
The American Journal of Pathology, Vol. 184, No. 12, December 2014
IMMUNOPATHOLOGY AND INFECTIOUS DISEASES

Uptake and Degradation of Protease-Sensitive and
-Resistant Forms of Abnormal Human Prion Protein
Aggregates by Human Astrocytes
Young Pyo Choi,* Mark W. Head,y James W. Ironside,y and Suzette A. Priola*

ajp.amjpathol.org
From the Laboratory of Persistent Viral Diseases,* Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Hamilton, Montana; and the National Creutzfeldt Jakob Disease Research & Surveillance Unit,y School of Clinical Sciences, University of Edinburgh,
Edinburgh, United Kingdom
Accepted for publication
C

P

h

August 19, 2014.

Address correspondence to
Suzette A. Priola, Ph.D.,
Laboratory of Persistent Viral
Diseases, Rocky Mountain
Laboratories, NIAID, NIH, 903
S. 4th St., Hamilton,
MT 59840. E-mail: spriola@
niaid.nih.gov.
opyright ª 2014 American Society for Inve

ublished by Elsevier Inc. All rights reserved

ttp://dx.doi.org/10.1016/j.ajpath.2014.08.005
Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare,
transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form
(PrPSc) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrPSc is
present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive
form (sPrPSc). Although evidence suggests that sPrPSc may play a role in prion pathogenesis, little is
known about how it interacts with cells during prion infection. Here, we show that protease-sensitive
abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up
and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant
to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the
astrocyte’s ability to degrade PrPSc. Furthermore, the cell does not appear to distinguish between sPrPSc

and protease-resistant PrPSc, suggesting that sPrPSc could contribute to prion infection. (Am J Pathol
2014, 184: 3299e3307; http://dx.doi.org/10.1016/j.ajpath.2014.08.005)
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Prion diseases, or transmissible spongiform encephalopa-
thies, are rare fatal neurologic disorders of mammals that
include Creutzfeldt-Jakob disease (CJD) in humans, bovine
spongiform encephalopathy in cattle, and scrapie in sheep.
Prion diseases are characterized by the conversion of normal
prion protein (PrPC) into a disease-associated and aggregated
isoform (PrPSc), which is thought to be the main component
of the infectious agent or prion (reviewed in Priola and
Vorberg1). PrPC is a glycoprotein that contains two N-linked
glycosylation sites2,3 and is bound to the plasma membrane
via a glycosyl-phosphatidyl-inositol anchor.4 Although PrPC

is detergent soluble and fully susceptible to proteolytic
degradation, PrPSc has an increased detergent insolubility
and partial resistance to proteinase K (PK).5 The presence of
amino-terminally truncated, PK-resistant core fragments of
PrPSc (rPrPSc) after limited proteolysis is considered the most
reliable diagnostic marker for prion infection,6,7 and
biochemical profiles of rPrPSc based on molecular mass and/
or the degree of glycosylation are used to help differentiate
distinct prion disease phenotypes in humans.8e11
stigative Pathology.

.

In recent years, alternative approaches for analyzing PrPSc

that donot rely on theenzymatic removal ofPrPChave indicated
that not all forms of PrPSc are necessarily resistant to proteolytic
treatment. The conformation-dependent immunoassay, which
uses conformational differences between the N termini of PrPC

and PrPSc, has found that often a majority of PrPSc present in
prion-affected brains is susceptible to proteolytic degrada-
tion.12e15 In sporadic CJD (sCJD), this PK-sensitive species of
aggregated PrPSc, termed sPrPSc, was found in some cases to
account for up to 90%of the total PrPSc.13,16 Careful analysis of
the size distribution of PrPSc has also found that sPrPSc forms
much smaller aggregates than rPrPSc.17,18 Thus, sPrPSc appears
to represent a population of PrPSc aggregates which tends to be
both smaller and more protease sensitive than rPrPSc.
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Evidence suggests that, like rPrPSc, sPrPSc has seeding
activity and can convert PrPC to protease resistance.18,19 It
has also been associated with prion infectivity20 and may
influence the incubation time of prion disease.21 Although
these data suggest that PK-sensitive disease-associated PrP
aggregates may be actively involved in prion pathogenesis,
no studies have been performed to determine how this
population of PrP aggregates might interact with cells and
influence prion infection. In this study, we have looked at
the uptake and degradation of PK-sensitive and PK-resistant
disease-associated PrP aggregates in an established human
astrocyte cell line. Our results indicate that, despite their
biochemical differences, PK-sensitive PrP aggregates are
taken up and degraded similarly to PK-resistant PrP ag-
gregates, suggesting that relative PK resistance does not
significantly influence the cell’s ability to degrade PrPSc.
Thus, the astrocyte does not appear to distinguish between
sPrPSc and rPrPSc aggregates, suggesting that sPrPSc could
be involved in prion pathogenesis.

Materials and Methods

Human Brain Material

Ethical approval for the acquisition and use of human brain
material was obtained from the NIH Office of Human Subject
Research (Exempt 5480). Human brain tissue derived from
four patients with sCJD and two control patients with
other non-CJD neurologic disorders were obtained from the
National CJD Surveillance Unit Brain and Tissue Bank in
Edinburgh, Scotland. All cases had consent for research, and
their supply and use in this study was covered by LREC
2000/4/157 (National Creutzfeldt-Jakob disease tissue bank:
acquisition and use of autopsy material for research on human
transmissible spongiform encephalopathies, Professor James
Ironside, amended October 9, 2007). The four sCJD cases
used had been fully characterized and comprised two cases of
the MM1 subtype and one each of the MV1 and the VV2
subtypes (CJD1MM1, CJD2MM1, CJD3MV1, and CJD4VV2,
respectively) according to the nomenclature used by Parchi
et al.10 In each case, approximately 2 g of brain tissue taken
from the frontal cortex was homogenized in phosphate-
buffered saline (PBS; pH 7.4) to a final 10% weight/volume
(w/v) homogenate by using a MiniBeadbeater-8 (BioSpec,
Bartlesville, OK). The homogenate was divided into aliquots
and stored at �80�C until use.

Cells

The established human astrocyte cell line SVG p12 (CRL-
8621) was obtained from ATCC (Manassas, VA). SVG p12
cells (hereafter referred to as SVG cells) were maintained in
Eagle’s Minimal Essential Medium (EMEM; ATCC), sup-
plemented with 10% fetal bovine serum (FBS; Gibco-Life
Technologies, Grand Island, NY), 100 U of penicillin, and
100 mg of streptomycin (Gibco-Life Technologies) in a
3300
humidified chamber at 37�C with 5% CO2. On receipt, the
SVG p12 cells were passaged four times in medium in a
humidified chamber at 37�C with 5% CO2. At passage 16, a
large batch of cells was frozen in 90% FBS/10% dimethyl
sulfoxide and stored in liquid nitrogen until use. For each
experiment, a vial of cells at passage 16 was thawed and
passaged once, and the cells were plated at a density of
2� 106 cells per well of a six-well plate and allowed to attach
overnight. After removal of medium, cells were overlaid with
800 mL of 1:10 dilution (in EMEM) of 10% brain homoge-
nate. After 4 hours, 2 mL of EMEM plus 10% FBS was
added. At 2, 8, 24, or 48 hours after exposure, cells were
washed thoroughly with fresh medium and directly lyzed with
500 to 550 mL of 2% sarkosyl/PBS. In experiments in which
the degradation of PrPSc was assayed, the initial inoculumwas
removed at 2 hours after infection, and the cells were washed
extensively. After the addition of 3 mL of EMEM plus 10%
FBS, cells were incubated for up to 24 hours and then lyzed.
For immunofluorescence studies, 3 � 104 SVG cells were

plated into each well of a Lab-Tek Permanox 8-well cham-
bered slide (Thermo Scientific, Rockford, IL) and allowed to
attach overnight. After removal of the medium, the cells were
overlaid with 125 mL of a 10% brain homogenate from the
CJD1MM1, CJD2MM1, or non-CJD sample diluted 1:10 in
Optimem (Gibco-Life Technologies). As an untreated con-
trol, cells were incubated in 125 mL of Optimem alone. After
4 hours, 400 mL of EMEM plus 10% FBS was added, and the
cells were incubated an additional 20 hours.

NaPTA Precipitation

Sodium phosphotungstic acid (NaPTA; Sigma-Aldrich,
St. Louis, MO) precipitation was performed as described
previously22 with minor modifications. Briefly, for SVG cell
samples 500 mL of cell lysate was mixed with an equal
volume of 2% sarkosyl/PBS. For brain samples, 50 mL of
10% homogenate was mixed with an equal volume of 4%
sarkosyl/PBS, and the volume was brought to 1 mL by
adding 900 mL of 2% sarkosyl/PBS. In some experiments,
the relative amount of cell-associated PrP aggregates was
estimated by comparison with an SVG cell lysate spiked
with brain homogenate equivalent to 10% of the input
inoculum. All samples were treated with 50 U/mL benzo-
nase (Sigma-Aldrich), and NaPTA was added to a final
concentration of 0.3% (w/v). The samples were then incu-
bated at 37�C for 1 to 2 hours, followed by 30 minutes of
centrifugation at 16,100 � g. Pellets were resuspended in
0.1% sarkosyl/PBS and, when appropriate, digested with 50
mg/mL PK for 30 minutes at 37�C. In some experiments, PK
digestion was performed before the NaPTA precipitation.

Electrophoresis and Western Blot Analysis

Samples were boiled in urea sample buffer (62.5 mmol/L
Tris, pH 6.8, 3 mmol/L EDTA, 5% glycerol, 5% SDS, 0.02%
bromophenol blue, and 4 mol/L urea) for 10 minutes.
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PrPSc Uptake by Human Astrocytes
Samples were electrophoresed in Novex 10% Bis-Tris
NuPAGE gels (Life Technologies, Carlsbad, CA) and then
blotted on polyvinylidenedifluoride Immobilon-P mem-
branes (Millipore, Rochester, NY). Subsequently, the mem-
brane was blocked with 5% (w/v) dry milk in TBST (10
mmol/L Tris-HCl, pH 8.0, 150 mmol/L NaCl, and 0.05%
Tween-20). PrP was detected by using either a 1:10,000
dilution of the anti-PrP mouse monoclonal antibody 3F4
conjugated to biotin (Covance Research Products, Denver,
PA), followed by incubation in streptavidin-conjugated
horseradish peroxidase (Cell Signaling Technology, Bev-
erly, MA) at a dilution of 1:250,00 or a 1:1000 dilution of the
monoclonal antibody 3F4 derived from a hybridoma cell
supernatant made in house, followed by incubation in
horseradish peroxidaseeconjugated anti-mouse IgG F(ab’)
(GE Healthcare Life Sciences, Buckinghamshire, UK) at a
1:40,000 to 1:200,000 dilution. Both primary and secondary
antibodies were diluted either in TBST or 1% (w/v) dry milk
in TBST. Blots were developed by using ECL Plus, ECL
Prime (GE Healthcare Life Sciences), or the SuperSignal
West Femto Substrate (Thermo Scientific). The amount of
protein on the blot was quantified by using ImageQuant
software version 5.2 (Molecular Dynamics, Sunnyvale, CA).
The percentage of PK-resistant PrP aggregates in each sam-
ple was calculated by dividing the amount of protease-
resistant rPrPSc in the NaPTA pellet by the total amount of
PrP in the NaPTA pellet and then multiplying by 100. The
percentage of PK-sensitive PrP aggregates in the sample was
obtained by subtracting the percentage of rPrPSc from 100.

For Western blot analysis of PrPC, a confluent 25-cm2

flask of either SVG cells or mouse fibroblast cells that
expressed mouse PrPC with the epitope to the mouse
monoclonal antibody 3F4 (Mo3F4-j2C423) were lyzed in 1
mL of lysis buffer (0.5% Triton X-100, 0.5% sodium
deoxycholate, 50 mmol/L Tris-HCL, pH 7.4, 150 mmol/L
sodium chloride, 5 mmol/L EDTA). The lysate was centri-
fuged at 14,500 rpm for 5 minutes, and the supernatant was
removed for further analysis.

Radiolabeling and Immunoprecipitation of PrPC

SVG and Mo3F4-j2C4 cells were labeled with 35S-methio-
nine/cysteine, according to previously published tech-
niques.24 Briefly, confluent cells in a 25-cm2 tissue culture
flask (Corning, Corning, NY) were preincubated in
methionine/cysteine-deficient RPMI (ICN Biomedicals,
Aurora, OH) that contained 5% FBS and 4 mmol/L L-gluta-
mine (Life Technologies) with or without 20 mg/mL tunica-
mycin (Calbiochem, Darmstadt, Germany). After 1 hour, 150
mCi of 35S-methionine/cysteine (PerkinElmer,Waltham,MA)
was added, and the cells were incubated an additional 2 hours.
For cells treated with phosphatidylinositol phospholipase C
(PIPLC), the radiolabeling time was 90 minutes, followed by
a 30-minute chase in complete medium (RPMIþ 10% FBS, 2
mmol/L L-glutamine, 100 U of penicillin, 100 mg of strepto-
mycin). After the chase, cells were rinsed and incubated a
The American Journal of Pathology - ajp.amjpathol.org
further 30 minutes in 1 mL of phosphate-buffered balanced
salt solution plus 1.8 U/mL PIPLC (MP Biomedicals, LLC,
Santa Ana, CA). For all samples, PrPC was immunoprecipi-
tated from either cell lysate or cell supernatant as previously
described.24 After immunoprecipitation, some samples were
also treated with the deglycosylating enzyme PNGaseF (New
England Biolabs, Ipswich, MA) according to the manufac-
turer’s instructions. Samples were run on Novex 16% Tris-
Glycine SDS-PAGE gels (Life Technologies), and the gels
were fixed in 50% methanol/10% acetic acid, followed by
drying at 70�C under vacuum. The dried gels were developed
with Molecular Dynamics low-energy Phosphor Imager
screens and quantified with ImageQuant software version 5.2
(Molecular Dynamics).

Immunofluoresence

Cells were stained for PrPSc as described previously25

except that, because of the low level of PrPC expression
in SVG cells, digestion of the cells with PK was omitted.
After treatment with 4 mol/L guanidine thiocyanate for 30
minutes at room temperature, PrPSc was detected by using a
1:50 dilution of the mouse monoclonal antibody 3F4 con-
jugated to biotin, followed by development with a 1:400
dilution of streptavidin conjugated to Alexa Flour 594 (Life
Technologies). LAMP2b was directly stained by using a
1:50 dilution of a rabbit polyclonal anti-LAMP2b antibody
conjugated to Alexa Fluor 488 (Novus Biologicals, Lit-
tleton, CO). Slides were analyzed with a Nikon Eclipse 55
microscope with a Nikon Internalight C-HGF1 fluorescence
source (Nikon, Mellville, NJ). Images were taken with a
Nikon Digital Sight camera and Nikon NIS-Elements Im-
aging Software AR version 3.2 by using the same camera
settings with autoscaling enabled.

Results

Relative Amount of Protease-Resistant and
Protease-Sensitive PrPSc in sCJD Brain Samples

We first examined the sCJD samples to determine the relative
amounts of PK-sensitive and PK-resistant aggregated PrP
recovered by NaPTA precipitation. PrP aggregates precipi-
tated by NaPTAwere left undigested or digested with PK and
then analyzed by immunoblot (Figure 1A). More than 90% of
the PrP aggregates in the CJD1MM1 sample were PK resistant
(Figure 1B). In sharp contrast, most PrP aggregates in the
samples from the other three CJD cases were sensitive to PK
digestion with only 20% to 25% of the PrP aggregates
resistant to PK treatment (Figure 1B). Because only a small
population of PrP present in uninfected brains was precipi-
table by NaPTA26 (Figure 1A), protease-sensitive PrP ag-
gregates in sCJD samples that were recovered by NaPTA
were considered to largely represent sPrPSc.13 Our data were
consistent with other studies in which most PrPSc in sCJD
brains was often sPrPSc.13,16,21
3301
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Figure 2 Low level of PrPC expression in human astrocyte SVG cells. SVG
cell line and mouse fibroblasts expressing mouse PrPC that contained the
epitope to the monoclonal antibody 3F4 (Mo3F4-j2C4) were assayed for PrPC

by either immunoblot analysis using the anti-PrP mouse monoclonal anti-
body 3F4 conjugated to biotin (A) or by radiolabeling using 35S-methionine/
cysteine in the presence (þ) or absence (�) of Tun or PIPLC (B). Following
radiolabeling, PrPC was immunoprecipitated by the anti-PrP mouse mono-
clonal antibody 3F4. After immunoprecipitation, some samples were also
treated with the deglycosylating enzyme PngF. The bracket indicates gly-
cosylated PrPC, and the arrow indicates unglycosylated PrPC. The doublet in
Mo3F4-j2C4 cells treated with either Tun or PngF likely represents both full-
length and N-terminally truncated PrPC. The lack of a doublet in Tun-treated
SVG cells suggests that little or no PrPC is truncated in these cells. Molecular
mass markers are indicated on the right. Dilution, serial twofold dilutions of
cell lysate; PngF, PNGaseF; Tun, tunicamycin; UD, undiluted.

Figure 1 PK-resistant and -sensitive fractions of PrP aggregates in sCJD
brains. A: PrP aggregates were recovered from sCJD-affected or non-CJD
brains by using NaPTA precipitation. PrP aggregates were left undigested
(�) or were digested (þ) with PK and were analyzed by Western blot
analysis using the anti-PrP monoclonal antibody 3F4. B: Quantitation of
the relative amounts of PK-sensitive (light gray bar) and PK-resistant (dark
gray bar) PrP aggregates in sCJD brain. Data are expressed as means � SEM.
n Z 2 (B, CJD2MM1 and CJD3MV1) or n Z 3 (B, CJD1MM1 and CJD4VV2)
experiments.
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Expression of PrPC in SVG Cells

The human astrocyte cell line SVG was used to study the
uptake of human PrPSc. Because formation of new PrPSc (ie,
acute formation) in SVG cells exposed to sCJD brain ma-
terial could confound the analysis of the uptake of the input
PrPSc, we compared PrPC expression in SVG cells with that
in Mo3F4-j2C4 cells, a cell line known to support acute
PrPSc formation.23 Analysis by immunoblot found that PrPC

was present at detectable but low levels compared with PrPC

expressed in Mo3F4-j2C4 cells (Figure 2A). Consistent
with the immunoblot results, 35S-labeled PrPC could also be
immunoprecipitated from SVG cells as indicated not only
by the presence of a band that comigrated with unglyco-
sylated PrPC in Mo3F4-j2C4 cells (Figure 2B) but also by
the presence of fully glycosylated PrPC (Figure 2B). How-
ever, quantitation of radiolabeled PrPC found that its
expression level in SVG cells was extremely low, repre-
senting only 3% of that in Mo3F4-j2C4 cells. Furthermore,
in SVG cells only 6% of PrPC was PIPLC releaseable
(Figure 2B). This is the pool of PrPC which is required for
the formation of PrPSc in cells.24 By contrast, in Mo3F4-
j2C4 cells that can acutely make PrPSc,23 70% of the PrPC

expressed was PIPLC releasable (Figure 2B). The low level
of overall PrPC expression in SVG cells, coupled with the
extremely low levels of PIPLC-releasable PrPC on the cell
3302
surface, indicated that acute formation of PrPSc would be
either undetectable or minimal and thus would be unlikely
to significantly affect our analysis of PrPSc uptake.

Aggregated PrP in Uninfected Brains Does Not
Associate with SVG Astrocyte Cells

The small population of PrP present in uninfected brains
that was precipitated by NaPTA (Figure 1A) could
confound any analysis of cell-associated sCJD PrPSc. To
determine whether PrP recovered from SVG astrocyte cells
by NaPTA precipitation was specifically associated with
prion infection, we first exposed cells to non-CJD brain
homogenate. At different time points after exposure cells
were lyzed, the lysates were precipitated with NaPTA,
digested with PK or left undigested, and then analyzed by
immunoblot. PrP aggregates were not detectable at any time
point assayed (Figure 3A). Thus, the PrP aggregates present
in the non-CJD brain homogenate either did not associate
with astrocytes or the amount associated with the cells was
below the level of detection of our immunoblot assay.
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Figure 3 Both PK-resistant and -sensitive forms of CJD-specific PrP
aggregates are associated with human astrocyte SVG cells. SVG cells were
exposed to non-CJD (A), CJD1MM1 (B), CJD2MM1 (C), CJD3MV1 (D), or CJD4VV2

(E) brain homogenates for the times indicated. Cell-associated PrP aggre-
gates were recovered as described in Materials and Methods and were
analyzed by Western blot analysis with the use of the anti-PrP monoclonal
antibody 3F4. For comparison purposes, lanes labeled 10% were loaded with
a NaPTA precipitate from an SVG cell lysate spiked with brain homogenate
equivalent to 10% of the input inoculum. B and D: Graphs show the relative
amounts of PK-sensitive and PK-resistant PrP aggregates. Light gray bars,
PK-sensitive PrP; dark gray bars, PK-resistant PrP. C and E: A longer exposure
of the portion of the blot containing the PK-digested samples is shown on
the right. For each immunoblot panel, molecular mass markers are shown on
the left. Data are expressed as means� SEM (B and D). nZ 3 (B); nZ 5 (D).
BH, non-CJD brain homogenate equivalent to 10% of the input inoculum
without any NaPTA precipitation.

PrPSc Uptake by Human Astrocytes
Protease-Resistant and Protease-Sensitive PrPSc from
Multiple sCJD Types Associate with SVG Astrocyte Cells

To examine whether the PK-sensitive PrP aggregates
associated with sCJD interact with cells similarly to PK-
resistant PrP aggregates, SVG astrocyte cells were incu-
bated with brain homogenates prepared from sCJD brains.
Cells were incubated with brain homogenate prepared from
CJD1MM1 for up to 48 hours, and PrP aggregates associated
with the cell were analyzed by Western blot analysis after
NaPTA precipitation. Approximately 60% of the NaPTA-
precipitated PrP aggregates associated with the cells 2
hours after exposure to CJD1MM1 were protease resistant,
whereas approximately 40% were protease sensitive
(Figure 3B). However, as the amount of cell-associated PrP
aggregates increased over time, >90% of the PrP aggre-
gates from 8 to 48 hours were resistant to PK (Figure 3B).
Thus, with the exception of the 2-hour time point, the
amount of cell-associated CJD1MM1 PrP aggregates was
similar before and after PK digestion and reflected the
predominance of PK-resistant PrP aggregates in the starting
sample.

We next exposed SVG cells to brain homogenates pre-
pared from the CJD cases CJD2MM1, CJD3MV1, or CJD4VV2

in which most PrP aggregates precipitated by NaPTA were
susceptible to proteolysis. For all three sCJD cases, PrP
aggregates again associated with the cell as early as 2 hours
after exposure (Figure 3, CeE) with approximately 10% to
20% of the total input PrP becoming cell associated between
8 and 48 hours (Figure 3, CeE). Unlike CJD1MM1, how-
ever, the amount of cell-associated PrP aggregate was
greatly reduced after proteolysis. For the cells exposed to
CJD3MV1, the relative amount of PK-resistant PrP aggre-
gates was similar at all time points tested and represented
approximately 20% to 25% of all cell-associated PrP
(Figure 3D). Similarly, the amount of PK-sensitive PrP
aggregates associated with the cells remained steady at 75%
to 80% (Figure 3D).

In SVG cells exposed to CJD2MM1 or CJD4VV2, PK-
sensitive PrP aggregates clearly associated with the cells
at all time points tested (Figure 3, C and E). PK-resistant
PrP aggregates were also detectable, but only after longer
exposure of the blot (Figure 3, C and E). Thus, quantitation
of the relative amounts of PrP before and after proteolysis
was not possible. However, although there did appear to be
an increase in PK-resistant PrP aggregates associated with
the cell from 2 to 24 hours, the predominance of PK-
sensitive PrP aggregates was consistent with the higher
percentage of this form of PrP aggregate in the starting brain
homogenates for both CJD2MM1 and CJD4VV2 (Figure 1B).
Collectively, for all four sCJD cases examined in this study,
the relative distribution of PK-sensitive and -resistant forms
of PrP aggregates was the same whether it was present in the
brain or associated with the cells, indicating that both forms
have similar tendencies to become associated with SVG
astrocyte cells.
The American Journal of Pathology - ajp.amjpathol.org 3303
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Figure 4 PK-resistant and -sensitive forms of disease-associated PrP
aggregates are internalized by human astrocyte SVG cells. SVG cells were
incubated with CJD1MM1 or CJD4VV2 brain homogenates at either 37�C or
4�C for 4 hours. Cells were lyzed, and the lysates were precipitated with
NaPTA and digested with PK (þ) as indicated. The amount of PrP aggre-
gates internalized by the cell was determined by Western blot analysis with
the use of the anti-PrP monoclonal antibody 3F4. Molecular mass markers
are shown on the left.

Figure 5 PrPSc taken up by human astrocyte SVG cells colocalizes with
the endosomal/lysosomal marker LAMP2b. SVG cells were incubated in
media alone (None) or non-CJD, CJD1MM1, or CJD2MM1 1% brain homoge-
nates. After 24 hours, all cells were treated with 4 mol/L guanidine thio-
cyanate to enhance the immunoreactivity of PrPSc. Cells were then
costained for PrP (red) by using the anti-PrP mouse monoclonal antibody
3F4 conjugated to biotin, followed by streptavidin conjugated to Alexa
Fluor 594, and for LAMP2b (green) by using an anti-LAMP2b rabbit poly-
clonal antibody directly conjugated to Alexa Fluor 488. Scale bar Z 50 mm.
Original magnification, �400.

Choi et al
PrPSc Is Actively Taken Up by SVG Astrocyte Cells

Next, we asked whether the PK-sensitive form of aggregated
PrP associated with the SVG cell was being actively inter-
nalized. SVG cells were exposed to CJD1MM1 or CJD4VV2

brain homogenates and incubated either at 4�C, a temperature
known to block active endocytosis of PrPSc,25,27 or 37�C. For
cells exposed to CJD1MM1 in which PrP aggregates consisted
mostly of the PK-resistant form, the amount of PrP aggre-
gates was greatly reduced in the cells incubated at 4�C
compared with the cells incubated at 37�C (Figure 4). This
result suggested that PK-resistant PrP aggregates were being
taken up by cells via active endocytosis. For the cells exposed
to CJD4VV2, in which most PrP aggregates were sensitive to
PK digestion, the amount of PrP aggregate associated with
the cell at 4�C was, again, greatly reduced compared with the
cells incubated at 37�C (Figure 4).

Immunohistochemistry was used to confirm that PrPSc was
being internalized by the cells. SVG cells exposed to non-
CJD, CJD1MM1, or CJD2MM1 brain homogenate for 24
hours were costained by using the anti-PrP mouse mono-
clonal antibody 3F4 and an antibody to LAMP2b, a marker
for late endosomes/lysosomes. Previous work has reported
that human PrPSc taken up by cells colocalizes with
LAMP2b.28 Consistent with the low level of expression of
PrPC in SVG cells, no PrP was detected in SVG cells incu-
bated in medium alone (Figure 5). By contrast, and consistent
with the internalization of PrPSc, there was minimal coloc-
alization of PrPC with LAMP2b in cells exposed to non-CJD
brain homogenate but significant colocalization with
LAMP2b in cells exposed to either CJD1MM1 or CJD2MM1
3304
(Figure 5). Overall, our results strongly suggested that PrPSc

was being actively internalized by SVG astrocyte cells.
Both Protease-Resistant and Protease-Sensitive PrPSc

Are Degraded by SVG Astrocyte Cells

The observation that the relative ratio of cell-associated
protease-sensitive to protease-resistant PrP aggregates
remained largely unchanged during 48 hours (Figure 3D)
suggested that the protease-sensitive PrP aggregates were
not being degraded more rapidly than the protease-resistant
PrP aggregates. To determine whether PrP aggregates sus-
ceptible to proteolysis were degraded similarly to those
resistant to proteolysis, the CJD3MV1 brain homogenate, in
which most PrP aggregates were sensitive to PK digestion,
was overlaid onto SVG cells. After a 2-hour incubation at
37�C, the cells were extensively washed to remove any
remaining brain homogenate (0 hour) and incubated for an
additional 6 and 24 hours in medium without any brain
homogenate. Most PK-resistant PrP aggregates were asso-
ciated with the cells after 6 hours of incubation but, by 24
hours, the amount of PK-resistant PrP had decreased by
approximately 80% (Figure 6, A and B). Interestingly, the
clearance pattern of the total PrP aggregates was similar to
that of the PK-resistant aggregates with approximately 20%
of the total PrP signal remaining after 24 hours (Figure 6B).
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 PK-resistant and -sensitive forms of disease-associated PrP aggregates are degraded by cells at a similar rate. Human astrocyte SVG cells were
incubated with CJD3MV1 brain homogenate for 2 hours. After removal of the brain homogenate and multiple washes, the cells were either directly lyzed (0 hour)
or maintained in culture in medium without brain homogenate for a further 6 or 24 hours. A: PrP aggregates recovered by NaPTA were left undigested or were
digested with PK and were analyzed by Western blot analysis with the use of the anti-PrP monoclonal antibody 3F4. Molecular mass markers are shown on the
left. B: Quantitation of the relative remaining amounts of total PrP aggregates (ie, both PK-resistant and -sensitive) versus PK-resistant PrP aggregates in the
cells 6 and 24 hours after removal of brain homogenate. Light gray bars, PK-resistant PrP; dark gray bars, total PrP. C: Quantitation of the relative amounts of
PK-resistant and -sensitive PrP aggregates present within the total PrP aggregates 6 and 24 hours after removal of brain homogenate from the cells. No
statistical difference was found in the amount of PK-resistant and -sensitive PrP aggregates compared with the starting brain homogenate (PZ 0.83, one-way
analysis of variance with Dunnett’s post test). Gray bars, PK-sensitive PrP; black bars, PK-resistant PrP. Values are expressed as means � SEM (B and C). n Z 4
experiments (B and C).

PrPSc Uptake by Human Astrocytes
To determine whether the ratio of PK-sensitive to PK-
resistant PrPSc aggregates changed over time as PrPSc was
degraded by the cell, the total PrP aggregates associated
with the cell (Figure 6B) were further divided into protease-
sensitive and protease-resistant forms. The relative ratio of
the two forms remained the same during 24 hours
(Figure 6C). Thus, these results suggested that the degra-
dation of PK-sensitive aggregated PrPSc occurred at a
similar rate to that of PK-resistant aggregated PrPSc.
Discussion

One of the early events after exposure of cells to prion-
infected brain homogenate is the cellular uptake of
PrPSc,25,28e30 which is influenced by PrPSc particle size.29,30

This active cellular uptake of PrPSc does not require PrPC

expression by host cells and is largely independent of prion
strain.25 Here, we have shown that both PK-sensitive and
PK-resistant forms of aggregated PrP derived from sCJD
brain interact similarly with human astrocytes for their up-
take and degradation. Thus, our data suggest that both
sPrPSc and rPrPSc are likely to be treated similarly by cells.

In general, when SVG cells were continuously exposed to
brain homogenate, the predominant species of PrP taken up
by the cell reflected that in the starting brain homogenate.
Thus, in brain homogenates in which most PrPSc was
aggregated but PK sensitive, most PrPSc in the cells was also
aggregated but PK sensitive (Figure 3D). One exception to
this observation was the cellular uptake of CJD1MM1 at 2
hours (Figure 3B). Although >90% of NaPTA-precipitated
PrP aggregates were PK resistant in both CJD1MM1 brain
homogenate and cells exposed to the homogenate for 8 to 48
The American Journal of Pathology - ajp.amjpathol.org
hours, at 2 hours approximately 40% of the cell-associated
aggregated PrP was protease sensitive. One possible
explanation for this result may be the size of the PrP
aggregate taken up by the cell. A specific population of
PrPSc with smaller aggregate size can be preferentially taken
up by cells during the early stages of prion infection,30 and
sPrPSc is known to be smaller in size than rPrPSc.17,18 Thus,
the increased amount of PK-sensitive PrPSc associated with
the SVG astrocyte cells at 2 hours could be indicative of
PK-sensitive, smaller forms of aggregated PrPSc being taken
up more rapidly by the cells.

Our data also suggest that after uptake by astrocyte cells,
PK-sensitive PrPSc aggregates from sCJD brains are
degraded similarly to PK-resistant PrPSc aggregates. This
result was somewhat unexpected because PrPSc is thought to
be degraded by lysosomal proteases in cells,31e33 and the two
forms of aggregated PrP differ in their PK resistance.
Although it is possible that the degradation kinetics of the
two forms of PrPSc could still differ between the two time
points we investigated (6 and 24 hours) (Figure 6), the
observation that the ratio of PK-sensitive to PK-resistant PrP
aggregates did not change during 24 hours (Figure 6C)
suggests that this is unlikely. Furthermore, consistent with
the in vitro data the clearance rate of sPrPSc and rPrPSc in
scrapie-infected mice was also reported to be similar.34 The
lack of difference in the kinetics of cellular degradation be-
tween the two forms of PrP aggregate may be related to
partial unfolding within the acidic cellular compartments to
which PrPSc migrates after cellular uptake.31,32,35,36 Low pH
in the late endosomal/lysosomal cellular compartments may
lead to the partial denaturation of aggregated PrP and the loss
of structural motifs which likely confer differential proteo-
lytic resistance. Alternatively, if there were nonprotein
3305
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cofactors acting as a molecular scaffold which contributed to
the protease resistance of aggregated PrP,37e39 partial
denaturation in an acidic compartment might enable cellular
enzymes to degrade them, thus leading to an increased sus-
ceptibility to proteolysis. In either case, cellular PK-resistant
aggregates would become more protease sensitive and thus
be degraded more rapidly than might be predicted from their
biochemical properties.

It remains unclear how sPrPSc and rPrPSc are related
metabolically in prion-infected brains, but previous studies
have suggested that sPrPSc may be an intermediate product
in the formation of rPrPSc, a degradation product of rPrPSc,
or the result of an alternative misfolding pathway.17,19 Our
data, indicating that the ratio of protease-resistant PrPSc to
protease-sensitive PrPSc remains constant during PrPSc

degradation in astrocyte cells, suggest an additional pos-
sibility that sPrPSc and rPrPSc can both be present in a
single PrPSc aggregate. This could explain why sPrPSc

appears to have many of the properties of rPrPSc, including
the ability to convert PrPC18,19 and to trigger prion infection
in vivo.20 Aggregated PrPSc grows by recruiting PrPC and
causing its conformational conversion into PrPSc. Protease-
sensitive PrPSc could be the result of either incomplete
conversion of the PrPC associated with the aggregate to
PrPSc or the location of a particular PrPSc molecule within
the growing aggregate. Thus, sPrPSc may represent a PrPSc

molecule that is either not yet mature enough to become
fully PK resistant or that is more easily accessible to pro-
teases because of its presence in a less-protected part of the
aggregate.

Alternatively, it is also possible that protease-sensitive
and protease-resistant forms of PrPSc exist as separate
populations in brain homogenate but coaggregate in specific
cellular compartments (eg, early endosomes) after uptake by
the cell. This would be consistent with data indicating that,
in prion-infected hamsters, sPrPSc and rPrPSc can be isolated
separately.18,20 However, in the context of the well-known
heterogeneity of PrPSc, it is certainly plausible that aggre-
gates containing either sPrPSc or rPrPSc and mixed aggre-
gates which differ for their ratio of sPrPSc to rPrPSc could
coexist in vivo.

Given that sPrPSc induces a prion disease in hamsters,20

potentially influences the clinical duration of sCJD,21 and
converts PrPC to rPrPSc,18,19 it may play an active role in
prion pathogenesis. Moreover, a role for astrocytes in prion
pathogenesis is consistent with murine transmission studies
in which neurotoxicity occurs even when PrP expression
was restricted to astrocytes.40,41 We have shown that
protease-sensitive and protease-resistant PrPSc molecules are
taken up and degraded by astrocyte cells similarly. These
data suggest that sPrPSc may be trafficked along similar
pathways as rPrPSc. Thus, it would have ample opportunity
to interact with and convert PrPC to PrPSc. Our results are
therefore consistent with the hypothesis that sPrPSc would
be available to potentially influence some aspects of prion
pathogenesis21 in both neurons and astrocytes.
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