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a b s t r a c t

Suppose a graph G is given with two vertex-disjoint sets of vertices Z1 and Z2. Can
we partition the remaining vertices of G such that we obtain two connected vertex-
disjoint subgraphs of G that contain Z1 and Z2, respectively? This problem is known as the
2-Disjoint Connected Subgraphs problem. It is already NP-complete for the class of
n-vertex graphs G = (V , E) in which Z1 and Z2 each contain a connected set that dominates
all vertices in V \(Z1∪Z2). We present anO∗(1.2051n) time algorithm that solves it for this
graph class. As a consequence, we can also solve this problem in O∗(1.2051n) time for the
classes of n-vertex P6-free graphs and split graphs. This is an improvement upon a recent
O∗(1.5790n) time algorithm for these two classes. Our approach translates the problem
to a generalized version of hypergraph 2-coloring and combines inclusion/exclusion with
measure and conquer.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

There are several natural and elementary algorithmic problems that check if the structure of some fixed graphH showsup
as a patternwithin the structure of some input graphG. One of themostwell-known problems is theH-Minor Containment
problem that asks whether a given graph G contains H as a minor. A celebrated result by Robertson and Seymour [15] states
that the H-Minor Containment problem can be solved in cubic time for every fixed pattern graph H . They obtain this result
by designing an algorithm that solves the following problem in cubic time when |Z1| + |Z2| + · · · + |Zk| is fixed.
Disjoint Connected Subgraphs
Instance: a graph G and mutually disjoint nonempty sets Z1, . . . , Zk ⊆ VG.
Question: do there exist mutually vertex-disjoint connected subgraphs G1, . . . ,Gk

of G such that Zi ⊆ VGi for 1 ≤ i ≤ k?
Our focus. We are interested in finding a fast exact algorithm that solves the 2-Disjoint Connected Subgraphs problem,
which is a restriction of the above problem to k = 2, and inwhich Z1 and Z2 mayhave arbitrary size; see Fig. 1 for an example.
This problem is already NP-complete if one of the sets Z1 or Z2 has cardinality 2, as shown in a recent paper [12]. A brute-
force algorithm solves the 2-Disjoint Connected Subgraphs problem in O∗(2n) time by computing all possible partitions
of G into 2 connected subgraphs. Here, the O∗-notation, used throughout the paper, suppresses factors of polynomial order.

Can we obtain an O∗(αn) time algorithm for 2-Disjoint Connected Subgraphs for some α < 2?

In our paper, the total number of vertices of the graph is chosen as the parameter used in the running time analysis. We note
that another natural parameter would be n′

= n− |Z1| − |Z2| as we only need to partition the vertices not in Z1 ∪ Z2; in this
case, the problem can trivially be solved in O∗(2n′

).

✩ An extended abstract of this paper has been presented at ISAAC 2009.
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Fig. 1. A graph G with two sets Z1 (black) and Z2 (white) that allows a partition into two connected subgraphs G1 and G2 such that Z1 ⊆ VG1 and
Z2 ⊆ VG2 .

We note that connectivity is a ‘‘global’’ property. Hence, 2-Disjoint Connected Subgraphs is an example of a ‘‘non-local’’
problem. Such a problem is typically hard to solve exactly (cf. [8]). The best-known non-local problem is the Traveling
Salesman problem, for which no exact algorithm with better time complexity than O∗(2n) is known. Another example of
a non-local problem is the Connected Dominating Set problem. The fastest known exact algorithm for the Connected
Dominating Set problem runs in O∗(1.9407n) time [8], whereas for the general (unconnected) version of the Dominating
Set problem an O∗(1.5048n) exact algorithm is known [16]. In an attempt to design fast exact algorithms for non-local
problems, one can focus on restrictions of the problem to certain graph classes. Below we discuss the current outcomes of
this approach when applied to the 2-Disjoint Connected Subgraphs problem.

Existing results. Gray et al. [10] show that the 2-Disjoint Connected Subgraphs problem is NP-complete even for the class
of planar graphs. They motivate this problem from an application in computational geometry, namely finding a realization
of an imprecise terrain that minimizes the total number of local minima and local maxima. In [12] it has been shown that
2-Disjoint Connected Subgraphs is NP-complete for the class of P5-free graphs, whereas it is polynomially solvable for
P4-free graphs. There, it is also shown that this problem is NP-complete for the class of split graphs. Let Gk,r denote the
class of graphs of which all connected induced subgraphs have a connected (distance-) r-dominating set of size at most k.
Somewhat surprisingly, for any fixed k, the 2-Disjoint Connected Subgraphs problem for Gk,r can be solved in polynomial
time if r = 1, or if one of the given sets Z1 or Z2 of vertices has fixed size [12]. However, for any fixed k and r ≥ 2, the
2-Disjoint Connected Subgraphs problem is NP-complete and the authors of [12] present an algorithm that solves it for
n-vertex graphs in the class Gk,r in O∗((f (r))n) time, where

f (r) = min
0<c≤0.5


max


1

cc(1 − c)1−c
, 21− 2c

r−1


.

In particular, their algorithm solves the 2-Disjoint Connected Subgraphs problem faster than O∗(2n) for any n-vertex
Pℓ-free graph. For example, for a P6-free graph on n vertices it uses O∗(1.5790n) time and for a P7-free graph it uses
O∗(1.7737n) time. Also, for an n-vertex split graph this algorithm runs in O∗(1.5790n) time.

Our results and paper organization. After explaining our notations and terminology in Section 2, we propose to study the
class of graphs G in which Z1 and Z2 both have a connected set that dominates VG\(Z1 ∪ Z2). In Section 3 we show that the
2-Disjoint Connected Subgraphs stays NP-complete under this restriction and we present an algorithm that solves it in
O∗(1.2051n) time for this class of graphs. We also show how to use this algorithm to solve the problem in O∗(1.2051n)
time for the classes of P6-free graphs and split graphs. Hence, we improved theO∗(1.5790n) time algorithm of [12] for these
graph classes. Our approach translates the problem to a generalized hypergraph 2-coloring problem, for which we design
an exact algorithm with the above running time in Section 4. It uses the recently introduced combined approach of [16] of
inclusion/exclusion [2,3,14]with fastmeasure and conquer based running times [7] for solving theDominating Setproblem.
Hence, our algorithm shows that this approach is not restricted to Dominating Set only but has a larger applicability within
the field of covering and partitioning algorithms. Section 5 contains the conclusions and mentions relevant open problems.

2. Preliminaries

All graphs in this paper are undirected, finite, and without multiple edges. Unless explicitly stated otherwise, they do not
contain loops. We write Pk to denote the path on k vertices. Let G = (V , E) be a graph. For a subset S ⊆ V we write G[S]
to denote the subgraph of G induced by S. Two subsets S, T ⊆ V are adjacent if there is an edge between a vertex in S and
a vertex in T . The distance distG(u, v) between two vertices u and v in a graph G is the length |VP | − 1 of a shortest path P
between them. For any vertex v ∈ V and set S ⊆ V , we write distG(v, S) to denote the length of a shortest path from v to
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S, i.e., distG(v, S) := minw∈S distG(v, w). The neighborhood of a vertex u ∈ V is the set NG(u) := {v ∈ V | uv ∈ E}. The
set N r

G(S) := {u ∈ V | distG(u, S) ≤ r} is the r-neighborhood of a set S. Note that N0
G(S) = S and N1

G(S) = S ∪


u∈S NG(u),
in particular N1

G({u}) = {u} ∪ NG(u). A set S r-dominates a set S ′ if S ′
\S ⊆ N r

G(S). We also say that S r-dominates G[S ′
].

A subgraph H of G is an r-dominating subgraph of G if VH r-dominates G. In case r = 1, we use ‘‘dominating’’ instead of
‘‘1-dominating’’. A set S ⊆ V is called a (k, r)-center of G if |S| ≤ k and N r

G(S) = V . A set S is called connected if G[S] is
connected. The class of graphs all connected induced subgraphs of which have a connected (k, r)-center is denoted by Gk,r .

A graph G = (V , E) is called a split graph if V can be partitioned into a clique and an independent set. A graph G is called
H-free for some graph H if G does not contain an induced subgraph isomorphic to H .

We observe that every P5-free graph and every split graph is P6-free. Then the following observation is a direct
consequence of characterizations of Pℓ-free graphs in [11] for the case ℓ = 6 and [1] for the case ℓ ≥ 7.

Observation 1 ([12]). The class of split graphs and the class of Pℓ-free graphs for ℓ ∈ {5, 6} belong to G4,2, whereas the class of
Pℓ-free graphs for ℓ ≥ 7 belongs to G1,ℓ−3.

The edge contraction of edge e = uv in a graph G = (V , E) removes the two end-vertices u and v from G, and replaces
them by a new vertex that is adjacent to precisely those vertices to which u or v were adjacent. Let degG(v) = |NG(v)|
denote the degree of v ∈ V . If no confusion is possible, we do not use the subscript.

A hypergraph H = (Q , S) is a set Q = {q1, . . . , qm} of elements together with a set S = {S1, . . . , Sn} of subsets of Q called
hyperedges. A 2-coloring ofH is a partition of Q into Q1,Q2 such that Q1 ∩S ≠ ∅ and Q2 ∩S ≠ ∅ for each S ∈ S. These notions
can be generalized as follows. A 2-hypergraph H = (Q , L, R) is a set Q = {q1, . . . , qm} together with two (not necessarily
disjoint) sets L = {L1, . . . , Ls} and R = {R1, . . . , Rt} of subsets of Q . We call L and R the hypergraph classes of H . With a
2-hypergraph H = (Q , L, R) we associate its incidence graph I , which is a bipartite graph on Q ∪ L ∪ R, where qS ∈ EI if
and only if q ∈ S for q ∈ Q and S ∈ L ∪ R. Let the dimension of a 2-hypergraph H = (Q , L, R) be d = |Q | + |L| + |R|. A
2-coloring of H is a partition of Q into Q1,Q2 such that Q1 ∩ L ≠ ∅ for each L ∈ L and Q2 ∩ R ≠ ∅ for each R ∈ R. We say
that the vertices in Q1 and Q2 have received color 1 and 2, respectively. This leads to the following decision problem.
2-Hypergraph 2-Coloring
Input: a 2-hypergraph H .
Question: does H have a 2-coloring?
Note that a 2-hypergraphH = (Q , S, S) is 2-colorable if and only if hypergraphH ′

= (Q , S) is 2-colorable. TheHypergraph
2-Colorability problem, also known as Set Splitting, asks if a hypergraph is 2-colorable and is NP-complete (cf. [13]). Due
to this, we can make the following observation.

Observation 2. The 2-Hypergraph 2-Coloring problem is NP-complete.

A path decomposition of a graph G = (V , E) is a sequence of bags (sets of vertices) X = ⟨X1, . . . , Xr⟩ with the following
three properties. First,

r
i=1 Xi = V . Second, for each uv ∈ E, there exists a bag Xi such that {u, v} ⊆ Xi. Third, if v ∈ Xi and

v ∈ Xk then v ∈ Xj for all i ≤ j ≤ k. The width of X is max1≤i≤r |Xi| − 1 and the pathwidth pw(G) of G is the minimumwidth
over all possible path decompositions of G.

3. The 2-Disjoint Connected Subgraphs problem

Let (G, Z1, Z2) be an instance of the 2-Disjoint Connected Subgraphs problem. Let U = VG\(Z1 ∪ Z2). We say that G
is semi-connected with respect to Z1 and Z2 if Z1 and Z2 each contain a connected set that dominates U . We note that the
2-Hypergraph 2-Coloring problem stays NP-complete for the class of 2-hypergraphs H = (Q , L, R) with Ls = Rt = Q .
These 2-hypergraphs have an incidence graph I that is semi-connected with respect to L and R, because Ls and Rt both
dominate Q = VI\(L ∪ R). Because such a 2-hypergraph H has a 2-coloring if and only if (I, L, R) is a Yes-instance of the
2-Disjoint Connected Subgraphs problem, the following observation immediately follows from Observation 2.

Observation 3. The 2-Disjoint Connected Subgraphs problem is even NP-complete for semi-connected graphs.

For our main theorem we need the following result. We prove it in Section 4.

Theorem 1. The 2-Hypergraph 2-Coloring problem can be solved in O∗(1.2051d) time for 2-hypergraphs of dimension d.

Here is our main theorem.

Theorem 2. The 2-Disjoint Connected Subgraphs problem can be solved in O∗(1.2051n) time for the class of semi-connected
graphs.

Proof. Let (G, Z1, Z2) be an instance of the 2-Disjoint Connected Subgraphs problem with G semi-connected and U =

VG\(Z1 ∪ Z2). For i = 1, 2, let Di be the connected set in Zi that dominates U . Transform each component of G[Z1] and G[Z2]
to a single vertex by performing edge contractions. This results in two new sets Z ′

1 and Z ′

2, each of which is independent and
contains a vertex that is adjacent to all vertices in U . The latter property follows from the presence of the sets D1 and D2
in G, and implies that we may remove all edges in G[U]. We may also remove all edges between Z ′

1 and Z ′

2. Then we obtain
an equivalent instance H = (Q , L, R) of 2-Hypergraph 2-Coloring as follows. We let the elements of Q correspond to
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the vertices in U . We let the hyperedges in L correspond to the vertices in Z ′

1, i.e., a hyperedge Li corresponding to a vertex
z ∈ Z ′

1 contains exactly those elements of Q that correspond to the neighbors of z (which are in U by our construction). We
define R with respect to Z ′

2 in a similar matter. Because H has dimension d = |Q | + |L| + R| = |U| + |Z ′

1| + |Z ′

2| ≤ n, we
obtain the desired result by applying Theorem 1. �

As a consequence of Theorem 2 we find the following.

Corollary 1. For any fixed k ≥ 1, the 2-Disjoint Connected Subgraphs problem can be solved in O∗(1.2051n) time for any
n-vertex graph in Gk,2. In particular, this is true for P6-free graphs and split graphs on n vertices.

Proof. The second statement immediately follows from Observation 1 and the first statement. Below we prove the first
statement.

Let G = (V , E) be a graph in Gk,2 for some fixed k ≥ 1 with two vertex-disjoint sets Z1 and Z2. Let U = V\(Z1 ∪ Z2).
Observe that in any solution (G1,G2) of this problem, G1 and G2 each have a connected (k, 2)-center by definition of the class
Gk,2. We proceed as follows. We guess a set D1 of up to k vertices in G[Z1 ∪ U] and a set D2 of up to k vertices in G[Z2 ∪ U] to
be these (k, 2)-centers. We check if D1 ∩ D2 = ∅ and if G[D1] and G[D2] are both connected. If one of these conditions does
not hold, we guess other sets instead. Otherwise we keep D1 and D2 and form a new instance (G′, Z ′

1, Z
′

2), where

• G′ is the subgraph of G obtained after removing all vertices from U that are neither adjacent to D1 nor to D2. The reason
we may remove these vertices is that they are redundant in any possible solution (G1,G2) in which Di is a connected
(k, 2)-center of Gi for i = 1, 2. This can be seen as follows. Let u ∈ U be neither adjacent to D1 nor to D2. Assume that u
is in one of the two graphs in a solution (G1,G2) as above, say u is in G1. Let G′

1 denote the graph obtained from G1 after
removing u. Then G′

1 contains all vertices of Z1, because uwas a vertex from U . Moreover, G′

1 is connected, because D1 is
also a connected (k, 2)-center of G′

1. The latter statement follows from the assumption that u is not adjacent toD1. Hence,
every vertex from G′

1 that is not in N1
G′
1
(D1) is still adjacent to a neighbor of D1 in G′

1.

• Z ′

1 = Z1 ∪ D1 ∪ {u ∈ U | u is adjacent to D1 but not to D2.} and
Z ′

2 = Z2 ∪ D2 ∪ {u ∈ U | u is adjacent to D2 but not to D1.}.
Wemay define Z ′

1 and Z ′

2 like this for a similar reason as above.

Then G′ is semi-connectedwith respect to Z ′

1 and Z ′

2 andwe can use Theorem 2. Since the total number of guesses is bounded
by a polynomial in n, the result follows. �

4. The proof of Theorem 1

We first sketch our algorithm for the 2-Hypergraph 2-Coloring problem that runs in time O∗(1.2051d) for d-
dimensional 2-hypergraphs.

Phase 1. We exhaustively apply a series of reduction rules and afterwards branch on the elements q ∈ Q : either give q color
1 or color 2. In both cases we remove q and all hyperedges that are colored appropriately (color 1 for L, and color 2 for R).
We go to Phase 2 with a 2-hypergraph if every remaining element appears in at most three hyperedges in L ∪ R.

Phase 2. The algorithm switches to the counting variant of our problem. It now uses a different set of reduction rules. If no
such rule is applicable it applies inclusion/exclusion based branching on the hyperedges inL andR. We go to Phase 3 when
we have sufficiently reduced the size of the 2-hypergraph.

Phase 3. The algorithm solves the counting variant of our problem by dynamic programming over a path decomposition of
the incidence graph of each remaining 2-hypergraph. It uses the outcomes for the computations necessary in Phase 2.

4.1. The algorithm in detail

Throughout the description of the algorithm, we denote the 2-hypergraph under consideration by H = (Q , L, R) and
its incidence graph by I . So, H represents the elements with no color yet and the hyperedges with no element of the right
color yet (color 1 for L ∈ L and color 2 for R ∈ R). All other elements and hyperedges have been removed. If we say that an
element in Q or a hyperedge in L ∪ R has a certain degree, we refer to its degree in I .

Phase 1: reduce and branch
We first introduce two reduction rules and exhaustively apply them to H .

Rule 1. Deal with elements appearing in hyperedges of at most one hypergraph class.
Let q be an element of H . If q has degree zero, remove q. If q occurs in only one of {L, R}, color it with 1 if it belongs to a
hyperedge in L and with 2 otherwise. Remove q and all hyperedges containing q. If H becomes empty this way, return Yes.

Rule 2. Deal with hyperedges of degree at most one.
Let S = {q} be such a hyperedge. If S ∈ L color qwith 1; otherwise color it with 2. Remove q, S and all other hyperedges in
L ∪ R that have received their right color. If ∅ ∈ L ∪ R, then return No.
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When Rule 1 and 2 cannot be applied anymore, select an element q of maximum degree. If q has degree at most three, go
to Phase 2. Otherwise, branch on q. In one branch, color q with 1 and remove q and all hyperedges in L containing q. In the
other branch, color q with 2 and remove q and all hyperedges in R containing q. After each branching, apply Rule 1 and 2
exhaustively. If in the end the algorithm has returned output Yes then we are done. Otherwise, we go to Phase 2 with each
2-hypergraph created after the branching has finished and for which the algorithm has not returned No.

Phase 2: branch based on inclusion/exclusion
Note that all elements in Q now have degree two or three. Switch to the counting variant: how many 2-colorings does H
have? Apply the two new reduction rules below exhaustively.

Rule 3. Deal with hyperedges S of degree at most one.
If S = ∅, return 0; no solutions exist. If S = {q}, then qmust get the right color for S in any 2-coloring for H . Suppose S ∈ L.
Remove S and all other hyperedges of L that contain q. Remove q from all hyperedges of R. This yields a 2-hypergraph H ′

such that the number of 2-colorings for H equals the number of 2-colorings for H ′. If S ∈ R we do the same with the roles
of L and R reversed.

Rule 4. Deal with elements q of degree one.
Let q belong to S ∈ L ∪ R. Note that we cannot just simply remove q and S. The reason is that S may contain more than
one element and these elements can be colored in two ways. This might lead to different 2-colorings (recall that we want
to determine this number in this phase). We circumvent this as follows. In Phase 3, we compute the number of 2-colorings
by dynamic programming over a path decomposition of I . Adding a set of trees, each connected to only one vertex of the
graph, increases the pathwidth by at most a logarithmic factor [4]. This does not influence the exponential running time of
Phase 3 as we shall see. Hence, we do remove q and store it in a special set C. If S then gets degree one, we may not remove
S, because S may get its right color from an element in C. Instead, we put S in C as well, and so on. In Phase 3 we put all
elements and hyperedges in C back into I . These will correspond to trees adjacent to a single vertex in I . Throughout the
remainder of Phase 2, our algorithm updates C whenever it takes some decision on H . If necessary, it removes elements and
hyperedges from C (e.g., after applying Rule 3).
When Rules 3 and 4 cannot be applied anymore, branch on hyperedges. Pick a hyperedge of maximum degree if the
maximum degree is at least six. Otherwise, let si(S) be the number of elements in hyperedge S of degree i and o(S) be
the total number of appearances that elements in S have in the hypergraph class not containing S. Then let S ⊆ L ∪ R be
the set of hyperedges S with either deg(S) = 5 and s3(S) ≥ 3 or deg(S) = s3(S) = 4. Pick an S ∈ S with o(S) maximum
over all S ∈ S. If S = ∅ go to Phase 3; otherwise branch on the selected S as below.

The optional branch computes the number of S-indifferent 2-colorings, i.e., in which S may not have received its right
color. In this branch, we only remove S. The forbidden branch computes the number of S-incorrect 2-colorings, i.e., in which
S did not receive its right color. Here, we remove:

• S and all elements of S;
• all hyperedges that are in the hypergraph class not containing S but that contain an element of S. This is because these

hyperedges have received their right color.

After each branching, apply Rule 3 and 4 exhaustively. We now compute the number of 2-colorings that correctly color S by
taking the difference between the two numbers from the two branches. We check if the final difference α at the root of the
branching tree is strictly positive. If so return Yes, otherwise return No. Note that the exact value of α has no meaning,
because Rule 1 does not preserve counting properties. To solve the subproblems obtained from Phase 2, the algorithm
requires results from Phase 3. Hence, all generated subproblems are given to Phase 3 after which the described subtractions
and checks are performed.
Phase 3: dynamic programming over path decompositions
Note that all elements have degree two or three and all hyperedges have degree at most five with some extra constraints
on their vertices in case their degree is four or five. We restore C and compute a path decomposition of I (which will have
small enough width as we shall see). Using this path decomposition we can count the number of 2-colorings and with these
numbers we perform the computations described in Phase 2.

4.2. Running time analysis

We analyze our algorithm using measure and conquer [7]. We assign a weight 0 ≤ w(i) ≤ 1 to an element q of degree i
and a weight 0 ≤ v(i) ≤ 1 to a hyperedge of degree i. This way we can define the complexity measure:

k(Q , L, R) =

−
q∈Q

w(deg(q)) +

−
S∈(L∪R)

v(deg(S)).

Lemma 4 gives an upper bound on the number of Phase 3 instances. Lemma 5 shows how fast the counting variant of our
problem can be solved for Phase 3 instances. We start with Lemma 4.

Lemma 4. Phase 3 starts with O(1.20509d−h) subproblems of complexity h ≤ d.
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Proof. Let ∆v(i) = v(i) − v(i − 1) and ∆w(i) = w(i) − w(i − 1). We use the following constraints on the weights:
1. v(0) = v(1) = w(0) = w(1) = 0
2. ∆v(i) ≥ 0 and ∆w(i) ≥ 0 for all i ≥ 1
3. ∆v(i) ≥ ∆v(i + 1) and ∆w(i) ≥ ∆w(i + 1) for all i ≥ 2
4. v(2) ≥ 2∆v(5).

Constraint 1 sets the weights of elements and hyperedges that are removed by rules 1–4 (including those in C) to zero.
Constraint 2 ensures that the measure of an instance does not increase when we decrease the degree of an element or
hyperedge during the branching in Phases 1 and 2. The meaning of constraints 3 and 4 will be made clear later on.

Consider branching in Phase 1 on element q in an instance of complexity k ≤ d. For convenience, we denote this instance
by (Q , L, R). Let ℓi and ri be the number of hyperedges in L and R, respectively, that are of degree i and that contain q. We
obtain complexity reductions of at least:

∆kℓ = w(deg(q)) +

∞−
i=2

[ℓiv(i) + ri∆v(i)] + ∆w(deg(q))
∞−
i=2

(i − 1)ℓi

∆kr = w(deg(q)) +

∞−
i=2

[riv(i) + ℓi∆v(i)] + ∆w(deg(q))
∞−
i=2

(i − 1)ri.

The first reduction is with respect to the color 1 branch, i.e., when hyperedges ofLmay be satisfied, whereas the second one
is with respect to the color 2 branch, i.e., when hyperedges of R may be satisfied. We explain the first reduction below. The
second one can be deduced similarly. In the color 1 branch, q and all hyperedges of L containing q are removed, while all
hyperedges ofR containing q are reduced in degree. This explains the first two terms. Because of the removed hyperedges in
L, other elements may have their degrees reduced too. Suppose q′ appears in β hyperedges in L that contain q. This means
that the degree of q′

∈ Q\{q} decreases with β . We bound w(deg(q′)) − w(deg(q′) − β) as follows. Note that q′ must be in
a hyperedge in R; otherwise we would have applied rule 1 already. Hence deg(q′) − β ≥ 1 and we find that

w(deg(q′)) − w(deg(q′) − β) = ∆w(deg(q′)) + · · · + ∆w(deg(q′) − β + 1)
≥ β∆w(deg(q))

due to constraint 3 and our assumption that q has maximum degree over all elements. This explains the third term.
If r2 > 0 then there are hyperedges in R that get degree one after removing q. Consequently, Rule 2 will fire on them

after q has been removed. Since we consider the worst case, we must assume that all these hyperedges contain the same
element q′ besides q and that all other occurrences of q′ are in hyperedges in L that contain q (and as such have already
been removed). Note that we already included (deg(q′)− 1)∆w(deg(q)) in the reduction above. We correct this and obtain
an additional reduction of at least

w(deg(q′)) − (deg(q′) − 1)∆w(deg(q)) = ∆w(deg(q′)) + · · · + ∆w(2) − (deg(q′) − 1)∆w(deg(q))
≥ w(2) − ∆w(deg(q))

due to constraint 3. As we can do the same for the color 2 branch, we find:

If r2 > 0 then ∆kℓ+ = w(2) − ∆w(deg(q)).
If ℓ2 > 0 then ∆kr+ = w(2) − ∆w(deg(q)).

In Phase 2 we branch on a hyperedge S. Recall that si(S) denotes the elements of degree i in S. For simplicity, we write
si = si(S). Similarly as above, we obtain complexity reductions of at least:

∆koptional = v(deg(S)) +

3−
i=2

si∆w(i)

∆kforbidden = v(deg(S)) +

3−
i=2

siw(i) + ∆v∗

3−
i=2

(i − 1)si,

where koptional corresponds to the optional branch, kforbidden to the forbidden branch, and ∆v∗
= ∆v(deg(S)) if deg(S) ≥ 6

and ∆v∗
= ∆v(5) if 4 ≤ deg(S) ≤ 5. Note that here we use constraint 4 to obtain the third term in the reductions above:

if the degree of a hyperedge S ′ is reduced to zero then we still obtain v(deg(S ′)) − v(0) = ∆v(deg(S ′)) + · · · + ∆v(2) ≥

(deg(S ′) − 2)∆v∗
+ ∆v(2) ≥ deg(S ′)∆v∗, as required.

Note that it may happen that elements in S only occur in hyperedges of the same hypergraph class as S. This is because
rule 1 is not allowed in Phase 2. However, in that case deg(S) ≥ 6 must hold by our selection criteria. This can be seen as
follows. Suppose 4 ≤ deg(S) ≤ 5. Then S must contain elements of degree three. These elements were of degree three at
the start of Phase 2. Consequently, they occur in hyperedges of both hypergraph classes. Hence, the set T of hyperedges that
contain elements of S but that are in the hypergraph class not containing S is nonempty. This means we have the following
cases, which reduce the reduction for the forbidden branch even further.
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Suppose deg(S) = 5. If s2 = 0 and s3 = 5 then T cannot exist of a single hyperedge T as then 10 = o(T ) > 5 = o(S) and
wewould have picked T instead of S. Hence, T contains at least two hyperedges of degree at least two and three respectively,
or T contains at least three hyperedges of degree at least two. Since 3v(2) = ∆v(2)+2v(2) ≥ ∆v(3)+2v(2) = v(2)+v(3),
the first case is the worst case. Suppose s2 = 1 and s3 = 4. By the same argument as above, we find that T contains at least
two hyperedges T1, T2, but now we can only guarantee deg(T1) ≥ 2 and deg(T2) ≥ 2. If s2 = 2 and s3 = 3 then T is
guaranteed to have a hyperedge of degree at least three or two hyperedges of degree at least two. As we consider the worst
case and 2v(2) = ∆v(2) + v(2) ≥ ∆v(3) + v(2) = v(3), we must assume the first case. By our selection criteria, these are
the only cases when deg(S) = 5.

Suppose deg(S) = 4. Then by our selection criteria s2 = 0 and s3 = 4, and again we find that T is guaranteed to have
two hyperedges of degree at least two. Summarizing, after correcting the double counting, we can add additional complexity
reductions to ∆kforbidden that are at least:

If deg(S) = 5, s2 = 0, s3 = 5 then ∆kforbidden + = v(2) + v(3) − 5∆v∗.

If deg(S) = 5, s2 = 1, s3 = 4 then ∆kforbidden + = v(2) + v(2) − 4∆v∗.

If deg(S) = 5, s2 = 2, s3 = 3 then ∆kforbidden + = v(3) − 3∆v∗.

If deg(S) = 4, s2 = 0, s3 = 4 then ∆kforbidden + = v(2) + v(2) − 4∆v∗.

Let Nh(k) denote the number of subproblems of complexity h created due to the branching on our instance of complexity
k. Then we have

Nh(k) ≤ Nh(k − ∆kl) + Nh(k − ∆kr)
Nh(k) ≤ Nh(k − ∆koptional) + Nh(k − ∆kforbidden).

The solution of this set of recurrence relations is of the formαk−h whereα is the largest positive real root of the corresponding
set of equations:

1 = α−∆kl + α−∆kr 1 = α−∆koptional + α−∆kforbidden

over all deg(q) =
∑

∞

i=2[li + ri] and all deg(S) = s2 + s3. What remains is to choose weight functions that respect the
constraints and minimize the solution to the set of recurrence relations. After setting v(i), w(i) = 1 for all i ≥ p for p large
enough, we see that recurrences with deg(q) > p+ 1 and deg(S) > p+ 1 are dominated by those with deg(q) = p+ 1 and
deg(S) = p + 1. In this way, we obtain a large, but finite, numerical optimization problem (quasiconvex program [5]). We
solve this by computer using the following set of weights:

i 1 2 3 4 5 ≥6
v(i) 0 0.809607 0.963013 0.996566 1 1
w(i) 0 0.448902 0.767484 0.934782 0.992583 1

This way we get Nh(k) ≤ αk−h < 1.20509k−h, and Lemma 4 holds as k ≤ d. �

In order to prove Lemma 5 we need Proposition 1, which is taken from [6], and which gives an upper bound on the
pathwidth of a graph. We also need Proposition 2 that expresses the running time of solving the counting variant of our
problem in terms of the pathwidth of the incidence graph of a 2-hypergraph.

Proposition 1 ([6]). For any ϵ > 0, there exists an integer n∗
ϵ such that for every graph G with n > n∗

ϵ vertices, its pathwidth
pw(G) satisfies:

pw(G) ≤
1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + n≥7 + ϵn

where ni is the number of vertices of degree i in G for i ∈ {3, . . . , 6} and n≥7 is the number of vertices of degree at least 7. Moreover,
a path decomposition of the corresponding width can be constructed in polynomial time.

Proposition 2. Let p be the width of a path decomposition of the incidence graph I of a 2-hypergraph H = (Q , L, R). Then the
number of 2-colorings of H can be counted in O∗(2p) time.

Proof. Let I be the incidence graph of a d-dimensional 2-hypergraph H = (Q , L, R). Let X = ⟨X1, . . . , Xr⟩ be the given
path decomposition of I of width p.

We will begin by modifying X such that it is a nice path decomposition: a path decomposition with X1 = Xr = ∅, and for
all i > 1 there exists a v ∈ VI such that, either Xi = Xi−1 ∪ {v} (Xi is called an introduce bag) or Xi = Xi−1 \ {v} (Xi is called a
forget bag). During this process we allow the number r of bags of the path decompositions X to change.

We begin by removing identical consecutive bags: if Xi = Xi+1, then we remove Xi+1 and set Xi+j = Xi+j+1, for all
1 ≤ j ≤ r − i − 1; hereafter we set r := r − 1. Next, if X1 ≠ ∅, then we add a new bag X0 = ∅ to the front of the
decomposition, after which we update the bag indices such that they again run from 1 to r (now r := r + 1). Also, if Xr ≠ ∅,
then we add a new bag Xr+1 = ∅ to the end of the decomposition and set r := r + 1. Finally, we iteratively look for the
smallest i such that the difference between Xi and Xi−1 is more than one vertex, i.e. Xi is not an introduce bag, nor a forget
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bag. If so, we insert new bags X ′

1, X
′

2, . . . , X
′

k between Xi−1 and Xi. First, we insert a sequence of forget bags X ′

1, X
′

2, . . . , X
′

j
between Xi−1 and Xi, each forgetting a single vertex, such that X ′

j = Xi−1 ∩ Xi. Thereafter, we insert a sequence of introduce
bags X ′

j+1, . . . X
′

k between X ′

j and Xi, each introducing a single vertex, such that Xi becomes an introduce bag following on
this sequence. We iteratively repeat this until all bags are introduce or forget bags. It is not so hard to see that the modified
decomposition X is still a path decomposition. Furthermore, X consists of 2d bags since each vertex v ∈ VI is introduced and
forgotten once. And, the pathwidth of X equals p since we first insert forget bags and then introduce bags: no larger bags
are added.

We proceed by showing that one can compute the number of 2-colorings of H in O∗(2p) time by dynamic programming
over the nice path decomposition X of the incidence graph I of H . To do so, we introduce a series of vertex states on the
vertices of I:

• An element q can have state 1 or 2; this corresponds to q having either color 1 or color 2.
• Anhyperedge S can have state Y orN; this corresponds towhetherwe know S received its right color (Y—Yes), orwhether

we do not know this (N—No).

For each bag Xi, the algorithmwill compute a vector Ai containing, for each of the 2|Xi| possible state assignments c of the
vertices of Xi, the number Ai(c) of partial 2-colorings on I[


1≤j≤i Xj] with the following properties:

• Every forgotten hyperedge, i.e., every S ∈ (


1≤j≤i−1 Xj)\Xi, has received its right color.
• Every hyperedge with state Y in c received its right color.
• Every hyperedge with state N in c has either received its right color or not (we do not know this).
• Every forgotten element, i.e., every q ∈ (


1≤j≤i−1 Xj)\Xi, has color 1 or 2.

• Every element with state 1 or 2 in c has color 1 or 2, respectively.

Because X1 = ∅, we find that A1 consists of one entry with value 1. We compute the 2|Xi| entries of Ai for i = 2, . . . , r by
using the following rules:

Rule 1. Introduce a hyperedge.
If Xi introduces a hyperedge S, then we let

Ai(c × {Y }) =


Ai−1(c) if S contains a q ∈ Xi−1 with c(q) being right for S
0 otherwise

Ai(c × {N}) = Ai−1(c).

Rule 2. Introduce an element.
If Xi introduces an element q then we let Ai(c × {1}) = Ai−1(φ1(c)) and Ai(c × {2}) = Ai−1(φ2(c)). Here, φ1(c) is the state
assignment obtained from c after replacing each occurrence of Y on a hyperedge in L ∩ Xi−1 containing q by N . The state
assignment φ2(c) is defined accordingly.

Rule 3. Forget a hyperedge.
If Xi forgets a hyperedge S of H , we let Ai(c) = Ai−1(c × {Y }).

Rule 4. Forget an element.
If Xi forgets an element q we let Ai(c) = Ai−1(c × {1}) + Ai−1(c × {2}).

Correctness of Rule 1 follows directly from the definitions of the states and from the definition of a path decomposition,
which states that for each hyperedge S and each element q ∈ S, there is at least one bag containing S and q. Due to the
latter property, no element of S will be forgotten at the moment S is introduced. Correctness of Rule 2 also follows from the
definitions of the states; we do not know if a hyperedge S with state N received its right color or not. However, by coloring
the new element q some of such hyperedges are now guaranteed to receive their right color. Rule 3 ensures that we continue
our calculations only with those solutions that assign the right color to each forgotten hyperedge. Rule 4 ensures that we
continue by adding the number of solutions corresponding to both possible colorings.

After we have finished, the single entry of Ar gives the number of 2-colorings of H . Since we compute at most 2p+1 table
entries per bag and have a linear number of bags, the algorithm runs in O∗(2p). �

Lemma 5. The number of 2-colorings of each 2-hypergraph H of complexity h in Phase 3 can be computed in O∗(1.1904h) time.

Proof. By Proposition 2, we can count the number of 2-colorings of H in O∗(2p) time. Here, p denotes the width of a path
decomposition from Proposition 1. Hence, we need to prove an upper bound on p expressed in k. To this end, we formulate
the linear program:

max z =
1
6
(x3 + y3) +

1
3
y4 +

13
30

y5 + ϵ such that:

1 =

3−
i=2

w(i)xi +
5−

i=2

v(i)yi
3−

i=2

ixi =

5−
i=2

iyi x2 ≥
1
2
y4 +

3
2
y5.
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In this linear program, xi and yi represent the number of elements and hyperedges, respectively, that are of degree i per
unit of complexity (unit of k as in Lemma 4) in a worst case instance. Recall that all elements are of degree 2 and 3 and all
hyperedges are of degree 2, 3, 4, or 5 in Phase 3. The objective function comes directly from Proposition 1, now formulated
in xi and yi. This function gives an upper bound of the pathwidth per unit of complexity and we need the worst case.

The first constraint guarantees that the variables use exactly one unit of complexity. The second constraint counts the
number of edges in I in two different ways and demands that equality must hold. To get a good upper bound we add the
third constraint. The reason why we may do this is as follows. In Phase 3, every hyperedge of degree four contains at least
one element of degree two, and every hyperedge of degree five contains at least three elements of degree two. So, there
must exist at least x2 ≥

1
2y4 +

3
2y5 elements of degree two.

The solution to this linear program is z = 0.251446 with x2 = 0.251446, x3 = 0.502892, y4 = 0.502892 and
y2 = y3 = y5 = 0. As a result, p ≤ 0.251446h + ϵh. We choose ϵ sufficiently small such that 2ϵh may be neglected due
to the rounding. If h ≤ n∗

ϵ , the pathwidth of H is bounded by a constant and otherwise by 0.251447h. Hence, the algorithm
runs in the desired time. �

Combining Lemma 4 and Lemma 5 proves Theorem 1.
Theorem 1. 2-Hypergraph 2-Coloring can be solved in O∗(1.2051d) time for 2-hypergraphs of dimension d.
Proof. Let T (d) denote the running time of our algorithm on a 2-hypergraph H of dimension d. Let J be the set of all possible
complexities of the subproblems that exist at the start of Phase 3. After all these subproblems have been processed in Phase
3, the algorithm must compute the number of 2-colorings for each 2-hypergraph created after the end of Phase 1. These
computations follow the structure of the branching tree, and hence T (d) is dominated by the time spent in Phase 3. This
together with Lemmas 4 and 5 implies that

T (d) ≤

−
h∈J

O(1.2051d−h) · O∗(1.1904h) ≤

−
h∈J

O∗(1.2051d) = O∗(1.2051d),

since | J| is polynomially bounded as we only use a finite number of weights. �

5. Conclusions and open problems

We presented an O∗(1.2051n) time algorithm for the 2-Disjoint Connected Subgraphs problem restricted to semi-
connected graphs. We also showed how to use this algorithm to solve this problem within the same time for graphs in the
class Gk,2 for any fixed k ≥ 1 and, in particular, for split graphs and P6-free graphs. We leave it as an open question how
to obtain a faster algorithm for graphs in a class Gk,r with r ≥ 3. Another natural question is to study the class of instances
(G, Z1, Z2) where only one of the subsets, say Z1, contains a connected set that dominates U = V\(Z1 ∪ Z2). For solving
this, a similar approach as in [12] can be followed (where brute force techniques are applied depending on the size of |Z1|
and |Z2|). Another approach would be to apply an algorithm that lists all minimal set covers (similar to [9]). By using such
an approach one can enumerate all sets U ′

⊆ U that are minimal with respect to dominating Z1. For each choice of U ′ one
can check in polynomial time if G[Z2 + (U\U ′)] is connected. We note that this approach also works for semi-connected
instances. However, this seems to lead to much worse running times.

We did not explore the above two questions in detail, as the main open question is to find an exact algorithm for the
2-Disjoint Connected Subgraphs problem for general graphs that is faster than the trivial O∗(2n) algorithm. For solving
this, new techniques that deal with the connectivity issue are necessary. This will be future research.
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