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Abstract

2-Methoxyestradiol (2-ME2) was reported to elicit both

stimulation and inhibition of tumor angiogenesis and

growth depending on the dosage used. However, the

mechanism(s) of the biphasic action of 2-ME2 has been

elusive. Here we describe a regulatory role of vascular

endothelial growth factor-A (VEGF-A) in the biphasic

effects on estrogen receptor (ER)+ GH3 rat pituitary

tumor cells and MCF-7 human breast tumor cells

depending on the dosage of 2-ME2 used. We observed

that acute exposure to 2-ME2, irrespective of dosage,

did not alter cellular proliferation, but enhanced the

VEGF-A mRNA level. As the treatment duration in-

creased, biphasic effect was elicited. A concentration

of 1 MM 2-ME2 increased both cell proliferation and

VEGF-A levels in these cells, whereas higher doses

exhibited reversed impact. A low dose of 2-ME2 also

increased the VEGF-A mRNA expression in ER-A–

transfected human mammary epithelial cells (HMECs).

The effect was reversed in ER� cells. The enhanced

expression of VEGF-A mRNA could be blocked by the

pure estrogen antagonist, ICI 182,780, and reveal that

the upregulation of VEGF-A expression by 2-ME2 is

mediated through ER-A. Furthermore, the biphasic

effect of 2-ME2 on cell proliferation can be modulated

by administrating VEGF-A antibodies or VEGF-A

proteins. Studies also demonstrate that the VEGF-A

protein, induced by 2-ME2, is functionally active and

upregulates the proliferation of adjacent endothelial

cells.
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Introduction

2-Methoxyestradiol (2-ME2) is an endogenous estrogen (i.e.,

17b-estradiol) metabolite produced by sequential hydroxyl-

ation of parent compounds followed by methylation by

catechol-O-methyltransferase in the liver [1–3]. 2-ME2 is syn-

thesized in mammalian tissues and represents a crucial step in

the elimination of potentially damaging catechol estrogen from

proliferating cells [4]. It has strong binding affinity for sex

hormone–binding globulin (SHBG) in the blood [2,5]. However,

unlike the parent compounds and their other metabolites, this

molecule has a low affinity for estrogen receptors (ERs), thus

having minimal estrogenic activity [1,2]. 2-ME2 has been

considered as a promising anticancer drug candidate [6] as it

reveals antiproliferative and apoptotic activities against rapidly

growing tumors and endothelial cells by triggering the induction

or suppression of genes that elicit apoptosis or cell proliferation

[3,7–12]. 2-ME2 reduced the cell motility, migration, and ad-

hesion of various drug-sensitive and drug-resistant tumor cell

lines [13]. It suppressed the growth of certain murine tumors by

inhibiting tumor cell proliferation and angiogenesis [10,14,15].

Furthermore, a Phase I clinical trial of this compound showed

no serious drug-related unpleasant effects, while exhibiting a

significant reduction in bone pain and analgesic intake in some

breast cancer patients [6]. A Phase II randomized trial of 2-ME2

in hormone-refractory prostate cancer patients demonstrated

the stabilization and/or reduction of prostate-specific antigen

after treatment [6].

Despite the potential anticancer features of 2-ME2, recent

studies have revealed dose-dependent dual effects of this

compound. For example, 1-mM doses (or less) of 2-ME2 exhibit
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proliferative effects in MCF-7 breast tumor cells, whereas

higher doses of 2-ME2 inhibit cell proliferation [12]. Similarly,

in vivo studies have shown both stimulation and inhibition of

tumor growth by this compound depending on the dosage

used [14,15]. Together, these studies suggest a complex

nature of action of this molecule, and indicate that in addition

to the known signaling pathways [6,16–20], there may be

additional pathways, which have not yet been elucidated,

that exert biphasic effects of 2-ME2.

2-ME2 is a potent inhibitor of estrogen-induced tumor

angiogenesis and tumorigenesis in F344 rat pituitaries, and

this inhibitory activity is strongly associated with the down-

regulation of vascular endothelial growth factor-A (VEGF-A)

expression [14]. Subsequently, similar results were ob-

served by other studies in the SCID mouse model [21], and

suggested that the inhibition of the local release of VEGF-A

was an important event required to block tumor growth.

However, the direct involvement of VEGF-A during the

dose-dependent modulation of tumor cell growth and prolif-

eration by 2-ME2 is unknown. The aim of the present study

was to investigate the dose-dependent effect of 2-ME2 on

VEGF-A expression in different cell lines, either ER+ or ER�,
and to correlate these results with cell proliferation to deter-

mine if ER was involved in this process. Moreover, an

additional aim was to evaluate the protective role of VEGF-

A, if any, against cell death exerted by 2-ME2.

Materials and Methods

Chemicals

2-ME2 was a gift from EntreMed, Inc. (Rockville, MD). A

stock solution was prepared in absolute ethanol and stored

at �20jC. Dulbecco’s modified Eagle’s medium (DMEM),

human recombinant VEGF-A protein, VEGF monoclonal

antibody, and cell dissociation solution were purchased from

Sigma (St. Louis, MO). Fetal bovine serum (FBS) was

purchased from HyClone Laboratories (Logan, UT). BrdU

enzyme-linked immunosorbent assay (ELISA) kits and

digoxigenin (DIG) high-prime DNA labeling kits were pur-

chased from Roche Applied Science (Indianapolis, IN).

[3H]Thymidine (specific activity: 84,000 mCi/mmol) was pur-

chased from Amersham Life Science (Arlington, IL).

Cell Lines and Culture Conditions

GH3 rat pituitary tumor cells, human breast tumor–

derived MCF-7 epithelial tumor cells, and MIA-PaCa-2

pancreatic adenocarcinoma cells were obtained from the

American Type Cell Culture Collection (ATCC; Rockville,

MD). ER-a–transfected or vehicle-transfected or nontrans-

formed mammary epithelial cells were gifts from Dr. Debo-

rah Zajchowski (Berlex Biosciences, Richmond, CA),

Bovine capillary endothelial cells (BCECs) were kindly

provided by Dr. Dipak K. Banerjee (University of Puerto

Rico, San Juan, PR). GH3 cells were routinely maintained in

DMEM supplemented with 15% horse serum and 2.5%

FBS. MCF-7 cells and BCECs were grown in DMEM,

supplemented with 10% FBS and 1% penicillin–streptomy-

cin (Sigma). Transfected cells were grown in chemically

defined medium. Cells were passed weekly, at a split ratio

of 1:4, and subcultured into 25-cm2 T-flasks. The cultures

were maintained in a humidified incubator with 5% CO2 at

37jC.

[3H]Thymidine Incorporation Assay

[3H]Thymidine was added to each control and treated well

at a rate of 0.5 mCi/ml (1 ml/well) 24 hours prior to harvesting

the cells. Cells were harvested in glass fiber filter papers

using a Millipore vacuum system (Millipore, Bedford, MA)

and radioactive thymidine incorporation was measured using

a liquid scintillation counter.

BrdU Cell Proliferation Assay

The BrdU cell proliferation assay was performed accord-

ing to the instructions provided by the manufacturer. Briefly,

experimental cells were exposed to BrdU for 24 hours, and

then fixed in FixDenat solution for 20 minutes at room

temperature. Cells were incubated with anti–BrdU-POD

solution for 90 minutes at room temperature followed by

washing three times with washing solution. Cells were incu-

bated with substrate solution until color development was

sufficient for photometric detection.

mRNA Extraction and Northern Blot Analysis

Total RNA from different cells was extracted using the

Trizol reagent (Life Technologies, Grand Island, NY) extrac-

tion procedure, as described previously [22]. Tenmicrograms

of total RNA was fractionated by electrophoresis in 1%

agarose gels containing formaldehyde and transferred to

super charge nylon membrane (Schleicher and Schuell,

Keene,NH).Membraneswere hybridizedwith nonradioactive

polymerase chain reaction–generated DIG-labeled VEGF-A

and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH)

gene-specific probes and washed according to the protocol

provided by the manufacturer of the DIG high-prime DNA

labeling and detection kit. VEGF-A and GAPDH mRNA

expression were quantitated by densitometric analyses using

the Gel Expert software program (NucleoTech, San Fran-

cisco, CA).

Western Blot Analysis

Immunoreactive proteins corresponding to VEGF or actin

were identified from total protein by Western immunobloting

using specific monoclonal antibodies. The protein extraction

and Western blot technique were essentially carried out as

described previously [23]. Signals were quantitated by scan-

ning the film using Scan Jet scanner, and the intensity of

each band was measured using the Gel Expert software

(NeucleoTech).

Indirect Coculture

Indirect coculture was performed using the Transwell

culture system (0.4 mm pore size; Corning Coster, Cam-

bridge, MA). BCECs (1 � 105) were seeded in the lower

chamber, and allowed to grow in DMEM with 10% FBS until
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the culture became 60% confluent before being maintained

in phenol red–free DMEM devoid of FBS for 24 hours. In a

separate culture, GH3 cells were grown in DMEM with 10%

FBS in the presence or absence of 1 or 5 mM 2-ME2 for

3 days. Following 2-ME2 treatment, cells were grown in fresh

medium containing no serum for 4 hours; the media were

collected, centrifuged at 250g for 2 minutes, and added into

the upper chambers of the Transwell systems along with

detached GH3 cells. The cells were detached by a nonen-

zymatic cell dissociation solution. The coculture was main-

tained for 24 hours. Radioactive thymidine was added into

the culture prior to 24 hours of the cell proliferation assay.

BCECs cultured in the same series without tumor cells in the

upper chamber served as negative controls.

Results

Differential Response of 2-ME2 on the Proliferation of ER+

and ER� Tumor Cells

Existing evidence indicates that 2-ME2 perturbs the pro-

liferation of different cells, including a variety of tumor cells,

endothelial cells, and vascular smooth muscle cells [17,24].

However, dose-dependent responses are diverged from cell

to cells. Comparative studies have demonstrated that the

IC50 value for 2-ME2 is different for different cell lines [17,25].

Paradoxically, discrepancies in IC50 values for the same cell

type have also been reported [17,25]. Furthermore, recent

studies have reported a biphasic effect of 2-ME2 on MCF-7

cell proliferation [12]. These variable findings suggested that

the culture conditions might be one of the crucial factors for

this discrepancy. Therefore, in the present studies, we first

evaluated the impact of 2-ME2 on radioactive thymidine

incorporation into the replicating DNA in ER+ GH3 rat pitu-

itary tumor cells and MCF-7 breast tumor cells, and ER�

MIA-PaCa-2 pancreatic adenocarcinoma cells. After 3 days,

5 to 10 mM concentrations of 2-ME2 significantly inhibited

radioactive thymidine incorporation in both ER+ and ER�

tumor cells (Figure 1). The radioactive thymidine incorpora-

tion was reduced compared to untreated controls, by 1.8-,

3.9-, and 2.5-fold in 2-ME2 (5 mM)–treated GH3, MCF-7, and

MIA-PaCa-2 cells, respectively (Figure 1). In contrast, after 3

days of exposure to 1 mM 2-ME2, radioactive thymidine

incorporation was significantly (paired two-tailed Student’s

t-test) elevated by 1.3-fold in GH3 and 1.6-fold in MCF-7

cells, compared to vehicle-treated cells (Figure 1). The effect

was reversed in MIA-PaCa-2 cells.

The modulation of radioactive thymidine incorporation

into the DNA of either cell by 2-ME2 is time-dependent, being

undetected within 2 to 24 hours of exposure (data not

shown). Moreover, the impact of 2-ME2 on proliferation is

also dependent upon the cell density being minimal at higher

densities (i.e., 70–80% confluent culture).

Proliferation-Dependent Changes in VEGF-A mRNA and

Protein Expression

Vascular endothelial growth factors are able to modulate

the proliferation of both normal and tumor cells including

endothelial cells [26], ductal epithelial cells of the pancreas

[27,28], and gastric adenocarcinoma cells [29]. Moreover,

Figure 1. Dose-dependent effects of 2-ME2 on cell proliferation in rat pituitary

tumor–derived GH3 tumor cells, human breast tumor–derived MCF-7 tumor

cells, and human pancreatic adenocarcinoma MIA-PaCa-2 cells. Exponen-

tially growing cells in DMEM containing 10% serum were exposed to various

concentrations of 2-ME2 for 3 days, and cell proliferation was determined by

measuring the [3H]thymidine incorporation into DNA. (A) GH3 rat pituitary

tumor cells. (B) MCF-7 human breast tumor cells. (C) MIA-PaCa-2 pancreatic

adenocarcinoma cells. Data displayed as mean ± SD from three separate

experiments. P value was determined by Student’s t-test. *P < .05 vs control;

**P < .01 vs control; ***P < .001 vs control.
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our previous studies as well as recent in vitro studies have

demonstrated that VEGF-A expression was downregulated

by 2-ME2 during the inhibition of estrogen-induced rat pitu-

itary tumor growth [14,30]. We investigated the status

of VEGF-A mRNA and proteins during the biphasic effects

of 2-ME2 on DNA synthesis in ER+ GH3 rat pituitary tumor

cells and MCF-7 human breast tumor cells, and ER� MIA-

PaCa-2 pancreatic adenocarcinoma cells. 2-ME2, at 1 mM
concentration, significantly enhanced VEGF-A mRNA ex-

pression in ER+ GH3 and MCF-7 cells (Figure 2, A–D). In

contrast, expression in MIA-PaCa-2 cells was reversed

(Figure 2, E and F ). Higher concentrations (i.e., 5 or 10 mM
concentrations) of 2-ME2 significantly (paired two-tailed Stu-

dent’s t-test) decreased the VEGF-A mRNA expression in

GH3 cells and MIA-PaCa-2 cells compared to vehicle-trea-

ted controls (Figure 2). Ironically, the effects on VEGF-A

mRNA expressions were apparently undetected by Northern

blot analyses in MCF-7 cells (Figure 2,C andD). This may be

due to the low-level constitutive expression of VEGF-A

mRNA.

The effect on the expression of VEGF-A at the protein

level indicated an induction in GH3 and MCF-7 cells at 1 mM
2-ME2 concentration. In contrast, the impact of 2-ME2 at

higher doses was not markedly severe in GH3 and MCF-7

cells as observed in MIA-PaCa-2 cells (Figure 3).

Acute treatment of GH3 cells with various doses (i.e., 1,

5, or 10 mM) of 2-ME2 augments the VEGF-A mRNA levels

significantly after 4 hours of exposure, compared to control

Figure 2. Dose-dependent effects of 2-ME2 on VEGF-A mRNA expressions in GH3 rat pituitary tumor cells, MCF-7 human breast tumor cells, and MIA-PaCa-2

human pancreatic adenocarcinoma cells. Exponentially growing cells in DMEM containing 10% serum were exposed to various concentrations of 2-ME2 for 3 days,

and VEGF-A mRNA expression was determined by Northern blot analyses using nonradioactive DIG-labeled probe. (A), (C), and (E) represent VEGF-A and

GAPDH mRNA levels in untreated and treated GH3, MCF-7, and MIA-PaCa-2 cells respectively. (B), (D), and (F) represent arbitrary values indicating VEGF-A

mRNA levels. Data displayed as mean±SD from three separate experiments. P value was determined by Student’s t-test. *P < .05 vs control; **P < .01 vs control.
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(Figure 4). The expression was steadily and significantly

increased until 24 hours (Figure 4). The impact was max-

imal at the 1-mM dose (Figure 4B). Similar effects were also

observed in MCF-7 cells. However, the effect was unde-

tected in MIA-PaCa-2 cells (data not shown).

The Upregulation of VEGF-A mRNA Expression by 2-ME2

Is Meditated Through ERs

To determine whether 2-ME2 (1 mM)–induced upregula-

tion of VEGF-A mRNA expressions in ER+ cells was medi-

ated through an ER, GH3 cells were exposed to a pure

antiestrogen, ICI 182,780, concomitantly with 2-ME2 (1 mM)

for 3 days (Figure 5). The ICI 182,780 completely precluded

the induction of VEGF-A mRNA expression to the basal

levels by 2-ME2 in GH3 cells (Figure 5), indicating that the

2-ME2–induced VEGF-A mRNA upregulation is ER-depen-

dent. To further confirm the involvement of ER, the impact of

2-ME2 on ER-a–transfected human mammary epithelial

cells (ER-a+ HMECs) was evaluated. ER-a+ HMECs and

vector only–transfected cells were exposed to 1 mM 2-ME2

Figure 3. Chronic effects of various doses of 2-ME2 on the levels of VEGF-A protein in different tumor cell lines. Exponentially growing cells (i.e., GH3 or MCF-7 or

MIA-PaCa-2 cells) in DMEM containing 10% serum were exposed to one of the three concentrations (i.e., 1.0, 5.0, and 10.0 �M) of 2-ME2 for 3 days. After

exposure, proteins were extracted from different cells and 50 �g of total cell lysates was prepared for Western immunoblot analysis. VEGF-A protein levels were

determined by chemiluminescent immunoblotting with monoclonal anti –human VEGF-A. The photograph exhibits a single representative blot showing VEGF-A

and �-actin levels in untreated and 2-ME2– treated cells.

Figure 4. Time- and dose-dependent effects of 2-ME2 on VEGF-A mRNA expression in GH3 cells. Semiconfluent GH3 cells were exposed to various doses of

2-ME2 (i.e., 1, 5, and 10 �M) for different times as indicated; 0.1% ethanol – treated culture was considered as the untreated control (C). After treatment, total

RNA was extracted and VEGF-A mRNA expression was determined by Northern blot analyses using nonradioactive DIG-labeled probe. Data displayed as

mean ± SD from three separate experiments. (A) Single representative blot showing VEGF-A and GAPDH expressions in untreated and 2-ME2– treated cells.

(B) Arbitrary values indicate VEGF-A mRNA level. Data displayed as mean±SD in each case. P value was determined by Student’s t-test. P < .01 compared to

untreated control.
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for 3 days, and VEGF-AmRNA levels were determined using

Northern blot analyses. As expected, VEGF-A mRNA levels

were elevated significantly in ER-a+ HMECs (Figure 6),

whereas the effect was reversed in ER-a� HMECs (data

not shown). These studies demonstrate that the upregulation

of VEGF-A mRNA by 2-ME2 is mediated through ER-a.

Impact of Anti –VEGF-A Antibodies and Recombinant

Human VEGF-A Proteins on the Effects of 2-ME2

A previous study [31] has shown that VEGF-A is able to

protect endothelial cells from the antiangiogenic therapy of

decetaxel, a related compound of taxane extracted from

Taxus baccata. However, 2-ME2 could diminish the protec-

tive effect of VEGF [31], and encourages us to determine

whether the upregulation of VEGF induced by 2-ME2 was

functionally relevant. To test this, exponentially growing cells

in DMEM containing 10% FBS were exposed to either 1 mM
2-ME2 in the presence or absence of huMAb-VEGF-A (hu-

manized monoclonal antibody directed against VEGF-A; 100

ng/ml), or 5 or 10 mM concentrations of 2-ME2 with or without

recombinant VEGF-A protein. After 3 days of exposure, cell

proliferation was measured using BrdU ELISA. Similar to the

radioactive thymidine incorporation studies (Figure 1), BrdU

incorporations were elevated in both GH3 and MCF-7 cells

after exposure to 1 mM 2-ME2 for 3 days, whereas higher

doses (i.e., 5 or 10 mM) significantly reduced BrdU incorpo-

rations in both cell types (Figure 7). Simultaneous addition of

monoclonal anti–VEGF antibody with 1 mM 2-ME2 partially,

but significantly, reduced (Student’s two-tail test) BrdU in-

corporation in GH3 and MCF-7 cells when compared to the

incorporation seen with 2-ME2 alone. In contrast, when cells

were exposed to higher doses of 2-ME2, along with recom-

binant VEGF-A protein (10 ng/ml), the inhibitory action of

2-ME2 was reduced significantly (Student’s two-tail test) by

1.9-fold in GH3 and 2.1-fold in MCF-7 cells (Figure 7).

Together, these results indicate the involvement of VEGF-A

in the modulation of tumor cell proliferation by 2-ME2.

2-ME2–Induced VEGF-A Protein Secretion by Tumor Cells

Increased Endothelial Cell Proliferation Through a Paracrine

Pathway

To determine if the 2-ME2–induced release of VEGF-A

from tumor cells can modulate neighboring endothelial cells,

we carried out an indirect coculture experiment. BCECs were

grown in the lower chamber for 48 hours, or until the culture

became 60% confluent, and then grown for an additional

24 hours in serum-free conditions that kept the environment

growth hormone–free. In a separate culture, GH3 cells were

grown in DMEM containing 10% serum and 1 or 5 mM 2-ME2

for 3 days. After treatment, the GH3 cells with medium were

seeded in the upper chamber for 24 hours, as described in

the Materials and Methods section, and endothelial cell

Figure 5. Effect of pure antiestrogen ICI 182,780 on 2-ME2– induced upregulation of VEGF-A mRNA expression in GH3 cells. (A) GH3 cells were exposed to 1 �M

2-ME2 alone or in combination with 1 �M ICI 182,780 for 3 days. Total RNA was isolated and analyzed by Northern blotting using nonradioactive DIG-labeled PCR-

generated probes for VEGF-A and GAPDH. (B) The arbitrary values indicate VEGF-A mRNA concentrations. Data displayed as mean ± SD from three separate

experiments. P value was determined by Student’s t-test. *P < .01 vs control.
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proliferation was determined by measuring the radioactive

thymidine incorporation into the cells. The results indicate

that when BCECs were indirectly cocultured with GH3 cells

exposed to 1 mM 2-ME2, the incorporation of radioactive

thymidine increased by 2.06-fold. In contrast, radioactive

thymidine incorporation levels were unaltered in BCECs

grown in the presence of GH3 cells exposed to a high dose

of 2-ME2 (Figure 8). Moreover, the addition of huMAb-

VEGF-A into the culture reversed the proliferative effect of

GH3 cells that had been exposed to 1 mM 2-ME2.

Discussion

2-ME2 is traditionally an antiproliferative agent and exclu-

sively interacts with proliferative cells modulating target

genes associated with proliferation and apoptosis through

complex basal transcriptional machineries [7,10,16–

19,24,32]. The antiproliferative actions, as well as less toxic

effects, increased the potential therapeutic value of 2-ME2.

Interestingly, results of two recent in vivo and in vitro studies

depart from the existing impression of 2-ME2 action and

indicated that it can, depending on the dosage applied, exert

either proliferative or antiproliferative effects on mammary

tumor growth in rats, and proliferation of human mammary

tumor–derived MCF-7 tumor epithelial cells [12,15]. How-

ever, the precise mechanisms of these actions have not yet

been fully elucidated. Here, we report the novel findings that

2-ME2 is able to activate a signal pathway in steroid-respon-

sive tumor cells, which leads to their growth and survival and

also augments the proliferation of endothelial cells by a

paracrine pathway (Figure 9).

The cell proliferation studies demonstrated that 2-ME2

exhibits biphasic effects on cell proliferation in hormone-

responsive tumor cell lines. Higher dosage (i.e., 5 or 10 mM)

of 2-ME2 inhibits tumor cell proliferation. However, at the

dose of 1 mM, it significantly increases the radioactive

thymidine in ER+ GH3 rat pituitary tumor cells and MCF-7

human mammary tumor cells after 3 days of exposure,

whereas the effect was reversed in ER� MIA-PaCa-2 pan-

creatic adenocarcinoma cells. This result is consistent with

previous studies [12]. 2-ME2 does not alter the incorporation

of radioactive thymidine in these cells after acute exposure to

a different dosage of 2-ME2. We therefore sought to deter-

mine the signal that was induced by 2-ME2 and act as a

tumor cell survivor factor. Our recent studies have suggested

that 2-ME2–induced inhibition of estrogen-induced rat pitu-

itary tumor growth is mediated through the downregulation of

VEGF-A expression [14]. This is an essential growth factor

for estrogen-induced tumor angiogenesis and carcinogene-

sis [33], and also modulates the growth of various cancer

cells by the autocrine and paracrine pathways [29,34,35].

VEGF-A mRNA and protein levels can be modulated by

either potent long-acting, or weak or impeded short-acting

estrogens by ER-dependent or ER-independent pathways

[22,36,37]. This suggests that VEGF-A was the signaling

agent responsible for the effects seen with 2-ME2. Because

Figure 6. Effect of 2-ME2 on ER-a– transfected HMECs. (A) ER-a–
transfected cells were exposed to 1 �M 2-ME2 or ethanol vehicle for 3 days.

Total RNA was isolated and analyzed by Northern blotting using non-

radioactive DIG-labeled PCR-generated probes for VEGF-A and GAPDH. (B)

The arbitrary values indicate VEGF-A mRNA concentrations. Data displayed

as mean ± SD from three separate experiments. P value was determined by

Student’s t-test. *P < .001 vs control.

Figure 7. Effects of anti –VEGF antibody and recombinant VEGF protein on

the action of 2-ME2 on the proliferation of GH3 and MCF-7 cells.

Exponentially growing cells in DMEM containing 10% serum were exposed

to various concentrations of 2-ME2 in the presence or absence of VEGF

antibodies or recombinant VEGF protein for 3 days, and then cell proliferation

was determined using BrdU ELISA assay. Data displayed as mean ± SD from

three separate experiments. P value was determined by Student’s t-test. *P <

.05 vs control; **P < .01 vs 2-ME2– treated cells.
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2-ME2 has low affinity to bind with classical ER [12,24] and

also because extensive demethylation of 2-ME2 in the body

was reported [15], we have explored the effects of 2-ME2 on

VEGF-A mRNA expression and protein synthesis. The

results obtained indicate that, irrespective of the dosage,

acute exposure (4, 6, or 24 hours) to 2-ME2 increases VEGF-

A transcription in ER+ GH3 cells. However, chronic treatment

invoked a biphasic effect. At the dose of 1 mM 2-ME2, VEGF-

A mRNA and protein levels were increased markedly in GH3

cells as well as in MCF-7 cells. Because the pure estrogen

antagonist, ICI 182,780, was able to counteract the positive

response of VEGF-A to 2-ME2, we suggest that an action of

ER was involved. When cells were exposed to higher dosage

of 2-ME2, the levels of VEGF-A mRNA were markedly

reduced when compared to the basal level of untreated

GH3 and MIA-PaCa-2 cells. Nevertheless, the inhibitory

effect of higher dosage of 2-ME2 was virtually unaltered in

MCF-7 cells. This could be explained by the remarkably low

basal levels of VEGF-A mRNA in MCF-7 cells. The similar

explanation could be applicable to the VEGF-A protein

levels. Together, this study demonstrated a biphasic impact

of 2-ME2 on VEGF-A genes, and enhanced expression of

VEGF-A mRNA and proteins in steroid-responsive cells is

mediated through classical ER. This observation was con-

firmed by additional studies indicating that 2-ME2 was able to

upregulate the VEGF-A expression in ER-a–transfected

HMECs, but not in vehicle-transfected cells or ER� MIA-

PaCa-2 pancreatic adenocarcinoma cells where the impact

was basically reversed. There has been a difficulty in estab-

lishing how 2-ME2 modulates the biphasic expression of the

VEGF-A gene in steroid-responsive cells, but it appears that

Figure 8. Effect of 2-ME2– induced VEGF-A in GH3 cells on neighboring

endothelial cell proliferation. The effect was determined by indirect coculture

using Transwell culture system. The detailed experimental procedure has

been described in the Materials and Methods section. Endothelial cell

proliferation was determined by measuring the radioactive thymidine

incorporation using a liquid scintillation counter. Data displayed as mean±SD

from three separate experiments. P value was determined by Student’s t-test.

*P < .05 vs untreated control; **P < .01 vs 2-ME2– treated cells.

Figure 9. A diagram to illustrate the concept of biphasic effects of 2-ME2 and possible mechanism of action of 2-ME2 in ER+ and hormone-responsive tumor cells.

ER = estrogen receptor-a; P = parent compound.
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the concentration and time of exposure are crucial. One

could argue that when tumor cells are exposed to a low

concentration of 2-ME2, it binds directly to the ER, which

ultimately augments the expression of VEGF-A. Alternative-

ly, tumor cells could produce a catechol estrogen by deme-

thylating 2-ME2, which could bind the ER and increase

VEGF-A transcription (Figure 9). Similar explanations could

be invoked for results with cells exposed to higher dosage of

2-ME2 for short periods of time. As the exposure time

increased, cytotoxic effects might alter functions of multiple

genes and their signaling pathways that ultimately change

the cascade of events associated with the demethylation

process as well as with apoptosis.

If VEGF-A was the agent that was modulated by 2-ME2,

then it would be logical to examine the effect of increasing its

concentration using recombinant protein, or inhibiting its

action by use of a specific anti–VEGF-A antibody. We found

that anti– VEGF-A antibodies partially reversed the prolifer-

ative effect of 2-ME2 in both GH3 and MCF-7 cells. However,

the addition of VEGF-A protein into the culture was able to

block the inhibitory action of 2-ME2. Consequently, these

studies indicate that a threshold level of VEGF-A and its

signal is specific and crucial for protecting tumor cells from

apoptotic death. Because the effect is not absolute, it is likely

that other, as yet undefined, factors are also important in

these events.

VEGF-A, a selective endothelial cell growth factor, is

synthesized and secreted by various tumor cells and by

several transplantable animal tumors [38–40]. Upon secre-

tion from tumor cells, this growth factor may contribute to

angiogenic stimulation by interacting with tumor vessel en-

dothelial cell surface receptors [40,41]. Therefore, we exam-

ined whether 2-ME2–induced VEGF-A expression in tumor

cells is functionally active and enhances the proliferation of

neighboring endothelial cells. The indirect coculture studies

revealed that enhanced expression of VEGF-A released

from tumor cells in response to 2-ME2 interacted with adja-

cent capillary endothelial cells and eventually increased the

endothelial cell proliferation.

In conclusion, this is the first report to indicate that the

bifunctional action of 2-ME2 is directly linked to the VEGF

pathway, as depicted in Figure 9. Although we do not know

yet the immediate, proximate molecular changes that may

require exerting the effect, it is clear that the pathway we

have proposed here will be of importance in explaining the

overall mechanism of action of this molecule. Expectantly,

these studies can further its optimal use for the treatment of

endocrine-related cancers such as breast cancer. Moreover,

therapeutic use of 2-ME2 may be most effective when

administered in combination with an anti–VEGF-A agent,

at least against a subset of breast cancers.
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