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Abstract

The main contribution of this paper is to introduce an autonomous definition of the connective “fuzzy
exclusive or” (fuzzy Xor, for short), which is independent from others connectives. Also, two canonical
definitions of the connective Xor are obtained from the composition of fuzzy connectives, and based on the
commutative and associative properties related to the notions of triangular norms, triangular conorms and
fuzzy negations. We show that the main properties of the classical connective Xor are preserved by the
connective fuzzy Xor, and, therefore, this new definition of the connective fuzzy Xor extends the related
classical approach. The definitions of fuzzy Xor-implications and fuzzy E-implications, induced by the fuzzy
Xor connective, are also studied, and their main properties are analyzed. The relationships between the
fuzzy Xor-implications and the fuzzy E-implications with automorphisms are explored.
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1 Introduction

The connective exclusive or (Xor, for short) plays an important role in computer
programming. For example, it is used as a primitive operation in many encryption
algorithm (e.g, DES, blowfish, RC5, CAST, RIJNDAEL) [29,47]. The one-time
pad [43] is an encryption algorithm where the plaintext is combined with a random
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key (called pad) by a modular addition, or the operation XOR, when binary data
are considered.

Several other applications of the Xor connective can be found, such as in simple
threshold activated neural networks [39], in the identification of elemental emission
spectra [15], in algorithms to eliminate cache conflict misses [50], in the construc-
tion of conflict-free hash functions [49], in techniques to exploit the parallelism in
IP routers [11], etc. Also, the boolean web search logic capability may be improved
with the Xor operator, in order to consider the search of mutually exclusive sites.
Moreover, due to its non-linearity, the connective Xor is frequently used as a prob-
lem, e.g., in Neural Networks [24], in support vector machines (SVM ) [25] and
Quantum Computing [31,35].

Different versions of the fuzzy Xor connective have been used in the literature.
In [34], a fuzzy Xor operation ⊕, defined as x⊕ y = x + y − 2xy, is used to identify
preference rules from interactions in the linear model. In [39], a generalized Xor
operation is given as a family of fuzzy Xor operations, based on a composition of
the fuzzy negation, and triangular conorms and norms (t-conorms and t-norms, for
short). In [6,28], three distinct definitions of the fuzzy Xor are considered, in order
to introduce a semantics of interval fuzzy logics related to the checklist paradigm:

x ⊕⊥ y = max(x − y, y − x), (1)
x ⊕� y = min(2 − x − y, x + y), (2)
x ⊕mid y = (1 − x)y + x(1 − y). (3)

In the literature, special attention has been given to the research on the validity
of many classical logic tautologies in fuzzy logic, especially those that are related to
fuzzy implications. Fuzzy implications have been widely studied, playing important
roles in different domains [18,19,46,48,51,52,54,55]. Recent papers studied different
classes of fuzzy implications [2,4,5,12,18,44,53].

Several properties of classical implications can be generalized from the multival-
ued implications: 4

(i) R-implication, related to a residuation concept from the intuitionistic
logic [21,22];

(ii) S-implication, arising from the notion of disjunction and negation of classical
logic, and generated by a t-conorm and a fuzzy negation [4];

(iii) QL-implication, which may be generated from a left-continuous t-norm, a t-
conorm, joint with a strong fuzzy negation [44];

(iii) D-implication, whose definition is obtained as a contraposition concerning a
fuzzy negation of a QL-implication [32,33];

(iv) �Lukasiewicz implication, whose definition is based on the �Lukasiewics t-
norm [1].

In this paper, we introduce an autonomous definition of the fuzzy Xor connective,
which is independent of the other connectives, generalizing the previous definitions

4 See also [3,5,53], for other different definitions of fuzzy implications.
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referred above (equations (1), (2) and (3)).
We also provide two canonical constructions based on the composition of other

fuzzy connectives. In particular, one of them constitutes a generalization of the
fuzzy Xor connective introduced in [39], by considering arbitrary fuzzy negations.

Since the main properties of the classical Xor connective are preserved, this new
definition of the fuzzy Xor connective extends the related classical approach.

We use this definition of the fuzzy Xor connective to construct two new classes
of fuzzy implications, namely E-implications and Xor-implications, analyzing their
main properties and their relationship with automorphisms.

The results can be applied in soft computing, which deals with the design of flex-
ible information processing systems [36], with applications in control systems [14],
decision making [13], expert systems [45], pattern recognition [7,36], etc.

This paper is organized as follows. In Sect. 2, we review the main concepts
related to ordinary fuzzy connectives. Fuzzy t-conorms (and t-norms), negations
and implications are presented in the subsections 2.1, 2.2 and 2.3, respectively. The
fuzzy Xor connective and corresponding properties are considered in Sect. 3. In
Subsect. 3.1, the canonical definition of the fuzzy Xor operator is introduced. The
fuzzy Xor implications and E-implications are defined in Sect. 4, where we also
show how to construct an E-implication as a composition of a t-norm, a t-conorm,
a negation and an Xor operator. Automorphisms are presented in Sect. 5, where it is
shown that the action of the generalization of an automorphism introduced in [20,21]
preserves the generalization of an E-implication. Section 6 is the Conclusion.

2 Usual Fuzzy Connectives

In this section, basic definitions related to the fuzzy connectives t-norm, t-conorm
and fuzzy negation are considered.

2.1 T-norms and T-conorms

Let U = [0, 1] be the unitary interval. A t-norm is a function T : U2 → U satisfying,
for all x, y, z ∈ U , the following properties:

• T1: T (x, y) = T (y, x) (commutativity);
• T2: T (x, T (y, z)) = T (T (x, y), z) (associativity);
• T3: If y ≤ z then T (x, y) ≤ T (x, z)) (monotonicity);
• T4: T (x, 1) = x (boundary condition).

A t-conorm is a function S : U2 → U satisfying, for all x, y, z ∈ U , the following
properties:

• S1: S(x, y) = S(y, x) (commutativity);
• S2: S(x, S(y, z)) = S(S(x, y), z) (associativity);
• S3: If y ≤ z then S(x, y) ≤ S(x, z) (monotonicity);
• S4: S(x, 0) = 0 (boundary condition).
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2.2 Fuzzy Negation

A function N : U → U is a fuzzy negation if

• N1: N(0) = 1 and N(1) = 0;
• N2: If x ≥ y then N(x) ≤ N(y), ∀x, y ∈ U .

Fuzzy negations satisfying the involutive property are called strong fuzzy nega-
tions [12,27]:

• N3: N(N(x)) = x, ∀x ∈ U .

2.3 Fuzzy Implications

Several definitions for fuzzy implications together with related properties have been
given in the literature (see, e.g., [2,5,12,17,18,23,30,42,51,52,53]). The unique con-
sensus in these definitions is that the fuzzy implication should have the same behav-
ior as the classical implication for the crisp case. Thus, a binary function I : U2 → U

is a fuzzy implication if I satisfies the minimal boundary conditions:

I(1, 1) = I(0, 1) = I(0, 0) = 1 and I(1, 0) = 0. (4)

Several reasonable properties may be required for fuzzy implications. The prop-
erties considered in this paper are listed below:

I1: If x ≤ z then I(x, y) ≥ I(z, y) (first place antitonicity);

I2: If y ≤ z then I(x, y) ≤ I(x, z) (second place isotonicity);

I3: I(1, x) = x (left neutrality principle);

I4: I(x, I(y, z)) = I(y, I(x, z)) (exchange principle);

I5: I(x, y) = I(x, I(x, y)) (iterative boolean-like law);

I6: I(x, N(x)) = N(x), and N is a strong fuzzy negation;

I7: N(x) = I(x, 0) is a strong fuzzy negation;

I8: I(x, 1) = 1;

I9: I(x, y) ≥ y;

I10: I(x, y) = I(N(y), N(x)), and N is a strong fuzzy negation (contra-positive);

I11: I(0, x) = 1, dominance falsity.

3 The Connective Fuzzy Xor

In fuzzy logic, one can use the Xor connective in order to evaluate the degree with
which one and only one of its immediate antecedents is true. Unfortunately, in
the literature, there is no autonomous definitions for that fuzzy connective, in the
sense that it would be independent from the other connectives. In the following,
we introduce a definition for the fuzzy Xor connective satisfying this condition of
independence.
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Definition 3.1 A function E : U2 → U is a fuzzy Xor if it satisfies the properties:

• E1: E(x, y) = E(y, x) (symmetry);
• E2: E(x, E(y, z)) = E(E(x, y), z) (associativity);
• E3: E(0, x) = x (0-Identity);
• E4: E(1, 1) = 0 (boundary condition).

Example 3.2 The fuzzy Xor connective introduced in [34], defined by x ⊕ y =
x + y − 2xy, trivially satisfies the properties E1, E3 and E4. It also satisfies the

property E2, since:

x ⊕ (y ⊕ z) = x + (y ⊕ z) − 2x(y ⊕ z)

= x + (y + z − 2yz) − 2x(y + z − 2yz)

= x + y + z − 2yz − 2xy − 2xz + 4xyz

= x + y − 2xy + z − 2xz − 2yz + 4xyz

= x + y − 2xy + z − 2z(x + y − 2xy)

= (x ⊕ y) ⊕ z.

It follows from properties E3 and E4 that the fuzzy Xor connective generalizes
the classical Xor connective.

Based on Definition 3.1, the following extra reasonable properties can be con-
sidered for the fuzzy Xor connective:

• E5: E(x, x) = 0
• E6: E(E(x, y), x) = y

• E7: If x ≤ y ≤ z then E(x, y) ≤ E(x, z) and E(y, z) ≥ E(x, z)
• E8: NE(x) = E(x, 1) is a strong fuzzy negation.
• E9: If E(x, y) = 0 then x = y.
• E10: If E(x, y) = 1 then |x − y| = 1.
• E11: E(NE(x), x) = 1.
• E12: E is continuous.

These properties are not necessarily primitive, that is, some of them can be
obtained from some other properties.

Proposition 3.3 Let E : U2 → U be a fuzzy Xor connective. Then, the following
relations hold:

E5 ⇒ E6: If E satisfies E5 then E satisfies E6.

E7 ⇒ E8: If E satisfies E7 then E satisfies E8.

E6 ⇒ E11: If E satisfy E6 then E satisfies E11.

Proof. Let E : U2 → U be a fuzzy Xor connective. Then it follows that:

E5 ⇒ E6: E(E(x, y), x) = E(x, E(x, y)) = E(E(x, x), y)) = E(0, y) = y.
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E7 ⇒ E8: The function NE : U → U , given by NE(x) = E(x, 1), satisfies the
properties:
N1: NE(0) = E(0, 1) = 1 and NE(1) = E(1, 1) = 0.
N2: If x ≤ y, then, by the property E7, NE(x) = E(x, 1) ≥ E(y, 1) = NE(y).
N3: One has that NE(NE(x)) = NE(E(x, 1)) = E(E(x, 1), 1). Based on
the associativity (E2) and boundary condition (E4) properties in Defini-
tion 3.1, it holds that E(E(x, 1), 1) = E(x, E(1, 1)) = E(x, 0) = x, and, thus,
NE(NE(x)) = x.

Therefore, NE(x) = E(x, 1) is a strong fuzzy negation.

E6 ⇒ E11: If E(E(x, y), x) = y then E(NE(x), x) = E(E(x, 1), x) = 1.
�

3.1 Obtaining the Xor Connective from Other Connectives

Proposition 3.4 Let T , S and N be a t-norm, a t-conorm and a fuzzy negation,
respectively. A fuzzy Xor connective can be given by the function ET : U2 → U ,
defined by:

ET (x, y) = T (S(x, y), N(T (x, y))). (5)

Proof. The function ET : U2 → U , given by ET (x, y) = T (S(x, y), N(T (x, y))),
satisfies the properties in Definition 3.1:

E1: Based on the commutativity of T and S, it follows that:

ET (x, y) = T (S(x, y), N(T (x, y))) = T (S(y, x), N(T (y, x))) = ET (y, x).

E2: Based on the associativity of T and S, it follows that:

ET (x, ET (y, z))
= ET (x, T (S(y, z), N(T (y, z))))
= T (S(x, T (S(y, z), N(T (y, z)))), N(T (x, T (S(y, z), N(T (y, z))))))
= T (S(T (S(x, y), N(T (x, y), z))), N(T (S(x, y), N(T (x, y))), z))
= ET (T (S(x, y), N(T (x, y))), z)
= ET (ET (x, y), z).

E3: Considering the boundary conditions in the definitions of T , N and S, it
follows that:

ET (0, x) = T (S(0, x), N(T (0, x))) = T (x, N(0)) = T (x, 1) = x.

E4: The same conditions in the definitions of T , N and S assure that

ET (1, 1) = T (S(1, 1), N(T (1, 1))) = T (1, N(1)) = T (1, 0) = 0.
�

Example 3.5 Consider the �Lukasiewicz t-norm, defined by TL(x, y) = max(x +
y − 1, 0), the t-conorm (or bounded sum), defined by SL(x, y) = min(x + y, 1), and
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the fuzzy negation, given by N(x) = 1 − x (see [44]). The fuzzy Xor operator ETL
,

canonically obtained as in Eq. (5), can be expressed as:

ETL
(x, y) = max(min(x + y, 1) + (1 − max(x + y − 1, 0)) − 1, 0)

=

⎧⎨
⎩

x + y if x + y ≤ 1

2 − (x + y) if x + y > 1

Considering the properties discussed in this paper, this operator only verifies two
of them:

E8: It is straightforward, following from Proposition 3.8.

E11: ETL
(NETL

(x), x) = ETL
(1 − x, x) = 1.

Proposition 3.6 Let T , S and N be a t-norm, a t-conorm and a fuzzy negation,
respectively. A fuzzy Xor connective can be given by the function ES : U2 → U ,
defined by:

ES(x, y) = S(T (N(x), y), T (x, N(y))). (6)

Proof. The function ES : U2 → U , given by S(T (N(x), y), T (x, N(y))), satisfies
the properties in Definition 3.1:

E1: ES satisfies the commutativity property, that is,

ES(x, y) = S(T (N(x), y), T (x, N(y))) = S(T (N(y), x), T (y, N(x))) = ES(y, x)

which is a consequence of the commutative properties of T and S.

E2: Based on the associativity of T and S, it follows that

ES(ES(x, y), z)

= ES(S(T (N(x), y), T (x, N(y))), z)

= S(T (N(S(T (N(x), y), T (x, N(y)))), z), T (S(T (N(x), y), T (x, N(y))), N(z)))

= S(T (N(x)), S(T (N(y), z), T (y, N(z))), T (x, N(S(T (N(y), z), T (y, N(z)))))

= ES(x, S(T (N(y), z), T (y, N(z))))

= ES(x, ES(y, z)).

E3: Considering the boundary conditions T4 and S4 in the definitions of T and S,
respectively, it follows that

ES(0, x) = S(T (N(0), x), T (0, N(x))) = S(T (1, x), 0) = S(x, 0) = x.

E4: Considering the boundary conditions T4 and S4 in definitions of T and S,
respectively, one has that

ES(1, 1) = S(T (N(1), 1), T (1, N(1))) = S(N(1), N(1)) = S(0, 0) = 0.

�

Example 3.7 Consider the �Lukasiewicz t-norm, defined by TL(x, y) = max(x +
y − 1, 0), the t-conorm (or bounded sum), defined by SL(x, y) = min(x + y, 1), and
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the fuzzy negation, given by N(x) = 1− x (see [44]). The fuzzy Xor operator ESL
,

canonically obtained as in Eq. (6), can be expressed as:

ESL
(x, y) = |x − y|.

This operator satisfies all the properties from E5 to E12. The fuzzy Xor operator
ESL

coincides with the one introduced in [28] (Table 3), which was presented in the
Introduction (see Eq. (1)).

Proposition 3.8 Let T , S and N be a t-norm, a t-conorm and a fuzzy negation,
respectively. Then it holds that NET

= NES
= N .

Proof. It follows that: NET
(x) = ET (x, 1) = T (S(x, 1), N(T (x, 1))) =

T (1, N(x)) = N(x) and NES
(x) = S(T (N(x), 1), T (x, N(1))) = S(N(x), T (x, 0)) =

S(N(x), 0) = N(x). �

4 Fuzzy Implications Induced by the Fuzzy Xor Con-
nective

The fuzzy Xor connective allows us to define two new fuzzy implications, which are
presented in the next subsections.

4.1 Xor-implications

Proposition 4.1 Let S, N and E be a t-conorm, a fuzzy negation and a fuzzy Xor
connective, respectively. Then, the function IE,S,N : U2 → U , defined by

IE,S,N (x, y) = E(x, S(N(x), N(y))). (7)

is a fuzzy implication, called a fuzzy Xor-implication.

Proof. It follows that IE,S,N satisfies the following properties:

IE,S,N (0, 0) = E(0, S(N(0), N(0))) = E(0, S(1, 1)) = E(0, 1) = 1;

IE,S,N (0, 1) = E(0, S(N(0), N(1))) = E(0, S(1, 0)) = E(0, 1) = 1;

IE,S,N (1, 1) = E(1, S(N(1), N(1))) = E(1, S(0, 0)) = E(1, 0) = 1;

IE,S,N (1, 0) = E(1, S(N(1), N(0))) = E(1, S(0, 1)) = E(1, 1) = 0.

Therefore, IE,S,N is a fuzzy implication. �

Proposition 4.2 Let S be a t-conorm and E be a fuzzy Xor connective satisfying
the property E6. Then the fuzzy implication IE,S,NE

satisfies the properties I2 and
I5.

Proof. It follows that

I2: IE,S,NE
(1, x) = E(1, S(NE(1), NE(x))) = E(1, S(0, NE(x))) = E(1, NE(x)) =

NE(NE(x)) = x.
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I5: IE,S,NE
(x, 0) = E(x, S(NE(x), NE(0))) = E(x, S(NE(x), 1)) = E(x, 1), which,

by property E6, is a strong fuzzy negation.
�

4.2 E-Implications

Proposition 4.3 Let S, N and E be a t-conorm, a fuzzy negation and a fuzzy Xor
connective, respectively. Then the function IS,N,E : U2 → U , defined by

IS,N,E(x, y) = S(N(x), E(N(x), y)). (8)

is a fuzzy implication, called a fuzzy E-implication.

Proof. It follows that IS,N,E satisfies the following properties:

IS,N,E(0, 0) = S(N(0), E(N(0), 0)) = S(1, E(1, 0)) = S(1, 1) = 1;

IS,N,E(0, 1) = S(N(0), E(N(0), 1)) = S(1, E(1, 1)) = S(1, 0) = 1;

IS,N,E(1, 1) = S(N(1), E(N(1), 1)) = S(0, E(0, 1)) = S(0, 1) = 1;

IS,N,E(1, 0) = S(N(1), E(N(1), 0)) = S(0, E(0, 0)) = S(0, 0) = 0.

Therefore, IS,N,E is a fuzzy implication. �

Proposition 4.4 Let S be a t-conorm and E be a fuzzy Xor connective satisfying
the property E6. Then the fuzzy implication IS,NE ,E satisfies the properties I2 and
I6.

Proof. It follows that:

I2: IS,NE ,E(1, x) = S(NE(1), E(NE(1), x)) = S(0, E(0, x)) = E(0, x) = x.

I5: IS,NE ,E(x, 0) = IS,NE ,E(0, x) = S(NE(0), E(NE(0), x)) = S(1, E(1, x)) =
E(x, 1), which, by Property E6, is a strong fuzzy negation.

�

5 Automorphism

Definition 5.1 A function ρ : U → U is an automorphism if it is bijective and
monotonic, that is: [26,37]

x ≤ y ⇒ ρ(x) ≤ ρ(y).

An equivalent definition is given in [12], where ρ : U → U is an automorphism if
it is a continuous and strictly increasing function such that ρ(0) = 0 and ρ(1) = 1.

Denote by Aut(U) the set of all automorphisms on U .
Automorphisms are closed under composition, that is, if ρ and ρ′ are automor-

phisms then ρ ◦ ρ′(x) = ρ(ρ′(x)) is also an automorphism.
The inverse of an automorphism is also an automorphism.
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The action of ρ on a function F : Un → U , denoted by F ρ, is defined as follows:

F ρ(x1, . . . , xn) = ρ−1(F (ρ(x1), . . . , ρ(xn))). (9)

As it is well known (see, e.g., [12,38]), the action of ρ preserves the fuzzy connec-
tives, that is, Sρ,T ρ, Nρ and Iρ are a fuzzy t-conorm, a t-norm, a (strong) negation
and an implication, respectively.

Proposition 5.2 If E is a fuzzy Xor connective, then Eρ is also a fuzzy Xor con-
nective.

Proof. Considering that E is a fuzzy Xor connective, one has that Eρ satisfies the
following properties:

E1: Eρ(x, y) = ρ−1(E(ρ(x), ρ(y))) = ρ−1(E(ρ(y), ρ(x))) = Eρ(y, x), based on the
symmetry of E;

E2: One has that

Eρ(x, Eρ(y, z)) = ρ−1(E(ρ(x), ρ ◦ ρ−1(E(ρ(y), ρ(z)))))
= ρ−1(E(ρ(x), E(ρ(y), ρ(z))) = ρ−1(E(E(ρ(x)ρ(y)), ρ(z))),

considering that E satisfies the associativity property, and then it follows that

Eρ(x, Eρ(y, z)) = ρ−1(E(ρ ◦ ρ−1(E(ρ(x)ρ(y)), ρ(z)))) = Eρ(Eρ(x, y), z);

E3: Eρ(0, x) = ρ−1(E(ρ(0), ρ(x))) = ρ−1(E(0, ρ(x))) = ρ−1(ρ(x))) = x, since E

satisfies the 0-Identity property;

E4: Eρ(1, 1) = ρ−1(E(ρ(1), ρ(1))) = ρ−1(E(1, 1)) = ρ−1(0) = 0, based on the
boundary condition related to E.

Therefore, Eρ is a fuzzy Xor connective, whenever E is a fuzzy Xor connective. �

Proposition 5.3 Let S, N and E be a t-conorm, a fuzzy negation and a fuzzy Xor
connective, respectively. Then it holds that ISρ,Nρ,Eρ(x, y) = (IS,N,E)ρ(x, y).

Proof. Considering x, y ∈ U , one has that:

ISρ,Nρ,Eρ(x, y) = Sρ(Nρ(x), Eρ(Nρ(x), y)) by Eq. (8)

= Sρ(ρ−1N(ρ(x)), Eρ(ρ−1N(ρ(x), y))) by Eq. (9)
= Sρ(ρ−1N(ρ(x)), ρ−1E(N(ρ(x), ρ(y)))) by Eq. (9)
= ρ−1S(N(ρ(x)), E(N(ρ(x), ρ(y)))) by Def. 5.1
= ρ−1S(N(ρ(x)), E(N(ρ(x), ρ(y)))) by Eq. (8)
= ρ−1IS,N,E(ρ(x), ρ(y)) = (IS,N,E)ρ(x, y) by Def. 9

�

Corollary 5.4 If I is a fuzzy E-implication then Iρ is also a fuzzy E-implication.

Proof. It follows from the definition of E-implication and the Property 5.3. �

Proposition 5.5 Let S be a t-conorm, E be a Xor and N be a fuzzy negation.
Then it holds that IEρ,Sρ,Nρ(x, y) = (IE,S,N )ρ(x, y).
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Proof. Considering x, y ∈ U , one has that

IEρ,Sρ,Nρ(x, y) = Eρ(x, Sρ(Nρ(x), Nρ(y))) by Eq.(8)

= Eρ(x, Sρ(ρ−1N(ρ(x), ρ(y)))) by Eq.(9)
= Eρ(x, ρ−1(S(N(ρ(x)), N(ρ(y))))) by Eq.(9)
= ρ−1E(ρ(x), S(N(ρ(x)), N(ρ(y)))) by Def. 5.1
= ρ−1E(ρ(x), ρ(S(N(x), N(y)))) by Eq.(7)
= ρ−1S(N(ρ(x)), E(N(ρ(x), ρ(y)))) = (IE,S,N )ρ(x, y) by Def. 9

�

Corollary 5.6 Let I be a fuzzy E-implication then Iρ is also a fuzzy E-implication.

Proof. It follows from the definition of E-implication and Proposition 5.5. �

6 Conclusion and Further Work

Fuzzy implications play an important role in fuzzy logic, both in a broad sense
(heavily applied to fuzzy control, analysis of vagueness in natural language and
techniques of soft-computing) and in a narrow sense (developed as a branch of
many-valued logic which are able to investigate deep logical questions).

One of the main contributions of this paper is the introduction of an autonomous
definition of the fuzzy Xor connective, independently of the other fuzzy connectives.
Also, two canonical constructions of the fuzzy Xor connective, denoted by ET and
ES , were obtained by the composition of t-conorms, t-norms and fuzzy negations.

Based on this definition of the fuzzy Xor connective, this paper introduced two
new fuzzy implications called Xor-implication and E-implication, denoted by IS,N,E

and IE,S,N , respectively.
Moreover, considering an automorphism ρ, we showed that the action of ρ on

the fuzzy implications IS,N,E and IE,S,N preserves these connectives, that is, Iρ
S,N,E

and Iρ
E,S,N are both fuzzy implications.

Important properties, such as commutative and associative properties of Xor-
implications and E-implications were considered in this paper, which resulted in a
canonical definition concerned with the notions of triangular norms and triangular
conorms. Although these implications are still in an early analysis phase, new prop-
erties can be explored and general comparisons concerning their relationships with
the other interesting implications (R-implications, S-implications, QL-implications,
D-implications) can be developed.

The definition of interval-valued Xor-implications and E-implications is an on-
going work, following our previous works [8,9,10,16,40,41] on the study of the the
various interval-valued implication functions derived from interval t-norms and in-
terval t-conorms.

Also, additive and multiplicative generators to obtain the fuzzy Xor connective
and the new implications can be considered in further work. So, the investigation
of the most important properties preserved under the action of automorphisms and
the related interval extension can be carried out.
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Finally, since bounded lattices may be considered from the point of view of
fuzzy logic, it seems interesting to extend the notions of E-implications and Xor-
implications from the unit interval to an arbitrary bounded lattice. The interval
extensions of such implications also motivate the study of their general properties
on bounded lattices.
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