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Abstract 

In this paper, a novel Differential Search Algorithm (DSA) approach is proposed to solve multiobjective optimization problems, 
called Multiobjective Differential Search Algorithm (MODSA). MODSA utilizes the concept of Pareto dominance to determine 
the direction of a super-organism and it maintains non-dominated solutions in the external repository. This approach also uses the 
external repository of super-organisms that is used to guide other super-organisms. It guides the artificial organisms to search 
towards non-crowding and external regions of Pareto front. The performance of proposed approach is evaluated against the other 
well-known multiobjective optimization algorithms over  a set of  multiobjective benchmark test functions. Experimental results 
reveal that the MODSA outperforms the other competitive algorithms for benchmark test functions. 
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1. Introduction 

Multi-objective optimization is the process of simultaneously optimizing two or more conflicting objectives. 
Real-life problems contain more than one conflicting objective function. Hence it requires multi-objective 
optimization approach. The optimal solution is clearly defined in a single objective function optimization. However, 
multiobjective optimization problems do not restrict to obtain a single objective function [5]. The multiobjective 
optimization problems (MOPs) contain a set of solutions called non-dominated solutions. Each solution in the non-
dominated set is called as a Pareto-Optimal. The Pareto Optimal solutions are mapped in the objective space that are 
known as Pareto front [6]. The main objective of multiobjective optimization is to obtain the Pareto front of a given 
a MOP.  Generally, the multiobjective optimization problems are computational intensive as the search space for 
MOPs is very large. The use of metaheuristic algorithms for multiobjective optimization has significantly grown in 
the last few years [8]. Some of these metaheuristic algorithms are Simulated Annealing (SA), Genetic Algorithm 
(GA), Tabu Search (TA), Ant Colony Optimization (ACO), Differential Evolution (DE), Particle Swarm 
Optimization (PSO), and so on. However, any single metaheuristic may not be the best fit for all problems; rather it 
may be problem specific. Although many metaheuristic algorithms for solving multiobjective problems have been 
proposed as reported in literature, the results are unsatisfactory. Hence, an improvement to metaheuristic algorithms 
for solving multiobjective problems is still required. 

Recently, Pinar Civicioglu [2] developed a new metaheuristic search algorithm called Differential Search 
Algorithm (DSA) for uni-objective optimization. DSA simulates a superorganism migrating between the two 
stopovers sites. DSA has unique mutation and crossover operators. DSA has only two control parameters that are 
used for controlling the movement of superorgnisms. DSA has been applied for a variety of applications. Till now, it 
had not been extended to solve multiple objectives. DSA appears more suitable for multiobjective problems as high 
speed of convergence and less overhead of parameters setting. In this paper, a novel approach named multiobjective 
differential search algorithm (MODSA), which allows the DSA to deal with multiobjective optimization problems. 
MODSA is based on non-dominated sorting strategy. The concept of Pareto dominance is incorporated in MODSA 
to determine which solution is better. The constraint handling mechanism is added in the MODSA to increase the 
ability of exploration of DSA. MODSA has been compared with other recently proposed multiobjective 
metaheuristic algorithms and validated on  benchmark test functions. 

The reminder of the paper is organized as follows. Section 2 gives a brief description of the previous relevant 
work. Section 3 gives the basic concept of DSA. The proposed MODSA is presented in Section 4, followed by 
results and discussion are shown in Section 5. The statistical analysis of the multiobjective optimization algorithms 
is performed in Section 6. Finally, the conclusions are drawn in Section 7. 

2. Differential Search Algorithm 

Differential Search Algorithm (DSA) is a novel metaheuristic algorithm proposed by Civicioglu [2]. It mimics the 
Brownian-like random-walk movement. The main motivation of DSA is the migration behaviour of living beings, 
which move away from a habitat having low capacity of food resources. The migration process entails movement of  
large number of individuals comprising a superorganism. A superoragnism moves towards habitat having more food 
capacity. Once it finds new fruitful habitat named as stopover site, it settles in the new habitat for the time being and 
continues its migration towards more fruitful habitats. DSA starts by generating individuals of respective 
optimization problem corresponding to an artificial-superorganism. Hereafter artificial-superorganism tries to 
migrate from its current position to the global minimum value. 
 In DSA each individual of a superorganism is represented as iX , 1,2,....,i N  and as many members as the 
dimension of the problem i.e., ijx , 1,2,....,j D . Here N  and D  represent the number of individuals and the size 
of problem respectively. The DSA consists of the following steps [2, 8]: 

Step 1. Initialize the artificial-organism: Each member of a individual (or artificial-organism) is initialized to a 
 random position. This is achieved as follows: 

 ij j j jx rand up low low  (1) 
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 where jlow  and jup  represents the lower and upper bounds of thj dimension of respective problem.  

Step 2. Initialize the control parameters: The values of 1p and 2p are used to determine the frequency of 
 perturbation of members in a position corresponding to an individual. The Scale  is used to determine the
 amount of perturbation in size of position of the members in an individuals. It is generated through a 
 gamma random number generator. The values of 1p , 2p and Scale are given below: 
 1 1 2 20.3 0.3p rand and p rand  (2) 

 3 4 52Scale randg rand rand rand  (3) 

where randg  is the gamma random number generator. 1rand , 2rand , 3rand , 4rand , and 5rand  are the 
uniform random number generators. 
 

Step 3. Compute the stopover site: During the migration process, Brownian-like random-walk model is used to 
determine the intermediate stopover sites. To explore the stopover sites, randomly selected individuals 
move towards targets represented by donor. The position of stopover site is computed based on randomly 
selected individual, which is given below:  

 StopoverSite Superorganism Scale donor Superorganism  (4) 

 _ (i)random shifflingdonor X   (5) 

Step 4. Compute the participating members: The members participating in the search process are determined 
through stochastic scheme. The values of 1p  and 2p are used in stochastic scheme, which is described in 
[2].  

Step 5. Check the limit of stopover site: The stochastic process is completely random. There is a probability that 
an element of the stopover site is beyond the limit of the habitat. In such a situations, the elements of 
stopover site are to be maintained within the boundary of the specified search space.  

Step 6. Check the termination criterion: If a stopover site is more fruitful than the sources associated with an 
individual of artificial-organisms, the corresponding individual moves to stopover site. The search for 
global minimum continues and the individual stops near the intermediate stopover for the time being and 
then continues its search from the current position. Steps 2 to 6 are repeated until the value of global 
minimum is reached. 

3. Multiobjective Differential Search Algorithm 

The main contribution of this paper is the development of a novel multiobjective optimization technique based on 
DSA. The proposed approach is inspired from multiobjective particle swarm optimization (MOPSO) [4]. In this 
paper, Pareto dominance is incorporated into differential search algorithm (DSA) to solve problems having number 
of objective functions. This novel approach uses the external repository which helps to guide the artificial-organism 
during migration. The proposed approach of the multiobjective optimization using differential search algorithm 
(MODSA) is given in Section 3.1.  

3.1. Proposed Algorithm 

Step 1. Initialize the artificial-Superorganism ( SUP ):  
a)  For 1i to  number_ of_ artificial-organism 
b)  Initialize SUP i   
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Step 2.  Evaluate each of the artificial-organisms in SUP . 
 

Step 3.  Store the positions of the artificial-organisms that represent nondominated solutions in the external 
repository ( REP ). 

 

Step 4.  Generates hypercubes of the search space which have been explored and locate the artificial-organisms 
using these hypercubes as a coordinate system where position of each artificial-organism is defined 
according to its objective functions. 

   
Step 5. Repeat the following until maximum number of iterations has been reached 

a)  Compute 1p , 2p and Scale  using equations (2) and (3) respectively. 
 

b) Compute random process designated as map for each artificial-organism of the superorganism using 
stochastic scheme (mentioned in Step 4 of DSA). 

c)  Compute the position for each artificial-organism using the following expression: 

 POS i Scale map REP h SUP i  (6) 

where SUP i  represents the current value of the artificial-organism i  and REP h  represents a value 
that is taken from repository. The index h  is computed  is following manner.  
The roulette-wheel selection procedure will select the hypercube. From this selected hypercube, we 
further select an artificial-organism randomly.   

d)  Compute the new position of the artificial-organism by adding the position generated from previous step.  
  SUP i SUP i POS i  (7) 

e)  Maintain the artificial-organism within search space. 

f)  Evaluate each artificial-organism in SUP . 

g)  Update the contents of REP : This update mentions the nondominated solutions in repository and 
 eliminates the dominated solutions from the REP . When the REP  is full, the artificial-organisms 
 located in less populated areas  are preserved.  

 h) When the position of the artificial-organism in its memory is not better than the current position, the 
 artificial-organism's position is updated with current position. Pareto dominance is applied to decide 
 whether the position from memory should be retained or not. 

Step 6.  Return the optimal solution. 
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4. Computational Results 

To evaluate the performance of  MODSA, seven standard benchmark test functions named as Schaffer (SCH), 
Fonseca (FON), ZDT1 to ZDT4, ZDT6, and DTLZ2 have been used for experimentation. We have compared the 
performance of MODSA with the two well-established multiobjective optimization algorithms such as NSGA-II [1] 
and MOPSO [4]. The results are evaluated and compared using acceptable three performance metrics such as 
Hypervolume (HV) [9], Spread [9], and Epsilon [3]. 

4.1. Parameter Setting for the Involved Algorithms 

The parameters settings of the methods (NSGA-II and MOPSO) used are tabulated in Table 1. In addition to 
parameters mentioned in Table 1, the maximum number of generations for NSGA-II, MOPSO and MODSA is fixed 
as 500. The results have been compared in terms of  'mean' and 'standard deviation' over ten independent runs, each 
run consisting of 500 generations. 

 
 
 
 
 

Table 1.Parameter setting for multiobjective optimization algorithms 

 Population 
Size 

Mutation 
Rate 

Crossover 
Rate 

Repository 
Size 

Grid 
Size 1C  2C  1P  2P  

NSGA-II [1] 100 0.8 0.3 - - - - - - 

MOPSO [4] 100 - - 100 10 1.50 1.50 - - 

MODSA 
(Proposed) 

100 - - 100 10 - - 0.3 rand  0.3 rand  

4.2. Results and Discussions 

The comparison of the results for seven multi-objective test functions over three algorithms is given in Tables 2-4. 
For SCH test problem, MODSA outperforms other algorithms in terms of Epsilon, Spread and hypervolume. The 
results indicate that the MODSA produced a set of solutions that are approximately distributed in the objective 
space. The MODSA obtained the best results for the FON test  problem. It provides better diversity and spread 
among other competitive algorithms. For ZDT1 and ZDT2 test problems, MODSA provided better results among all 
competitive algorithms in terms of Epsilon, Spread and Hypervolume. The MOPSO provided a set of solutions that 
were well converged for ZDT3 and ZDT4 test problems. MODSA provided better spread and hypervolume values 
than other algorithms for these test problems. The MODSA successfully converged to optimal solution and 
produced solutions having uniform distribution for ZDT6 and DTLZ2 test problems. Hence the MODSA surpasses 
other algorithms for solving SCH, FON, ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, and DTLZ2 test problems. 

Table 2.Mean and Standard deviation of Epsilon Metric 

 SCH FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ2 

NSGA-II 3.951E+00 
(4.63E-02) 

9.795E+00 
(1.26E-03) 

9.754E-01 
(1.65E-02) 

9.869E-01 
(1.34E-02) 

8.459E-01 
(3.65E-03) 

9.849E-01 
(2.43E-02) 

9.996E-01 
(1.26E-03) 

6.811E-01 
(1.74E-02) 

MOPSO 3.835E+00 
(6.84E-02) 

9.474E-01 
(1.24E-02) 

9.634E-01 
(2.41E-02) 

9.838E-01 
(7.83E-03) 

4.965E-01 
(9.82E-02) 

9.679E-01 
(2.51E-02) 

9.885E-01 
(2.09E-02) 

8.384E-01 
(8.19E-02) 

MODSA 
(Proposed) 

3.633E+00 
(1.45E-01) 

9.148E-01 
(2.84E-02) 

9.613E-01 
(2.53E-02) 

9.829E-01 
(6.18E-03) 

8.173E-01 
(4.44E-02) 

9.842E-01 
(7.87E-03) 

8.562E-01 
(9.99E-02) 

1.096E+00 
(6.56E-02) 
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Table 3.Mean and Standard deviation of Spread Metric 

 SCH FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ2 

NSGA-II 5.000E-01 
(0.00E+00) 

5.542E-01 
(1.32E-02) 

5.826E-01 
(5.07E-02) 

6.137E-01 
(6.31E-02) 

5.665E-01 
(2.46E-02) 

5.875E-01 
(3.19E-02) 

5.179E-01 
(1.41E-02) 

9.193E-01 
(5.31E-02) 

MOPSO 5.000E-01 
(0.00E+00) 

5.508E-01 
(1.09E-02) 

6.378E-01 
(2.71E-02) 

6.875E-01 
(1.49E-02) 

5.974E-01 
(9.88E-02) 

5.052E-01 
(1.59E-02) 

5.063E-01 
(7.53E-03) 

5.258E-01 
(2.22E-02) 

MODSA 
(Proposed) 

5.000E-01 
(0.00E+00) 

5.435E-01 
(1.38E-02) 

5.793E-01 
(2.21E-02) 

6.116E-01 
(1.52E-02) 

5.294E-01 
(3.13E-02) 

5.038E-01 
(3.35E-02) 

5.034E-01 
(2.55E-03) 

4.846E-01 
(2.13E-02) 

Table 4.Mean and Standard deviation of Hypervolume Metric 

 SCH FON ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 DTLZ2 

NSGA-II 5.644E-03 
(1.22E-02) 

1.219E-01 
(2.61E-01) 

6.449E-01 
(4.13E-01) 

4.850E-01 
(3.91E-01) 

1.741E-01 
(4.34E-02) 

6.672E-01 
(4.37E-01) 

4.828E-01 
(1.33E-01) 

2.863E-01 
(1.45E-02) 

MOPSO 7.829E-01 
(1.66E-01) 

3.109E-01 
(2.21E-01) 

5.899E-01 
(3.46E-01) 

4.048E-01 
(2.52E-01) 

7.096E-01 
(3.30E-01) 

5.576E-01 
(4.04E-01) 

2.704E-01 
(1.92E-01) 

1.485E-01 
(1.46E-01) 

MODSA 
(Proposed) 

8.073E-01 
(1.26E-01) 

5.036E-01 
(1.69E-01) 

7.495E-01 
(2.81E-01) 

6.684E-01 
(2.55E-01) 

8.663E-01 
(1.56E-01) 

7.322E-01 
(1.65E-01) 

7.078E-02 
(1.03E-01) 

4.592E-01 
(2.92E-01) 

4.3. Statistical Analysis 

Wilcoxon test was used to find out whether there is a significant difference in the performance of one algorithm 
compared to other algorithms for each benchmark test function with respect to above-mentioned performance 
metrics. Tables 5-7 recapitulate the results of Wilcoxon test in Epsilon, Spread and HV performance metrics 
respectively. In each row, seven benchmark test functions are denoted by a symbol. We have used three symbols: "-" 
means that there is no statistical significance between algorithms, "┴" means that the algorithm in the column has 
produced better results than the algorithm in the row, and  "┼"  means that the algorithm in the column is 
statistically better than the algorithm in the row. A look at the Tables  5-7 reveals that the MODSA is statistical 
better than other algorithms in most of the benchmark test functions. 

Table 5.Epsilon Metric: statistical tests for benchmark test problems.  

 MOPSO MODSA 

NSGA-II ┼ ┼ ┴ ┴ ┼ ┼ ┼ ┼ ┼ ┼ ┴ ┴ ┼ ┼ ┼ ┼ 

MOPSO         ┼ ┼ ┴ ┴ ┼ ┼ ┼ ┼ 

Table 6. Spread  Metric: statistical tests for benchmark test problems.  

 MOPSO MODSA 

NSGA-II - ┴ ┼ ┼ ┴ ┼ ┼ ┼ - ┴ ┴ ┴ ┼ ┼ ┼ ┼ 

MOPSO         - ┴ ┼ ┼ ┼ ┴ ┼ ┼ 

Table 7. Hypervolume  Metric: statistical tests for benchmark test problems.  

 MOPSO MODSA 

NSGA-II ┼ ┴ ┴ ┴ ┼ ┴ ┼ ┼ ┼ ┼ ┴ ┴ ┼ ┴ ┼ ┼ 

MOPSO         ┴ ┼ ┴ ┼ ┼ ┴ ┼ ┼ 

5. Conclusions 

In this paper, a novel approach for multiobjective differential search algorithm has been proposed. The proposed 
approach utilized the external repository to store the nondominated artificial-organisms found during search. The 
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performance of MODSA was compared with recently developed multi-objective algorithms for eight benchmark test 
functions. The results have been evaluated on the basis of performance metrics characterizing the convergence and 
diversity. The results reveal that the proposed approach is superior over NSGA-II and MOPSO in terms of 
convergence and diversity. The statistical test demonstrate the statistical significance of proposed approach. Future 
research work includes the application of MODSA on automatic cluster evolution and brain image segmentation. 
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