F maps projective vertices of I” onto projective lattices, F, is well-
defined; the surjectivity of F,, is also clear. :

Since A is of finite lattice type, there exists an /;eN such that
r'(M, N) CtP(M, N) for all /=/,. For vertices x, y in I" we denote by /, , the length
of any path from x to y in I". Then by the injectivity of F we conclude

dimfx<FI_INHp(x, z)> = FEN (dimy H(x, z) — dim; HP(x, z))

l,\'. = [()
= Y dim  H(x,2)— ) dim; HP(x,z)
Fz=N Fz=N

Ix,zSIO Ix.zSIO
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=lengthgyg, vy (Hom,, (M, N)/ro* (M, N)
—lengthgng, 4 @P(M, N) /o + (M, N))
= lengthggg,wry(Hom (M, N)/rP(M, N)).
Consequently, the injectivity of F, follows from its surjectivity. []

We summarize the above considerations and Proposition 1 as follows:

Proposition 2. (i) Let Q be an indecomposable projective A-lattice, N an arbitrary
nonprojective indecomposable A-lattice. Then the following are equivalent:

(@) There exists a e’ (O,N Y\ r't1(Q, N) which can be extended to a projective
cover of N.

(b) r'(Q M\r'"H(Q, N)ZrP(Q, N).

(c) There exist vertices q,y in I" with Fq=Q, Fy=N, l,y=1and Hy(q,y)#0.

(ii) In the situation of (i), the multiplicity of Q in the projective cover Py(N) of
N is given by the number Y. Fg=0 dimf H;(q,y), and Py(N) decomposes into
X4 projective in ~ 41My, (g, ¥) zndecomposable direct summands.

For a projective vertex g of I” we shall consider later in this section those vertices
¥ such that /, , is maximal with H,(g, y)+0.

We start with a fixed simple A-module S with projective cover Pg and denote by
I that indecomposable injective A-lattice with minimal overlattice I satisfying
I$/I=S.

Lemma 1. If M is a A-lattice and ¢ : M — S an epimorphism, then ¢ factors over the
projection I{—I{/Ig=S.

Proof. Since /g is an injective lattice, the following pullback via ¢ decomposes:

0 — I > M M -0

0 > I > I > S — 0. O
Since A is of finite lattice type there exists an /; € N such that
r'(X, I)- Hom (I3, S)=0

for each A-lattice X and /=/,. Moreover, since Hom(Pg, S)#0, we can choose
by Lemma 1 a nonzero morphlsm .Qer"’(PS, I) where [, is maximal with
Q- HomA(IS,S)th

Lemma 2. (i) If P’ is a projective A-lattice and 1€ Hom ,(Ps, P’), o’€ Hom 4(P’, I, $)
such that o =10’, then t is a split monomorphism.
(ii) For an arbitrary A-lattice Y and each a ex(I§, Y) there exists a projective A-
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lattice P’, a nonsplit morphism ¢ :Ps— P’ and a morphism y:P’'—Y such that
oa =90y, i.e., poa factors properly over another projective.

Proof. (i) Trivial.

(ii) Let P’=P0(Y)——W—> Y be a projective cover of Y. Then there exists a 6 with
ow=pa. If pa-Hom,(Y,S)=0, then Im gCrad, Py(Y) and ¢ is not split mono.
Otherwise suppose that there exists a nonzero 8 in Hom,(Y, S) with gaf#0. By
Lemma 1 there exist morphisms £’, ¢’ such that

Y____é__, S
ﬂ\ /‘,
Is

commutes. Therefore ogaf’'c’#0 and paf’-Hom(l$,S)#0; moreover
oaf’ et (P, I¥): contradiction to the maximality of /,. [

We summarize the above results in the following

Proposition 3. (i) If X is an indecomposable A-lattice with a morphism
o e Hom ,(Pg, X) satisfying o-Hom,(X,S)#0 and oa-Hom,(Y,S)=0 for an
arbitrary aer(X,Y), then X is isomorphic to a direct summand of the unique
minimal overlattice I of Is.

(ii) If q is a projective vertex in I and y is a vertex of I” with l, y maximal satisfy-
ing H(q,y)#0, then y is a successor of an injective vertex.

Proof. (i) follows immediately from the Lemmata above. (ii) is the direct translation
of (i) using Proposition 1. [J

2. Necessary conditions for the Auslander—Reiten quivers of Gorenstein orders

From now on we assume that A is a nonmaximal R-order and is an indecom-
posable injective lattice over itself, i.e. A is local but not necessarily commutative
and Gorenstein in the terminology of [10].

If the Jacobson radical Rad A decomposes, then A is a Biackstrom order with
associated graph A; or C, [18], and its Auslander—Reiten quiver is described in
[20]. Therefore we assume from now on that Rad A is indecomposable and A is of
finite lattice type.

Then by [15] the stable Auslander-Reiten quiver A(A), of A, i.e., the full sub-
quiver of A(A) of all nonprojective vertices has as tree class a Dynkin diagram 4
and is isomorphic to ZA4/G for G an admissible automorphism group of Z4 in the

sense of Riedtmann [16] or is described in [23] in case (A1) contains a loop £) .
In this last case A(A) is of the form
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0/_\1/—\02 n-1 n

/\‘
ovov o\_/{) , h=1,

where the vertex 0 is projective-injective and the translation is the identity on the
other vertices 1, ..., n. Obviously the stable Auslander-Reiten quiver is then isomor-
phic to the translation quiver

Py /0%, %=1,

where o is the automorphism of ZA,, induced by the nontrivial automorphism of
A,,. Note that 0’7 is admissible in the sense of Riedtmann for > 1 only. So we call
the automorphism group G of ZA l-admissible (lattice-admissible) if G is admissible
or A is of type A,, and G =07 as above.

With the notation of Section 1, we get I” by adding suitable projective-injective
vertices to ZA4. Since Rad A is indecomposable, a projective vertex g of I has a
unique predecessor ¢~ corresponding to Rad A4 and a unique successor g* cor-
responding to the unique minimal overlattice A* of A in the quiver /°; moreover
q =1q".

We call g* a configuration vertex and the set of vertices

C={q*|q" is a successor of a projective vertex g}

is called configuration of ZA with respect to A.
If g is a projective-injective vertex of I” with successor g*, then for each nonpro-
jective vertex x in I” we have an isomorphism of Jq-vectorspaces

H(q, x)=,B,;+®y,. Hy(q", X).

If f,%f,+, then A being of finite lattice type, the valuation (dim;, ,B,.,dim,  ,B;+)
is of the form (1,n) or (n,1) with n=2 or n=3 [2]. This implies either that A%
decomposes — what we already excluded — or the middle term of the almost split
sequence of A" contains n copies of A as direct summands. By rank arguments, we
have n=2 and an almost split sequence

0—Rad A AP > AT —>0.

Then A is a Backstrom order with associated graph B,; moreover Rad A =A" and
A has — up to isomorphism — exactly the two nonisomorphic indecomposable lat-
tices A and Rad A. Therefore we assume from now on that ,B,.=f, =f,+ for
each projective vertex q of I

For ¢ and x as above, we have under this hypothesis isomorphisms as
Jq-vectorspaces

H,(q,x)=H,(q", ) =HZA)q", x)=Hz,(q", %),



312 A. Wiedemann

where the last two terms stand for the morphisms from ¢* to x in the mesh
category with respect to ZA. Altogether the computation of H (g, x) is reduced to
computations in the mesh category of ZA.

For each vertex z in ZA, we define the cover vector of z as the positive vector
(dimy, Hz4(z, »)),, where y runs over the vertices of ZA4. (The cover vector con-
sists essentially of the positive piece of the additive function starting at z in the
terminology of Gabriel [11] and coincides with Bongartz’s starting function of z
[4,5].) The support of the cover vector of z consists of those vertices y with
dimy, Hz 4(z, ¥)>0. Note that for a projective vertex g of I" a nonzero path from ¢
to any vertex of ZA4 contributes to a projective cover of Fx in the sense of Proposi-
tion 2 if and only if x belongs to the support of the cover vector of ¢*.

We now make two important observations which also hold for arbitrary Goren-
stein orders of finite lattice type:

First, if I is an injective indecomposable A-lattice with minimal overlattice 7+,
then — 7 being projective and 7*/I being simple — the projective cover of I de-
composes exactly into two indecomposable nonzero direct summands.

Second, by Propositions 2 and 3 this implies: If c=¢™ is a configuration vertex
in ZA, there exists a unique vertex ¢’ of ZA4 in the support of the cover vector of
¢ such that /, .- is maximal. Moreover, ¢’ is also a configuration vertex, i.e., there
exists a projective vertex ¢’ in I such that (g")* =c".

These observations imply immediately the following necessary conditions for a
configuration of ZA4. Similar conditions are given by Riedtmann for the algebra case
in [17], cf. also [12].

Proposition 4. Let C be a configuration of ZA with respect to a Gorenstein order
of finite lattice type. Then C satisfies the following conditions:

(C)) For each ceC there exists a unique c’€C with Hy,(c,c’)#0 and
Hy 4(c,d)=0 for all successors d of c'.

(C,) For each xe ZA there exists at least one c € C with Hz4(c, x) #0.

3. The possible Auslander-Reiten quivers of local Gorenstein orders of finite lattice
type

In this section we assume that A is a nonmaximal local Gorenstein order and that
A is not a Backstrom order with associated graph A;, B, or C, (cf. Section 2).

We now discuss the various possibilities for the structure of I"=%(A) using the
results of the previous section.

Let A(1);=ZA/G for an oriented Dynkin diagram A and an l-admissible
automorphism group G of ZA4.

We label the vertices of 4 by integers 1,2,...,n and associate to the vertices of
Z A coordinates (i, @) € {1, ..., n} X Z such that 7(i, ) = (i, « — 1), and there is an arrow
from (j,) to (J, B) in ZA4 if and only if
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. i J . J i
either a=fand® ——— ein A4 or a=f—-1and ® — ein A.

For the various A4’s we briefly sketch the support of the cover vector of a vertex
c and indicate also the vertex ¢’ as defined in Proposition 4; an explicit description
of the cover vectors is e.g. given by Bongartz in [4].

Using Proposition 4 and — A being local — by the fact that there is exactly one
G-orbit of configuration vertices in ZA4, we determine the possible
Auslander-Reiten quivers I

1 2 3 n—-1 n
A:A": ° > e > ® > eaa > @ > @
n/.
©oe=(i,u)
ZAn 3 ./ ’ C':
7 (n+1-i,X+1-1)

D e

/

v—— 1 ®

Obviously the support of any cover vector hits the t-orbit of the end vertices 1
and n together twice. By condition (C,) this implies that 72 € G. Therefore by con-
dition (C,) for a configuration vertex ¢ = (i, @) we must have i=1,2, n—1 or n. For
simplicity we may assume that either ¢ =(1,0) or c=(2,0) is a configuration vertex.

If n is even, c=(1,0) is a possible configuration vertex and

(1) I;=7M,/0% o*=t.

For n=4, c=(2,0) as configuration vertex is excluded by the following argument:
G has to be of the form (o7°)? with 0*=17, s=0. By condition (C,) 7¢ G, and we
have s= 1; moreover 72 € G. On the other hand the elements of G are of the form

s +1/2m for even m,

sm+(m-1)/2

SY? — oM pSm _
(eT)"=¢ { for odd m.

ot

But (s+1/2)m =2 is not possible for s=1 and meZ.

If nis odd and n>3, G is of the form (¢7")?, ¢*=1d and r= 1. This immediately
excludes ¢ =(1, 0) because this would force 7€ G. For ¢=(2,0) the G-orbit of ¢ must
contain ¢’=(n—1,1), and this forces n=3(mod4). This gives the following
possibilities:

) L=7ZA,/(p1)%, ¢*=Id, n=3(mod4),

3) IL,=7A,/7%.
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1 -
A:Bn o————)% 72 > ﬁpol(z,l)¢’0” n=2.
n.e ] )
/ ’,l'l
Zan 3 ./ ) c'=
5 ./ c=(1,x) (i ,&+n-1)
/
-— 1 Py

The possible automorphism groups clearly are of the form G=17°Z, s=1. Each
support of a cover vector hits the 7-orbit of vertex 1 at most twice, therefore 7’ € G.
Possible configuration vertices are up to translation (1,0) or (2,0).

If (1,0) is a configuration vertex, then

4 r,=ZB,/7".

If (2,0) is a configuration vertex then n has to be odd and
(5) I,=7B,/t*,

or for n=2, we get the same as for 4 =C, in case (6).

2 3 n—-1 n
> o 5> P tee———3 @ ——— @ n=2.

(1,2) ’

4=C,: l
We have the same pattern of the supports as in case 4 =B, and get therefore:
If (1,0) is a configuration vertex, then
(6) I,=7C,/7~.
If (2,0) is a configuration vertex, then n is odd and
(7 I=7C,/t*%,

or for n=2, we get the same as for 4 =B, in case (4).

_ e e o -

c'=
(1,%+0-2)
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The admissible automorphism groups are of the form G=1°%, G=(o7°)? or
G = (a7°)%, where o and o for n=4 are induced by nontrivial automorphisms of D,
and satisfy o> =1d and ¢’ =1d. Each support of a cover vector hits the 7-orbit of
vertex 1 at most twice. Therefore G contains an element of the form @7 for an
automorphism ¢ of finite order of ZD,,. Possible configuration vertices are up to
translation (1,0) and (2,0), and we get the following:

If (1,0) is a configuration vertex, then

®) I,=7ZD,/(e1)%, o0’=Id or
9 I,=17D,/o".
If (2,0) is a configuration vertex, then n has to be even and either
(10) I,=7D,/7*%, or
(11) I,=7ZD,/(et®)%, o0?’=1d or
(12) I,=7ZD,/(67®)%, o3=1d.

Similar arguments and the structure of the supports of the cover vectors (cf. [4])
give the following possibilities for the remaining Dynkin diagrams:

5 6
.

—> @ >

(1,0) is a configuration vertex, and

(13) =7k /(ev)*, @©*=1d,
and g is induced by the nontrivial automorphism of .
1 2 3 6 7
A= [E.,; . — @ > ® > > ® °
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(7,0) is a configuration vertex, and

(14) I,=7E,/7*2.
1 2 3 4 5 7 8
A=Eg: ° — @ > @ > ® — o > o — @
6@
(1,0) is a configuration vertex, and
(15) I=7Eg /7.
Aop: b i3 3
BRhd W i
is not possible.
1 2
A4=0,: e —— o

(1,3)
(1,0) is a configuration vertex, and
(16) I,=72G,/t**
or (2,0) is a configuration vertex, and

(17) I,=7G,/t*2.

4. The realization of the possible Auslander-Reiten quivers of local Gorenstein
orders of finite lattice type

For all the possible Auslander-Reiten quivers of local Gorenstein orders we listed
in the previous section we now give concrete examples.

We work over power series rings in one variable over a field in order to avoid
arithmetic difficulties in the ground ring R. In all cases, except for 4 =G, we work
with the real numbers R, the complex numbers C or the Hamiltonian quaternions
IH. Mostly one can take arbitrary fields, however in the cases 4 =B, or C, one has
to be careful.

Besides the ground ring R we indicate a maximal R-order in A = KA containing
A and then describe the R-order A such that A(A),= I occurs in the list of Section
3. Then we describe the indecomposable A-lattices and write down A(A) explicitly.

Case (1). R=Cl¢*], maximal order Q=Cl¢], A=R+*"Q, m=1.
Let A;,=R+t¥Q for i=0,...,m; in particular, Aq=Q. %A(A) is shown in Dia-
gram 1.
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AA): Ag <--=-==--m-mo-- - -~ identify
A" A ©
A, A,

SN

|
{
1
|
1
|
t
1
|
1
|
I
1
|
i
|
]
1
|
|
4
|
|
|
!
|
|
]
]
1
]
|
i
|
|
|

A, to identify along

the dotted lines

2

Ap-

2 Ap_2
Am—l E Am—l
Ap, A,
WA)=ZA,y, /0%, o*=T.
Diagram 1.

For m=0, A is a maximal order.

For m=1, A is the local ring of the singularity associated to the Kleinian
singularity of type A,,,. (Shortly we write from now on ‘‘local ring of the singu-
larity of type A4’.)

Case (2). R =C[#’], 2=C]¢t], maximal order 2 [] .
Put n=2m+3, with m=1. A is as ring generated by the elements (1, 1), (,"~?)
and (0,¢%) in Q] Q. Let

U={0l®R+1¥"'Q), 0=<l<m,
A={(f,9)eR?P|f-getQ and ge U}, 0<i<m-1,
Vi={(f,g)eA|get* "~ DQ}, O0<is=sm-1,
W,=tU,, O0=sl=m.

A(A) is shown in Diagram 2.
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g o
Lo E5SEY
ES T 3 > o
dgeeteehu
.lnu.ltran..th
20 L g 2
ST ETB 5L T A
Al —-——-—
hYd
< < ~ 5

p*=1d.

ZA4”‘1 +3 /(¢T)Za

A )s=

Diagram 2.
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A is the local ring of the singularity of type D,. m =0 will be handled together

with case (8).

Case (3). This will be a special case of the orders we consider in case (9) and will

be handled there.

Case (4). R =R[t], maximal order Q=C[¢], A=A,=R+1t"Q, n=1.
Let A;=R+1¢'Q, 1<i<n. (A) is shown in Diagram 3.

A(AN):

AA),=ZB, /1%t for n=2.

A is a Backstrom order with associated graph B, in case n=1.

Case (5). R=R[?], let Q,=R[¢], 2,=Cl¢]. As usual let C=R(), i’

order Q, [ 2,,

A={(ag+at+2,t5ay+bit+ -+ (b,_, +ia))t" ' +1"Q,)

\\
/ A4
Ay /
An—l
Diagram 3.

EQ] H.Qzlao,al,bl,...,b,,_lEﬂ?},

In a more suggestive way we write A as

R R
R¢ R¢

Q1 (R+iR)"!
; 2, t"

Similarly we define the following:

U0= {0} @QZQ

U;={0} ® (Rlt] + 2,¢'), 1=<l<n-1,

n=2.

—1. Maximal
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IR I'Rtn—l—‘l

Ve U

Q,t (R+iRy" ! |’ O</<n-2,
; Q,t"
R=R
Y KL IS Py S
; Q1!
n—l=91®{0}!
’-[Rzm ]
R Rt

W,=| Qt \ , O<l=<n-2.
, 1t (R+iR)
i : tal+l )

A(A) is shown in Diagram 4.

AAN): ‘ ‘
' ! w,
e D Vg
A, E Ay
LU | U, to identify
/i/ \ / \ / along the
E ' E dotted lines
oo v, !
% Un 2 Wn -2 i U n—2
Va2 Va2 E

\/

A
() =ZB,,_ /1%

N

Diagram 4.
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Case (6). We view C as subring of (R), by
a+iﬁ-—'[a B] for a, e R.
-8 «

R =R[¢], maximal order Q=(R),, A=Cft]+Q¢t", n=1. Let A; =C[¢t}+ Qt'. A(A) is
shown in Diagram 5.

A(A): [R]
A R
Q‘/
SN
/ A, /Q?'
A, /
/ An—l
A /
Diagram 5.

For n=1, A is a Biackstrom oder with associated graph C,,
AA),=2C, /7% for n=2.
Case (7). For the quaternions IH we do the same construction as in case (5) for the

reals R: R=R[¢?], let @,=MH][¢t], 2,=(Clt])s-
We view H as subring of (C), of the form

1% 2

If {=[{ 91, then H() = (C),. Maximal order: 2, [] 25,

a, f € C, x=complex conjugate of x} .

A= {(a0+a1t+ Q~1t2,a0+b,t+ ---+(b,,_1+i-a1)t"_‘ +Q~2tn)
EQIHQzlao,a],bl,...,bn_]ElH}, n=2.

The lattices are similar to the lattices in case (5). However the lattices Uy and W}
yield under this translation lattices which decompose into two isomorphic indecom-
posables. This causes the reversion of the valuations. The Auslander-Reiten quiver
of A is similar to the Auslander-Reiten quiver in case (5), and

A(A),=ZCy,_, /7.
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Case (8). R =Cl¢], maximal order R®. Put n=2m for m=1.
A=R===R={(f,g)eR?|f-geRi™}.

A(A) is shown in Diagram 6.

T

A(A): R®{0}*= - ;{0}®R
N /
/ R===R
, ©
R=—=
R—=— R
o
o
Diagram 6.
ZA, /T for m=1,

AA) =< ZA;/(p1)4, 9*=1d for m=2,
ZDyy /(@05 0%=1d for m=3.

A is the local ring of the singularity of type A,_,. Moreover A is a Biackstrom
order with associated graph A; for m=1, and m =2 covers the remaining case of
case (2).

Case (9). R=C][t], maximal order: (R),.
For m,[=0, we put

Am,,={[f g]é(R)z

—~keRt™ g~heRt!.
v i|e®n|r-keremg—nere]

Then A,, ;is a ring if and only if /=m or I=m 1. Moreover A,, ,, and A,, ,,_, are
Bass orders [10,19] with minimal overorder A,, ,,_, and A,,_, ,,_; respectively.
A(A,, m) and A(A,, ,_,) are shown in Diagram 7. :
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A A, m): [ R ]

Diagram 7.

Note. Ag is hereditary, A, o is a Backstrom order with associated graph A;, and
A,y covers case (3).
For m=2,

9‘[(‘/lm,m)sEZ[DZm+l/TZ and 2[(«Am,m— l)sEZ[DZm /TZ-
Case (10). R =Cj¢], maximal order R,
Let m=1 and A CR® be generated as ring by the elements (1, 1, 1), (2,0,#™) and

0,,1) in R®.
We define the following:

U={07/,geRY|f-geRt'}, 1=i=m,
W,=tU,, l<l=m,
Vi={(f,eh)eA|geRt™ !}, O0<i=m-1,
Ar={(f,eh)eRP|f-geRtand g—heRt'}, l<l<m,
X1={(£80eRP|f-geRt},
X,={(£,0,9)eRV|f~geRt},
Y, ={0} ®R® {0},
Y,={(0,0)} ®R.

A(A) is shown in Diagram 8.
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A(A): i v, X, 5 v,
SN ¢
4 _T" Y, —™ A4 — X, — W "‘E'_" Y,
N N N
CoW Uy rW
2N SN A
Ay " A, .i
Vin-2 EE A= Vin—2 E
A NI NN
b W Unp-y i Wy
SN SN
mo m—1 m E
N \\ VYARN
v Uy, W, : U,
A
N(N)s=7ZD,,, , /1%
Diagram 8.

A is the local ring of the singularity of type D, ,. Note the similarity between
A and the group ring Z,,C, of the cyclic group of order p? over the p-adics [24].

Case (11). R=C[£?], 2=C][t], maximal order Q] (2),. Let m=1 and let

A= {(ao‘f‘alt‘f' Qtz,

[ ag+byt+-+ b, "1+ Q" CotCrt+ o +Cp_ ™ L+ Q™
oo+ et + o +(ay+Cp W™ )+ Q™YY agt byt +--+ b, 1"+ Q1™

ao,al,bl,...,bm_l,CO,...,Cm_l GC}
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In a more suggestive way we write

Similarly we describe the following indecomposable lattices for m=1 and /=m or
l=m-—1.

A(A) is shown in Diagram 9.
U(A);=ZDyy, /(e7*)?, 0*=1d.

If we take for m=2

we similarly get

() =ZDyy_2/(07)%, ©*=1d.

Case (12). R =CJt], maximal order Q=(R);,

a+ Rt b+ Rt R
A= Rt a+Rt c+Rt a,b,ceC
—(b+0t+Rt>? Rt a+Rt
R R. R
=|Rt R RJ.
Rt Rt R

A(A) is shown in Diagram 10.
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A(A):

1

I
Ay

to identify
with twist
along the

1

dotted lines

....... _;-,-----//

~
|
m'.

T

....... N

NN
NN N
NN

Diagram 9.
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A(A): A

R R / [ R | [ I\R i

Ry R Rt R)\R
R%R_ \ / | Rt \ / | Rt YR |
R | Rt R, R R ] S R [ R R |

R?\R —— | Rt Rt™R R | — Ilzt\R\R I W
Rt R | Rt Rt Rt Rt | Rt RtXR | Rt Rt
[ R R / [ R | / \ 'R R

RENR R N
| Rt Rt | R | | Rt SR |

1 . to identify with twist 1
AN),=ZD,/(c7*)?, o’=I1d.
Diagram 10.

In the cases (13), (14) and (15) one can take as A the local ring of the singularity
of type Eg4, E; and Eg respectively. The Auslander-Reiten quivers are given in [9]
explicitly. Moreover the indecomposable lattices are described in [13, 14], and it is

left to the reader to find their positions in the Auslander-Reiten quiver.

For the last two cases (16) and (17) let f be a field with an extension field f of

degree |f:f|=3.

Case (16). R =t[¢], maximal order Q= (R);.

The isomorphism f=t® as f-spaces induces a representation of { on f* and
therefore an inclusion f<(f);. Thus we view f as subring of (f);. Moreover let

xe(f);\ |. We define

A=§+F +xf)t+ Q2.

A(A) is shown in Diagram 11.
N(A):

f+xp)+Q
\\
Q\
1 0
A 0 1
0 0
T

~

ﬁ
<

t
t
f

>
\?

to identify

f+Qt

QD
4

~
c o -
o -0

L

Diagram 11.
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Case (17). R=¥[t], maximal order Q=f{[t]. Let yef\ f, and let

A=t+(t+y0r+ Qe
A(A) is shown in Diagram 12.
A): A

/N
t+yE+ Q1 f+ Q1

f-(1L,1)+Q@¢ Q f-(1,1)+ Q¢
1

to identify i

Diagram 12.
In the cases (16) and (17)

(), =ZG,/7%2.

Finally let us mention that, if KA = [[_,(D;),, as in the introduction, then if all
n; are 1 and A(A) has only trivial valuations, A(A) occurs as Auslander-Reiten
quiver of a simple curve singularity.

This shows the theorem in the introduction.
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