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Abstract--Sobolev gradient type preconditioning is proposed for the numerical solution of the 
electrostatic potential equation. A constructive representation of the gradients leads to efficient 
Laplacian preconditioners in the iteration thanks to the available fast Poisson solvers. Convergence is 
then verified for the corresponding sequence in Sobolev space, implying mesh independent convergence 
results for the discretized problems. A particular study is devoted to the case of a ball: due to the 
radial symmetry of this domain, a direct realization without discretization is feasible. The simplicity 
of the algorithm and the fast linear convergence are finally illustrated in a numerical test example. 
~) 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

We consider the  numerical  solut ion of the  problem 

T ( u )  =- - A u  + e ~' = O, 

uJan  = O, 
(1) 

on a bounded domain ~ C R 3 being C%diffeomorphic to a convex one. The function u describes 

the electrostatic potential in f/(see e.g. [1]). In particular, we develop a direct realization when 

the domain ~ is a ball. We remark however that analogues of our method can easily be formulated 

for other nonlinearities as well, satisfying similar growth conditions to those of e ~. 

We propose Sobolev gradient type preconditioning for problem (1) with the auxiliary problems 

in the iteration containing the Laplacian as a preconditioner. For discretizations of (1), this 

method defines the corresponding discrete Laplacian as preconditioning matrix, which has proved 

its efficiency in many applications. For linear problems, discrete Laplacian preconditioners were 

first used in [2,3] with finite-difference discretization on a rectangle, and hence, the corresponding 

steepest descent (or Richardson) iteration was later termed as D'yakonov-Gunn iteration. The 
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efficiency of this iteration is based on the fast Poisson solvers developed in the same period. The 
extension of fast solvers to more general problems led to iterations where the discrete Laplacian 
is modified by scaling or adding another term (see e.g. [4,5]). A general study of the related 
conditioning properties has been given in [6]. 

For nonlinear problems, the Sobolev gradient approach has been developed in a series of pub- 
lications of Neuberger and summarized in [7]. In this approach the iteration is constructed as 
a steepest descent method for a suitable minimizing--generally least-square--functional. The 
main principle is that convergence can be improved by using the Sobolev inner product instead 
of the original L 2 one, which leads to auxiliary discrete Poisson or Helmholtz equations. Some 
illustrative applications are summarized in [8], also containing the van Roosbroeck type modifi- 
cation of problem (1) in one dimension with nonlinearity 2 sinhu. The authors' related earlier 
results include finite element and Fourier series realization [9,10] and also extend to systems and 
higher-order problems [1 1,12]; general results on preconditioning are summarized in [13]. 

In our proposal, we introduce a Sobolev gradient type iteration for the convex potential that 
corresponds to problem (1). Suitable regularity leads to a constructive representation of the 
gradients that involves Laplacian preconditioners in the iteration. The theoretical sequence in 
Sobolev space not only defines iterations for the discretizations of (1) in an obvious way, but also 
provides mesh independent convergence results. We study in particular the case when the domain 

is a ball. For this special radially symmetric problem, we develop a direct realization which 
uses no discretization but actual Sobolev space preconditioning. The main advantage of our 
method is the simplicity of the algorithm, whose straightforward coding as well as the obtained 
fast linear convergence in a numerical test example are enclosed. 

2.  T H E  I T E R A T I O N  W I T H  L A P L A C I A N  P R E C O N D I T I O N I N G  

We first sketch the background of the iterative solution to be proposed for problem (1). 
The solution of (1) can be obtained by minimizing the convex functional tI, : H01(fl) --+ R 

k~(u) - ~ (1,Vu,2 + e ") (2) 

using the Sobolev gradient idea on the continuous level, that  is by defining a steepest descent 
iteration for • in the Sobolev space H0*(f~) equipped with the Hol-inner product 

:= fa v u  Vv. (3) 

Vanishing of the derivative of 

(~'(u), v ) ~  = f a  ( W .  W + e~v) 

corresponds to the weak solution of our problem. According to Green's formula, for regular 
functions u • H 2 (~) A H01(~) 

(tI,'(u), v) ,~ = /n  T(u)v = (-A-IT(u),  V)H~, 

i.e., we have the constructive Sobolev gradient 

~'IH2nH~ = --A-1T. (4) 

Using this decomposition, the steepest descent iteration yields a sequence where the Laplacian 
acts as a preconditioner: 

u,~+l = un - an(-n)-lT(u,~) 

with some steplengths a=. We will consider optimal constant steplengths. 
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We underline that suitable numerical iterations can be derived directly from the above iteration 
by projecting it into the considered discretization subspace. 

To commence the rigorous formulation of the construction and convergence of the proposed 
iteration, we rely on the authors' earlier results in [9,11]. Let us first cite a regularity result for 
the Laplacian, required for a constructive representation on the domain ft and also in the proof 
of Theorem 2. 

THEOREM 1. (See [14].) Let  n be C2-diffeomorphic to a convex domain. Then for any g C L2(~)  
the unique weak solution u* E H~(f~) of  the problem 

- A u  = g, 

uloa = 0, (5) 

satisfies u* 6 H2(f~). 

The well-posedness of problem (1) will be verified together with the construction of the iteration 
and the proof of the convergence. For this purpose, introduce the function 

{ e '~, (u < 0), 
f (u)  := 

l + u ,  (u > 0), 

because if u 6 H2(n)  n H01(f~) solves (1), then Au > 0 and the maximum principle [15] implies 
that u < 0 a.e., and consequently, (1) is equivalent to 

- A u  + l ( u )  = O, 

~lon = 0, (6) 

where the inequality 0 _< i f (u )  _< 1 gives a linear growth bound for the nonlinearity. 

THEOREM 2. 

(1) Problem (6) has a unique weak solution u* 6 H~(f~), moreover, u* fi H2(n) .  
(2) For any uo E H~(fl) N Hlo(~), the sequence (u~) C H2(f l)  N Hlo(~) defined by 

2~ 
un+l = u ,  2~ +-----~ z , ,  where - Az,~ = - - A u ,  + f(u,~), z ,  lan = 0, (7) 

and Q > 0 is the smallest eigenvalue of  - A  on H2(~)  t-1Hol(f~), converges linearly to u*, 
name~y~ 

[[u, - u*llHo~(a) -< 0 -1/2 lI-Auo ÷ f(uo)llL=(a) ~ , (n • N). (8) 

PROOF. Problem (6) is a special case of problem (1.1) in [9] with g(x,  71) = ~1, q(x, u) = e u and 
f ( x )  -- O, hence, both the well-posedness and the convergence result follow from that paper with 
appropriate modifications: namely, by its Section 2 the problem has a unique weak solution u* E 
H~(~). The regularity u* E H2(~) follows from Theorem 1 above by setting g = - e  "" e L2(f~). 
Further, the eUipticity bounds m and M in (2.2) of [9] now satisfy 

m = 1 and M : 1 ÷ ~)--1, (9) 

with ~ > 0 being the smallest eigenvalue of - A  on H2(f~) N H01(~). Then Theorem 2.1 of [9] 
yields the required convergence result, using that 

2 _-- 2t~ and M - m _ _  1 . (10) 
M + m  2 0 + 1  M + m  2 0 + 1  
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(In fact, in that theorem f/ is assumed to be convex or satisfy Off E C 2, but Theorem 1 also 
ensures the same result for this more general ~.) | 

We note that by setting wn := z~ - u,~, the iteration (7) takes the simpler form 

1 
un+t -- 2t~ + 1 (u.  - 2Ow,~), (11) 

where - Aw~ = f (un) ,  WnlOn = 0. (12) 

Now return to problem (1) with the original nonlinearity e u, equivalent to (6) as verified before. 
By the maximum principle again, we get w,~ > 0 in (12), and letting u0 _< 0, we have by induction 
that un _< 0, for all n E N. Hence, f (un)  in (12) can be replaced again by the original e ~-. 

COROLLARY i .  

(1) Problem (1) has a unique weak solution u* e H~(~),  moreover, u* • H2(fl). 
(2) Let ~o • H~(~) n H~(~), Uo <_ O. Then the ~equenee (un) C H~(~) n H~(a) de~n~ by 

1 
~tn+l = -  2~ + 1 (u~ - 2gw,) ,  (13) 

where - Awn = e u", WnlOf~ = 0, 

and p > 0 is the smallest eigenvalue o f - A  on H2(fl) n Hol(f~), converges linearly to u*, 
namely~ 

1 n 

I1~.<- ~'11.~(~)-< ~-,i2 II-Auo + e"°lln~(,-,)(2-~) ' (n e N). (14) 

Now let us turn to the discretizations of problem (1): 

Th(u)  -- - - A h u  + eh(U) = 0 (15) 

in some finite-dimensionai subspace Vh C H01(f~), where Ah stands for the discrete Laplacian 
and the nonlinear function eh : V'h ~ Yh corresponds to the discretization of e" in (1). An 
iteration for (15) can be obtained by projecting the theoretical sequence (13) into Vh: the sequence 
(un) C Vh is defined by 

where 

1 [ 
Un+ l 2e + 1 tun - ~ewnS,  

- A h w , ,  = eh (un ) ,  w,, ioa = O. 

(16) 

The convergence of the sequence (16) is asymptotically the same as that of (13) as h ~ 0. In 
particular, for FEM discretizations the convergence factor 1/(2~ + 1) is an upper asymptotic 
bound for the convergence since the proof can be repeated in any FEM subspace with the same 
parameters. Therefore, the proposed iteration provides mesh independent convergence. 

Efficiency of the Laplacian preconditioners is justified by the various available fast Poisson 
solvers developed in the past decades. Many of these were originally introduced for rectangular 
domains, then extended to other domains via the 'fictitious domain approach'. Comprehensive 
summaries on the fast direct solution of the Poisson equation--including the method of cyclic 
reduction, the fast Fourier transform and the FACR algorithm--are found in [16,17]. Parallel 
implementation of these algorithms is also feasible [18,19]. Another family of fast solvers on 
rectangles consists of the spectral methods [20,21] developed further recently. For the fictitious 
domain approach, see [22]. 
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REMARK 1. COMPARISON WITH OTHER METHODS. 

(i) Iteration (13) can be considered as an improvement of the corresponding 'linearized' iter- 

ation 

h u n +  1 ~- e u" ,  ttn+l]Of t = 0, (17) 

realizing another frequently used approach for semilinear problems. Namely, the limiting 
case ~ _l, c~ in (13) would give un+l  = - w n  turning (13) into the linearized iteration (17). 
Nevertheless, ~ as the smallest eigenvalue of - A  is fixed, and Un+l in (13) is the proper 
convex combination of un  and - w n  that--owing to (10)--provides the optimal linear 
convergence quotient 1/(2Q + 1) for the steepest descent iteration. 

(ii) Superlinear convergence could be achieved by using Newton's method for (1). The price 
of this is twofold. First, instead of a fixed Laplacian the auxiliary equations need to be 
redefined in each step: 

- -  A W ~  + e ~ "  W ~  = A U ~  l e ~ "  , W, I ~a = 0, (18) 

hence, in the discretized case the matrix of the auxiliary system has to be updated stepwise. 
On the other hand, one cannot use the above-mentioned fast solvers directly for problems 
in (18), hence, the cost required to solve them is no more negligible. Still, in order to take 
advantage of the fast solvers, the Laplacian could be applied as a preconditioner in the 
inner iterations for solving the problems in (18). However, the obtained overall iteration 
would then consist of Poisson equations, as (13) does, and it is easily seen that the order 
of required iterations to achieve a prescribed error would be the same as in the case of the 
steepest descent iteration, namely, n = O(loge) as the prescribed error e ~ 0. 

3. D I R E C T  P R E C O N D I T I O N I N G  ON A BALL 

Now we consider problem (1) on the ball B = B(0, R) C R 3 with radius R: 

- A u  + e'* = 0, 

UIOB = 0. (19) 

By [15], the unique weak solution of problem (19) is classical, i.e., u* • C2(B). Moreover, u* 
is radially symmetric [23]. 

3.1. T h e  P r o p o s e d  M e t h o d  

Thanks to the special form of the problem, a direct approach becomes possible which avoids 
discretization, instead it realizes actual Sobolev space preconditioning with the iteration being 
applied directly in the Sobolev space H01 (B) and kept in the class of radially symmetric polyno- 
mials 

l± } '~ = a m r  2m : l • N ,  a m  • R , w i t h  r = Ix l ,  for  z • B, 
i, m=0 

where the Laplacian can be inverted exactly. 
In each step of (13), we approximate e =- by a suitable Taylor polynomial 

and define the subsequent iterate by 

v'% 
p ( u , )  = A.~ j !  ' 

j--0 

1 
un+x = 2t~ + 1 (u,~ -- 2~wn), 

where - Aw. = p(u.) ,  w,,io B = O. 

(20) 

(21) 

(22) 
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Note that un E 79 implies p(un) E 79. Further, if 

then (22) is equivalent to 

In 
p ( u , ) ( r ) =  ~-~a,~r 2rn, (r E [ -R,R]) ,  (23) 

rn=0 

m=0 

thus, its solution wn E 79 is given explicitly by 

~o . ( -R)  = ~ . ( R )  = 0, 

am (R 2m+2 - r2"~+2) . (24) 
~.(r) = ~ (2m + 3)(2m + 2) m~O 

Arguing inductively, if uo E 7 ) and uo _< 0, then un C 79 for all n E N and the Poisson equa- 
tions (22) are solved by (24). 

Recall that by Corollary 1 the theoretical iteration (11),(12) converges according to the esti- 
mate (14). Now since the first positive root of the spherical Bessel function jo(r) = sin r / r  is 7r 
(see [24]), we have that the smallest eigenvalue 0 > 0 of - A  on H2(B) n H I ( B  ) is explicitly 

Further, for the sake of simplicity choose u0 = 0, which implies [[--Au0 + eU°[lL2(B ) = IS[ 1/2, 
where IB[ = 4Raw/3 is the volume of B. 

Convergence of the iteration (21),(22) is achieved by suitably choosing p(un). To this end, 
given u~, let w* and wn denote the solution of (13) and (22), respectively. Then, we have the 
estimate 

(~)__) 1/2 ( ? )  1/2 ii?d,n u~+l 
IIwL-w.llno~(B) ___ o-l/2lle~'" --P(U,OIIL~(B) < II e'~'~ - p(u,~)[l~ < (k.  -I- 1)!" 

Further, since un = zn - wn is already a polynomial, it is easy to see that 

IIz~ - z,~IIH~(B) = IIw~ - w.llmo(B), 

where z~* and zn are the solutions of (7) and its polynomial approximation, respectively. Hence, 

I]z~ - z"I]H3(B) <-- ( k .  + I)[" (26) 

Then, we use Lemma 3.2 from [10] to ensure a prescribed accuracy c > 0 (independent of n) 
throughout the iteration: if one defines the steepest descent iteration for an elliptic operator with 
ellipticity bounds m and M and with the optimal steplength 2/ (M-{-m) ,  then an accuracy me of 
the correction terms zn yields accuracy e for the sequence (un). In our case, choose the indices kn, 
such that the right-hand side of (26) is bounded by some fixed e throughout the iteration. Since 
by (9) m = 1, the iteration (21),(22) satisfies (14) up to accuracy ~: 

)o 
II~---u'llH,o(B) <-- ~ +6,  (,~ e N). (27) 

REMARK 2. We may experience a rapid growth in the degrees of the polynomials u,~ in the above 
iteration together with high-index coefficients becoming very small in magnitude, so dropping 
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these small enough terms within some given accuracy 6 > 0 may spare a considerable amount 
of memory and computing time. The truncation would only result in the addition of 6 to the 
right-hand side of (27). Indeed, supposing un has the form 

8n 

~.(r) = ~ ~ m ~ ,  (28) 
m-~0 

elementary integration yields for any index t~ _< s~ that  

arnr 2m 2 s~ <_ 4~rSn E 4m2a2 R4m+l 

Hence, letting tn <_ sn be the smallest index for which 

" "  R < ~2 4~s. ~ (2ma~R2m)~ 4m +---~ - 
r n = t n + l  

and defining 

we obtain the estimate 

(29) 

(30) 

tn 

~.(r) = ~ amr ~m, (31) 
r n = 0  

Ilu. -~.llH~w) ~ ~- (32) 

3.2. T h e  A l g o r i t h m i c  F o r m  o f  t h e  I t e r a t i o n  

Now we summarize our method in an algorithmic form. First define 

e = , (33) 

then fix a tolerance e > O, i.e., the accuracy of the algorithm in HIo(B) norm, and let 

with IB[ = 4RZ~r/3 being the volume of B. 
The proposed method constructs a sequence of radial polynomials via (20),(22) with the indices 

k~ being chosen in such a way that  the right-hand side of (26) is bounded by e in each step: 
see (bl) in (35) and the definition of w. The algorithm reads as follows: 

( a )  u 0  - 0; 

for any n E N : if un E P has been obtained, then let 

(bl) p~ = msax [un[; 

#k~+l 
k .  E N be the smMlest number, such that  - -  <_ w; 

(k,~ + 1)! 

~" "d" )J  (,- e [-R,R]); (b2) p ( u n ) ( r )  = ~ j !  
j--0 

(b3) w~ E P be the solution of the problem 

- A w ~  = p (un) ,  W~lO B = 0 

according to formula (24); 

1 
(54) un+l  = 2e + 1 (un - 2~w,) .  

(35) 
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We emphasize that the auxiliary Poisson equations in Step (b3) are solved exactly by (24). 
The convergence of the algorithm has been given by (27). 

As noted in Remark 2, the polynomials u ,  may contain a large number of high-index terms 
with almost zero coefficients. These terms are automatically dropped when their coefficients are 
below the roundoff accuracy. However, we may spare memory as well as computing time by also 
dropping some of the small terms larger than the roundoff accuracy. Therefore, our algorithm (35) 
is completed by the steps below: using the polynomial form of u ,+ l  in Step (b4), (b5) finds the 
decreased truncation index t ,+ l  and (b6) redefines Un+l using only the terms with indices up 
to tn+l. (For simplicity, the notation Un+l is kept for the truncated polynomial also.) The 
corresponding error estimate is obtained by adding the truncation accuracy 6 to the right-hand 
side of (27). 

8n+l  

(b4) - . + l ( r )  = amr 2m, 
m = 0  

(b5) t ,+ l  E N be the smallest index, such that 

~"+' (36) 
4 m +  1 -- 

m=tn+l+1 

tn+l 

(b6) = 
r~=O 

4 .  A N  E X A M P L E  

We have used MATHEMATICA 1 a s  a working environment. The test results correspond to 
problem (19) on the ball B = B(0, 2) C R 3 with radius R = 2, using the truncated version of the 
algorithm (bl)-(b6) in (35) and (36) with the prescribed tolerance being equal to the truncation 
accuracy 

6 = e = 10 -6. 

Now (33) and (34) read p ~ 2.4674 and w ~ 2.7135.10 -7, hence, the convergence factor in the 
estimate (27) is 

1 
- -  ~ 0.168498. 
2p+ 1 

The proposed choice Uo - 0 yields #o = ko = 0 in Step (bl) of (35), so a consistent definition of 
0 ° :-- 1 is needed before starting the iteration. The brevity and simplicity of the code shows that 
the implementation of the direct gradient method involves no difficulty. 

(a) Using the predefined constants, further the initial data 

= o; = O;ko= o; 

1 
Puo[r_ l =  i; wo[r_ ] = ~  (R 2 - r 2 ) ;  ul[r_ l = -  

i 
2p + i (uo[r] - 2P~o[r]); 

(b) the actual code reads 
Do[ 
piter=--FindIdinimum [-Abs [Uiter [r] ], {r, R/100, --R/200, --R, R}] [ [I] ] ; 

Whi" r ~4terkiter+l 
kiter=O; ±eL ~Riter+l)! > w, kiter ++] ; 

=Sum [ (Uiter [r])J 
Puiter It_] 3! . {j ,O,kiter }] ; 

coefflist=CoefficientList [Puiter [r], r 2]//N; 

ICopyright 1988-2000 Wolfram Research, Inc. 
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length=Length [coefflist] ; 
m r_ ~= ~ r c o e f f l i s t [ [ m + l l ] .  2ta+2 ~2m+2- {m,O l e n g t h - i } ] ;  

i t e r  Lr-J --DUBL (2m+3)(2m+2) ~r  - t t  ) ,  , 

Uiter+l It_] = 2--~+i (Uiter [r] --2PWiter [r] )//Expand; 
chopcoefflist=Coef ficientList [Uiter+l [r], r 2]//N ; 
choplength=Length [chopcoef f list] ; 
6=E; 

counter=¢hoplength-1; tailsumffiO; 
While[counZer_>O &~ 4rchoplengthtailsum <_ 6 2, 

tailsum += (2counterchopcoefflist[[counter+l]]R2c°unter) 2 R 4counter+l ; 
counter--] ; 

counter += 2; 

Uiter+l [r-] =Uiter+t [r] [ [Range [counter] ] ], 
{ i t e r ,  1, i t e r m a x  }3 

Here itermax is the maximal  number  of i terations allowed, which can be determined by the 

error estimates. For this purpose, we estimate the theoretical errors 

E .  = I 1 ~ .  - - ' l l H o , ( S )  

in two ways. First ,  by adding the t runca t ion  error 5 = e to (27), an a pr ior i  est imate yields 

E ,  _< e ,  ---- + 2E. 

Further,  using the lower eUipticity bound m = 1 of the operator T ( u )  = - A u  ÷ e u, the cor- 

responding residual est imate (cf. [10, Lemma 3.4]) implies an a poster iori  residual estimate 
for E , :  

I I~-  - u * l l .o ,w)  -< r .  - e -Z / ' l l  - a u .  + e~'"llL=(.). 
Using the da ta  of our example, we obtain  

with 

and 

En <_ min{e . ,  r . }  (n  E N) 

en = 3.6853.0.168498 n + 2 . 1 0  -6 (38) 

(39) r .  = 0 .6366 .  I I - -hun  + e"" I lL=W)" 

We also ca lcu la te ,  as usual ,  the  n o r m  o f  the  di f ference o f  t w o  consecu t i ve  t e rms  

d .  - 1 1 u . + i  - u - I I H ~ ( 8 )  • (40)  

The following table lists these error estimates during the i teration. Observe tha t  the residual 

error is smaller t han  the a priori  estimate e , .  I t  first decreases below the accuracy e = 10 -6  in 

Step 9, then it is stabilized slightly below that  value. 

Table 1. The errors e.,  rn and dn, defined in (38), (39), (40),respectivel~ 

0 1 2 3 4 5 6 

3.6853 0 .6209 0 .1046 0.01763 0.002972 5.025.10 -4 8.634.10 -5 

3.6853 0 .4298 0 .0505 0.00696 0.001082 1.717.10 -4 2.826.10 -5 

2.4856 0 .2740  0 .0194 0.00168 0.000179 2.323.10 - s  3.319.10 -6 

n 

e n  

d~ 

n 

en  

r n  

7 8 9 10 11 12 

1.621-10 -s  4.394.10 -6  2.403.10 -6 2.067.10 -s  2.011.10 -s  2.001.10 -s  

5.183.10 -6  1.457.10 -6  8,551-10 -7  7.573.10 -7  7,413.10 -7  7.387.10 -7 

4.953.10 -7 7.549.10 -8 1.165.10 -8 1.813 .10  -9  2 . 8 3 9 . 1 0  - t o  
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Table 2. The coefficients of the iterative sequence. 

a3 

a4 

a5 

0-6 

a7 

a8 

a9 

alO 

all 

Ul 

-0.554335 

0.138584 

u2 

-0.472618 

0.102961 

0.003309 

0.000109 

2.944.10 -6 

6.632.10 -8 

1.360.10 -9 

1.736.10 -11 

5.954- 10 -13 

Ull 

-0.475685 

0.103577 

0.003218 

0.000127 

5.572.10 -6 

2.596.10 -7 

1.258.10 - s  

6.264.10 -1° 

3.181.10 -11 

1.641-10 -12 

~12 

-0.475685 

0.103577 

0.003218 

0.000127 

5.572.10 -6 

2.596.10 -~ 

1.258.10 -8 

6.264.10 - l °  

3.181 • 10 -11 

1.641.10 -12 

8.576. 10 -14 8.576.10 -14 

4.524- 10 -15 4.524.10 -15 

0.5 

0.4 

0.3 

0.2 

-2 -3. 1 2 

Figure 1. The first few terms of the sequence -u,~(r). 

v ' s "  r 2m (r E [ - R ,  R]) consisting of radial Coefficients of the i terat ive sequence Un (r) = Z-,m=O am 

polynomials of r are given in Table 2 for n = 1, 2 and n = 11,12, respectively. 

Figure i contains graphs of the first few terms of this sequence converging rapidly. (In fact, 

for the sake of positivity, the functions - u ~ ( r )  are plot ted instead.) 

Observe tha t  UXl and u12 in Table 2 coincide up to the accuracy E = 10 -6,  moreover, since the 

corresponding residual error r12 < 10 -6,  we accept 

u12 ~ u* 

as the numerical  solution. In order to be t ter  visualize the graph of u* over B,  one dimension is 

omi t ted  in Figure 2 by plot t ing the surface of the 2D function which a t ta ins  the values of u12 

along the radii. (Again, for the sake of positivity, its modulus  is p lot ted  instead.) 

C o n c l u s i o n s  o f  t h e  E x p e r i m e n t  

In the example,  we have realized direct Laplacian precondit ioning for problem (19) on a ball. 

The  proposed method  uses no discretization but  realizes actual  Sobolev space precondit ioning 

for the i terat ion direct ly in the space H ~ ( B ) ,  due to keeping the i terat ion in the class of radially 

symmetr ic  polynomials where the Laplacian is exactly invertible. The  main  advantage of this 
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Figure 2. Graph of the modulus of the numerical solution u12. 

method is the simplicity of the algorithm (35) and (36), whose straightforward coding and the 
obtained fast linear convergence have been presented in this numerical test example. 
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