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Abstract

We study functors underlying derived Hochschild cohomology, also called Shukla cohomology, of
a commutative algebra S essentially of finite type and of finite flat dimension over a commutative
noetherian ring K. We construct a complex of S-modules D, and natural reduction isomorphisms
Ext§®|_ S(S |K; M ®|k N) ~ Ext’;(RHomS(M , D), N) for all complexes of S-modules N and all com-
plexesKM of finite flat dimension over K whose homology H(M) is finitely generated over S; such
isomorphisms determine D up to derived isomorphism. Using Grothendieck duality theory we establish
analogous isomorphisms for any essentially finite-type flat map f:X — Y of noetherian schemes, with
f!(’)y in place of D.
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0. Introduction

We study commutative algebras essentially of finite type over some commutative noetherian
ring K. Let o0 : K — S denote the structure map of such an algebra. When S is projective as a
K -module, for example, when K is a field, the Hochschild cohomology HH*(S|K; —) allows
one to investigate certain properties of the homomorphism o in terms of properties of S, viewed
as a module over the enveloping algebra S° = § ® S. This comes about via isomorphisms

HH"(S|K; L) = Extle (S, L),

established by Cartan and Eilenberg [10] for an arbitrary S-bimodule L.

In the absence of projectivity, one can turn to a cohomology theory introduced by MacLane
[21] for K = Z, extended by Shukla [28] to all rings K, and recognized by Quillen [26] as a
derived version of Hochschild cohomology; see Section 3.

A central result of this article is a reduction of the computation of derived Hochschild coho-
mology with coefficients in M ®';( N to a computation of iterated derived functors over the ring
S itself; this is new even in the classical situation.

We write D(S) for the derived category of S-modules, and P(o') for its full subcategory con-
sisting of complexes with finite homology that are isomorphic in D(K') to bounded complexes of
flat K-modules. As part of Theorem 4.1 we prove:

Theorem 1. When S has finite flat dimension as a K-module there exists a unique up to iso-
morphism complex D° € P(o), such that for each M € P(o) and every N € D(S) there is an
isomorphism that is natural in M and N:

L ~ o
RHomgg. (S, M ® N) ~ RHoms(RHoms (M, D7), N).
The complex D? is an algebraic version of a relative dualizing complex used in algebraic
geometry, see (6.2.1). A direct, explicit construction of D? is given in Section 1. When S is flat

as a K-module, M and N are S-modules, and M is flat over K and finite over S, the theorem
yields isomorphisms of S-modules

Extse (S, M @ N) = Ext’SZ(RHomS(M, D(’), N)

for all n € Z; they were originally proved in the first preprint version of [5].
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Our second main result is a global version of part of Theorem 1. For a map of schemes
f:X—>Y, f(;]OY is a sheaf of commutative rings on X, whose stalk at any point x € X is

Oy, r(x) (see Section 6). The derived category of (sheaves of) fo_lOy-modules is denoted by
D( fo_l(’)y). Corollary 6.5 of Theorem 6.1 gives:

Theorem 2. Let f : X — Y be an essentially finite-type, flat map of noetherian schemes; let
x & x Xy X 22, X be the canonical projections; let § : X — X xy X be the diagonal mor-
phism; and let M and N be complexes of Ox-modules.

If M has coherent cohomology and is isomorphic in D( fo_l(’)y) to a bounded complex of
fo_lOy-modules that are flat over Y, and if N has bounded-above quasi-coherent homology,
then one has an isomorphism

§'(nf M ®%, x 73 N) —> RHomx (RHomx (M, f'Oy), N).

When both schemes X and Y are affine, and f corresponds to an essentially finite-type ring
homomorphism, Theorem 2 reduces to a special case of Theorem 1, namely, where the K -algebra
S is flat and N is homologically bounded above. In Section 6 we also obtain global analogs of
other results proved earlier in the paper for complexes over rings. A pattern emerging from these
series of parallel results is that neither version of a theorem implies the other one in full generality.
This intriguing discrepancy suggests the existence of stronger global results.

The proofs of Theorems 1 and 2 follow very different routes. The first one is based on isomor-
phisms in derived categories of differential graded algebras; background material on the topic
is collected in Section 2. The second one involves fundamental results of Grothendieck duality
theory, systematically developed in [15,11,19]; the relevant notions and theorems are reviewed
in Section 5.

1. Relative dualizing complexes

In this section o : K — S denotes a homomorphism of commutative rings.

For any K -algebra P and each n € Z we write 2p |k for the P-module of Kihler differentials
of P over K, and set .Q;lK = /\'I’).QP‘K for each n € N.

Recall that o is said to be essentially of finite type if it can be factored as

K< K[x1,....x.]— V 'K[x;,...,x.]=Q — S, (1.0.1)

where x1, ..., x, are indeterminates, V is a multiplicatively closed set, the first two maps are
canonical, the equality defines Q, and the last arrow is a surjective ring homomorphism. We fix
such a factorization and set

D° = ¥°RHomp (S, 2§ x) inD(S). (1.0.2)

where D(S) denotes the derived category of S-modules. Any complex isomorphic to D in D(S)
is called a relative dualizing complex of o . To obtain such complexes we factor o through essen-
tially smooth maps, see 1.3.
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Theorem 1.1. If K — P — S is a factorization of o, with K — P essentially smooth of relative
dimension d and P — S finite, then there exists an isomorphism

D’ ~ x*RHomp (S, 2%x) inD(S).

The isomorphism in the theorem can be chosen in a coherent way for all K-algebras essen-
tially of finite type. To prove this statement, or even to make it precise, we need to appeal to the
theory of the pseudofunctor * of Grothendieck duality theory; see [19, Ch. 4]. Canonicity is not
used in this paper.

We write P(o) for the full subcategory of D(S) consisting of complexes M € D(S) such that
H(M) is finite over S and M is isomorphic in D(K) to some bounded complex of flat K -modules.

The name given to the complex D’ is explained by the next result.

Theorem 1.2. When fdg S is finite the complex D° has the following properties.

(1) For each M in P(c) the complex RHomg(M, D°) is in P(o), and the biduality morphism
gives a canonical isomorphism

$M : M ~ RHomg(RHoms (M, D”), D°) in D(S).
(2) One has D° € P(o), and the homothety map gives a canonical isomorphism
x?” .S ~RHomg (D, D°) in D(S).

The theorems are proved at the end of the section. The arguments use various properties of
(essentially) smooth homomorphisms, which we record next.

1.3. Let x : K — P be a homomorphism of commutative noetherian rings.

One says that x : K — P is (essentially) smooth if it is (essentially) of finite type, flat, and
the ring k ®g P is regular for each homomorphism of rings K — k when k is a field; see
[14, 17.5.1] for a proof that this notion of smoothness is equivalent to that defined in terms of
lifting of homomorphisms.

When x is essentially smooth .{2113‘ x 1s finite projective, so for each prime ideal p of P the

P,-module (.Q}L| x)p is free of finite rank. If this rank is equal to a fixed integer d for all p, then
K — P is said to be of relative dimension d; (essentially) smooth homomorphism of relative
dimension zero are called (essentially) étale.

1.3.1. Set P = P ®k P and I = Ker(u : P® — P), where u is the multiplication.
There exist canonical isomorphisms of P-modules

I ~pg2 o’
Qp g =1/I7=Tor; (P, P).
As p is a homomorphism of commutative rings, Tor” °(P, P) has a natural structure of a strictly
graded-commutative P-algebra, so the composed isomorphism above extends to a homomor-

phism of graded P-algebras

APIE /\PQ}"K —>T0rPe(P, P).
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1.3.2. Let X = P be a projective resolution over P®. The morphism of complexes

§: X Qpe P — Hompe(HOmPS(X, Pe), P),

8 ® p)(x) = (=PI ) p

yields the first map in the composition below, where « is a Kiinneth homomorphism:

H(X ® pe P) & H(Hompe (Hompe (X Pe), P))
—“~ Hompe (H(Hompe (X, P®)), P)

——— Homp (H(Hompe (X, Pe)), P).
Thus, one gets a homomorphism of graded P-modules
tPIK Tor”* (P, P) — Homp (Extpe (P, P®), P).
1.3.3. The composition below, where the first arrow is a biduality map,

Ext pe (P, Pe) — -~ Homp (Homp (Extpe (P, Pe), P), P)

Homp(rP|K,P)

Homp (Tor™* (P, P), P)
is a homomorphism of graded P-modules
epik : Extpe(P, P®) — Homp (Tor™" (P, P®), P).
The maps above appear in homological characterizations of smoothness:

1.3.4. Let K — P be a flat and essentially of finite type homomorphism of rings, and set I =
Ker(u : P® — P). The following conditions are equivalent.

(i) The homomorphism K — P is essentially smooth.

(i1) The ideal Iy, is generated by a regular sequence for each prime ideal m 2 1.
(iii) The P-module £2 11"| x 1s projective and the map APIK from 1.3.1 is bijective.
(iv) The projective dimension pdpe P is finite.

The equivalence of the first three conditions is due to Hochschild, Kostant, and Rosenberg
when K is a perfect field, and to André [1, Prop. C] in general. The implication (ii) = (iv) is
clear, and the converse is proved by Rodicio [27, Cor. 2].
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In the next lemma we use homological dimensions for complexes, as introduced in [3]. They
are based on notions of semiprojective and semiflat resolutions, recalled in 2.3.1. The projective
dimension of M € D(P) is defined by the formula

deMzinf:neZ

n > supH(M) and F >~ M in D(P) with F }

semiprojective and Coker(3/"

,11) projective

The number obtained by replacing ‘semiprojective’ with ‘semiflat’ and ‘projective’ with ‘flat’ is
the flat dimension of M, denoted fdp M.

For the rest of this section we fix a factorization K — P — S of o, with K — P essentially
smooth of relative dimension d and P — S finite.

Lemma 1.4. For every complex M of P-modules the following inequalities hold:
fdg M <fdp M <fdx M + pdpe P.

In particular, fdp M and fdx M are finite simultaneously.
When the S-module H(M) is finite one can replace fdp M with pdp M.

Proof. The inequality on the left is a consequence of [3, 4.2(F)].

For the one on the right we may assume fdg M = g < o0o. Thus, if F — M is a semiflat reso-
lution over P, then G = Coker(afﬂ) is flat as a K-module. For each n € Z there is a canonical
isomorphism of functors of P-modules

Tor? (G, —) = Torp, (P, G ®x —).

see [10, X.2.8], so the desired inequality holds. Since K — P is essentially smooth one has
pdpe P < 00, see 1.3.4, so they imply that fdp M is finite if only if so is fdx M. In case H(M) is
finite over P one has fdp M =pdp M; see [3, 2.10(F)]. O
L . . PIK _P|K d .

emma 1.5. The canonical homomorphisms A ;" , ;" , and €pik defined in 1.3.1, 1.3.2, and
1.3.3, respectively, provide isomorphisms of P-modules

Ext';,e(P, Pe)=0 forn #d, (1.5.1)
Homg (i)', P) o €4 x - Exthe (P, P®) = Homp (24 x. P): (15.2)
oy K onf'" 1 24 = Homp (Exthe (P, P°), P). (1.5.3)

Proof. Set I = Ker(u). It suffices to prove that the maps above induce isomorphisms after lo-
calization at every n € Spec P. Fix one, thenset T = Py, R = PfﬂPe and J = I npe. The ideal
J is generated by a regular sequence, see 1.3.4. Any such sequence consists of d elements: This

follows from the isomorphisms of 7-modules

TIIP=(1)17), = (2pk), =T



L.L. Avramov et al. / Advances in Mathematics 223 (2010) 735-772 741

The Koszul complex Y on such a sequence is a free resolution of T over R. A well-known iso-
morphism Homg (Y, R) = £~?Y of complexes of R-modules yields Extp(T, R) =0 forn #d
and Ext?e(T, R) = T. This establishes (1.5.1) and shows that Extfll_,e(P, P*®) is invertible; as a
consequence, (1.5.2) follows from (1.5.3).

We analyze the maps in (1.5.3). From 1.3.4 we know that A5
has rf‘K = k4 o Hy(8). The map Hy(§) is bijective, as it can be computed from a resolution
X of P by finite projective P®-modules, and then § itself is an isomorphism. To establish the
isomorphism in (1.5.3) it remains to show that (x4)n, is bijective. This is a Kiinneth map, which
can be computed using the Koszul complex Y above. Thus, we need to show that the natural
T -linear map

K s bijective. By 1.3.2 one

Hq(Hompg (Homg (Y, R), T)) — Homg (H—4 (Homg (Y, R)), T)

is bijective. It has been noted above that both modules involved are isomorphic to 7, and an easy
calculation shows that the map itself is an isomorphism. 0O

To continue we need a lemma from general homological algebra.

Lemma 1.6. Ler R be an associative ring and M a complex of R-modules.

If the graded R-module H(M) is projective, then there exists a unique up to homotopy mor-
phism of complexes H(M) — M inducing id8™) | and a unique isomorphism o : H(M) — M in
D(R) with H(er) = idHM),

Proof. One has HM) =[[;., ¥ " H; (M) as complexes with zero differentials. The projectivity
of the R-modules H; (M) provides the second link in the chain

H(Homg (H(M), M)) = H( [ [ = Homg (H: (M), M))
i€’
= 1_[ " Homg (H; (M), H(M))

ieZ

=Homg | [ [ Z'H:i M), H(M))
i€Z
= Homg (H(M), H(M))
of isomorphisms of graded modules. The composite map is given by cls(«) — H(x). The first
assertion follows because Ho(Homg (H(M), M)) is the set of homotopy classes of morphisms
H(M) — M. For the second, note that one has
Morp(g) (H (M), M) = Ho(Homg (H(M), H(M)))

because each complex X' H; (M) is semiprojective, and hence so is H(M). O

Lemma 1.7. In D(P) there exist canonical isomorphisms
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RHomps (P, P?) ~ £~/ Homp (2§ . P). (1.7.1)
RHomp (RHompe (P, P°), P) ~ 5904 . (1.7.2)

Proof. Since K — P is essentially smooth of relative dimension d, the P-module .Q;j;l x 18

projective of rank one, and hence so is Homp(.Qf,‘K, P). The isomorphisms (1.5.1) and (1.5.2)
imply that H(RHompe (P, P€)) is an invertible graded P-module. In particular, it is projective.
Now choose (1.7.1) to be the canonical isomorphism provided by Lemma 1.6, and (1.7.2) the
isomorphism induced by it. O

Lemma 1.8. When o is finite there is a canonical isomorphism
>?RHomp (S, 2§, ) = RHomg (S, K) in D(S).
Proof. One has a chain of canonical isomorphisms:

>4 RHomp (S, 224, ) ~ ¥ RHompe (P, RHom (S, 24 )
~ ¥ RHompe (P, P®) ®'s RHomg (S, 2%, )
~ RHomp (2§ x. P) ®'pe RHomg (S, 24 ¢)
~ RHomp (2§, P) ®'pe (25 ®% RHom (S, K))
~ RHomp (2. P) ® (P ®%e (24 S RHomg (5. K)))
~ RHomp (224, P) ®) (24,1 ®' RHomk (S, K))
~ RHomp (224, . 24 ) ®)p RHomg (S, K)

~ RHomg (S, K).

The first one holds by a classical associativity formula, see (2.1.1), the second one because
pdpe P is finite, see 1.3.4, the third one by (1.7.1). The last one is induced by the homothety

P — RHomp (.QfélK, .Q‘,f,lK), which is bijective as (.{2‘15“()p = Py holds as Py-modules for each
p € Spec P. The other isomorphisms are standard. O

Proof of Theorem 1.1. Let K — Q — S be the factorization of o given by (1.0.1), with Q =
V-I1K[x],...,x.]. The isomorphism

ook = (2px Ok Q) © (P Ok 20k)

induces the first isomorphism of (P ® ¢ Q)-modules below:

Qscox = D (2hik Ok 0) Oraxo (P Ok 2p k)
i+j=d+e

~ od
:‘QP\K Rk .QteK.
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The second one holds because for each p € Spec P one has (.QleK)p = /\’.Pp (Pg) =0fori >d,
and similarly (.Q'AQ”()p =0 for j > e. One also has

Rlper0)0 =2px ® Q foreveryneN. (1.9.1)

The isomorphisms above explain the first and third links in the chain

d d+ ~ dd
RHompg, o(S, 2205 o) k) = RHompg, 0 (S, 925 x @k T°2,k)

~ RHompg, o(S, Eng\K ®k Q) ®0 T2k
N d Hd ¢
~RHompey 0 (S. 2 R(pg, 0)0) ®0 TR0k
~ RHomg(S, Q) ®g TR0«

~ RHomg (S, ¥°2§, ¢ )-

For the fourth isomorphism, apply Lemma 1.8 to the factorization Q — P ®x Q — S of the
finite homomorphism Q — S, where the first map is essentially smooth by [14, 17.7.4(v)] and
has relative dimension d by (1.9.1). The other isomorphisms are standard. By symmetry one also
obtains an isomorphism

d+e d+ ~ dd
RHomp®KQ(S,Z‘ e.Q(PéKQ)lK)_RHomP(S,E .QP‘K). O
Proof of Theorem 1.2. Recall that K — P — § is a factorization of o with K — P essentially
smooth of relative dimension d and P — S finite. Set L = X9 .Q;i,l x> and note that one has
D° = RHomp (S, L); see Theorem 1.1.

(1) Standard adjunctions give isomorphisms of functors

RHomg (—, D?) = RHomg(—, RHomp (S, L)) = RHomp(—, L).

For M € P(0) Lemma 1.4 yields pdp M < 0o, so M is represented in D(P) by a bounded
complex F of finite projective P-modules. As L is a shift of a finite projective P-module,
Homp (F, L) is a bounded complex of finite projective P-modules. It represents RHomp (M, L),
so one sees that H(RHomp (M, L)) is finite over P. As P acts on it through S, it is finite over S
as well; furthermore, fdx RHomp (M, L) is finite by Lemma 1.4.

The map 8 in D(S) is represented in D(P) by the canonical biduality map

F — Homp(Homp(F, L), L).

This is a quasi-isomorphism as F is finite complex of finite projectives and L is invertible. It
follows that §” is an isomorphism.

(2) Since fdg S is finite, (1) applied to M = S shows that D = RHomg(S, D?) is in P(o)
and that 85 : S — RHomg(RHomg(S, D?), D?) is an isomorphism. Composing 85 with the
map induced by the isomorphism D° >~ RHomg(S, D) one gets XDU : S — RHomg(D?, D?%),
hence x?° is an isomorphism. O
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2. DG derived categories

Our purpose here is to introduce background material on differential graded homological
algebra needed to state and prove the results in Sections 3 and 4.
In this section K denotes a commutative ring.

2.1. DG algebras and DG modules. Our terminology and conventions generally agree with
those of MacLane [22, Ch. VI]. All DG algebras are defined over K, are zero in negative degrees,
and act on their DG modules from the left. When A is a DG algebra and N a DG A-module we
write A® and N* for the graded algebra and graded A"-module underlying A and N, respectively.
We set

inf N =inf{n € Z | N,, #0};
sup N =sup{n € Z | N,, # 0}.

Every element x € N has a well defined degree, denoted |x]|.

When B is a DG algebra the complex A®g B is a DG algebra with product (¢ ®b) - (@’ @b') =
(-l (qa’ @ bb).

When M’ is a DG B-module the complex N ® ¢ M is canonically a DG module over A Qg B,
with (@ ®b) - (n@m’) = (=D)P"lan @ bm'.

The opposite DG K -algebra A° has the same underlying complex of K-modules as A, and
product - given by a - b = (—1)/41’Ipa. We identify right DG A-modules with DG modules
over A°, via the formula am = (= 1)14"ma.

When M is a DG B-module the complex Homg (M, N) is canonically a DG A ®k B°-
module, with action given by ((a ® b)())(m) = (— 1)1l ae (bm).

We write A® for the DG K -algebra A ® ¢ A°. Any morphism « : A — B of DG K -algebras
induces a morphism «® = o« ®x «° from A® to B®. There is a natural DG A®-module structure
on A givenby (a ® a’)x = (=D gxa’.

For every DG A ® ¢ B°-module L, [22, VI, (8.7)] yields a canonical isomorphism

Homyg, go (L, Homg (M, N)) = Homyu (L @ M, N). (2.1.1)
For every DG A° @ ¢ B-module L', [22, VI, (8.3)] yields a canonical isomorphism
L' ®@agyxpe (N®x M) =(L'®4 N)@p M'. (2.12)

2.2. Properties of DG modules. A DG A-module F is said to be semiprojective if the functor
Homy (F, —) preserves surjections and quasi-isomorphisms, and semiflat if (F ® 4 —) preserves
injections and quasi-isomorphisms. If F is semiprojective, respectively, semiflat, then F? is
projective, respectively, flat, over A; the converse is true when F is bounded below. Semipro-
jectivity implies semiflatness.

A DG module [ is semiinjective if Homu4(—, I) transforms injections into surjections and
preserves quasi-isomorphisms. If 7 is semiinjective, then I” is injective over A”; the converse is
true when 7 is bounded above.

2.2.1. Every quasi-isomorphisms of DG modules, both of which are either semiprojective or
semiinjective, is a homotopy equivalence.
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The following properties readily follow from standard adjunction formulas.

2.2.2.Let o : A — B be amorphism of DG K -algebras, and let X and Y be DG modules over A
and B, respectively. The following statements hold:

(1) If X is semiprojective, then so is the DG B-module B ®4 X.

(2) If X is semiinjective, then so is the DG B-module Homy (B, X).

(3) If B is semiprojective over A and Y is semiprojective over B, then Y is semiprojective
over A.

(4) If B is semiflat over A and Y is semiinjective over B, then Y is semiinjective over A.

2.3. Resolutions of DG modules. Let M be a DG A-module.

2.3.1. A semiprojective resolution of M is a quasi-isomorphism F => M with F semiprojective.
Each DG A-module M admits such a resolution [4, §1].

A semiinjective resolution of M is a quasi-isomorphism M => [ with I semiinjective. Every
DG A-module M admits such a resolution; see [18, §3-2].

In what follows, for each DG module M over A, we fix a semiprojective resolution
7 :pa(M) — M, and a semiinjective resolution t&f : M — i (M).

Each morphism of DG modules lifts up to homotopy to a morphism of their semiprojective
resolutions and extends to a morphism of their semiinjective resolutions, and such a lifting or
extension is unique up to homotopy. In particular, both F' and I are unique up to homotopy
equivalences inducing the identity on M.

Lemma 2.3.2. Let w : A — B be a quasi-isomorphism of DG algebras, I a semiinjective DG A-
module, J a semiinjective DG B-module, and 1 : J — I a quasi-isomorphism of DG A-modules.
For every DG B-module L the following map is a quasi-isomorphism:

Hom,, (L, ) : Hompg (L, J) — Homa (L, I).

Proof. The morphism ¢ factors as a composition
/ Homy (w,1) ~
J —> Homa(B,l) ———— Homus(A, ) =1
of morphisms of DG A-modules, where ¢/ (x)(b) = (—1)‘x||b‘bt(x). It follows that ¢’ is a quasi-
isomorphism. Now J is a semiinjective DG B-module by hypothesis, Homy (B, J) is one
by 2.2.2(2), so 2.2.1 yields
Homgp (L, J) = Homg (L, Homu (B, I)) = Homy (L, ).

It remains to note that the composition of these maps is equal to Hom,,(L,t). O
Lemma 2.3.3. Let w : A — B be a morphism of DG algebras, and let Y and Y' be DG B-modules
that are quasi-isomorphic when viewed as DG A-modules.

If w is a quasi-isomorphism, or if there exists a morphism B : B — A, such that wp = id®,
then Y and Y' are quasi-isomorphic as DG B-modules.



746 L.L. Avramov et al. / Advances in Mathematics 223 (2010) 735-772

Proof. By hypothesis, one has A-linear quasi-isomorphisms ¥ <- U vy,
When w is a quasi-isomorphism, choose U semiprojective over A, using 2.3.1. With vertical
arrows defined to be b ® u +> bu(u) and b ® u — bv'(u) the diagram

— Y
) ~
w®sU /?
U= A®U———=B®U
MJ/
~ v/

commutes. The vertical maps are morphisms of DG B-modules, and w ®4 U is a quasi-
isomorphism because w is one and U is semiprojective.

When w has a right inverse B, note that the A-linear quasi-isomorphisms v and v’ are also
B-linear, and that the DG B-module structures on ¥ and Y’ induced via B are identical with their
original structures over B. 0O

We recall basic facts concerning DG derived categories; see Keller [18] for details.

2.4. DG derived categories. Let A be a DG algebra and M a DG A-module.

DG A-modules and their morphisms form an abelian category. The derived category D(A)
is obtained by keeping the same objects and by formally inverting all quasi-isomorphisms. It
has a natural triangulation, with translation functor X' is defined on M by (¥X*M); = M;_1,
M c(m) = —c (@™ (m)), and ac(m) = (—1)%/c(am), where ¢ : M — X M is the degree one
map given by ¢(m) = m.

For any semiprojective resolution ¥ — M, and each N € D(A) one has

Morp(r) (M, N) = Ho(Homg (F, N)).
2.4.1. For all L € D(A®) and M, N in D(A), the complexes of K-modules
LRYM=L®yF and RHoms(M,N)=Homu(F,N)
are defined uniquely up to unique isomorphisms in D(A). When @ : A — B is a morphism of

DG algebras, L', M’ and N’ are DG B-modules,and A : L — L', u: M — M’',andv: N — N
are w-equivariant morphisms of DG modules, there exist uniquely defined morphisms

AR u LY M — L% M,
RHom,, (1, v) : RHomp(M’, N') — RHomyu (M, N)

that depend functorially on all three arguments, and are isomorphisms when all the morphisms
involved have this property. For each i € Z one sets

Tor (L, M) =H;(L ® M) and Ext,(M,N)=H_;(RHoms (M, N)).

2.4.2. Associative K -algebras are viewed as DG algebras concentrated in degree zero, in which
case DG modules are simply complexes of left modules. Graded modules are complexes with
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zero differential, and modules are complexes concentrated in degree zero. The constructions
above specialize to familiar concepts:

When A; =0 for i # 0 the derived category D(A) coincides with the classical unbounded
derived category of the category of Ap-modules. Similarly, if M and N are DG A-modules
with M; =0 = N; for i # 0, then for all n € Z one has Exty (M, N) = Ext’/QO(Mo, No) and

Tor (M, N) = Tory* (Mo, No).

24.3.Letw: A — B be amorphism of DG algebras. Viewing DG B-modules as DG A-modules
via restriction along w, one gets a functor of derived categories

o*:D(B) = D(A).
When o is a quasi-isomorphism it is an equivalence, with quasi-inverse B ®IA —.

3. Derived Hochschild functors

In this section we explain the left-hand side of the isomorphism in Theorem 1.
Let K be a commutative ring and ¢ : K — § an associative K -algebra.

3.1. A flat DG algebra resolution of o is a factorization K — A %> S of ¢ as a composition
of morphisms of DG algebras, where each K-module A; is flat and « is a quasi-isomorphism;
complexes of S-modules are viewed as DG A-modules via «. When K — B LN S is a flat DG
algebra resolution of o, we say that w : A — B is a morphism of resolutions if it is a morphism
of DG K -algebras, satisfying Bw = «.

We set A® = A ®k A°, note that K — A° 2, §° is a flat DG algebra resolution of
0°: K — §°, and turn S into a DG module over A® by (a ® a’)s = a(a)sa®(a’).

Flat DG algebra resolutions always exist: A resolution K — T — S, with T? the tensor al-
gebra of some free non-negatively graded K-module, can be obtained by inductively adjoining
noncommuting variables to K ; see also Lemma 3.7.

Here we construct one of four functors of pairs of complexes of S-modules that can be ob-
tained by combining RHom e (S, —) and S (X)'/‘45 — with (— ®';< —) and RHomg (—, —). The other
three functors are briefly discussed in 3.10 and 3.11.

The statement of the following theorem is related to results in [31, §2]. We provide a detailed
proof, for reasons explained in 3.12.

Theorem 3.2. Each flat DG algebra resolution K — A — S of o defines a functor
RHomye (S, — ®% —) : D(S) x D(S)(8°) — D(5°),

where S° denote the center of S, described by (3.8.1). For every flat DG algebra resolution
K — B — S of o there is a canonical natural equivalence of functors

w8 RHom e (S, — ®';( —) — RHompe (S, — ®|;( —),
given by (3.8.2), and every flat DG algebra resolution K — C — S of o satisfies

wAC — wBCwAB.
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The theorem validates the following notation:
Remark 3.3. Fix a flat DG algebra resolution K — A — S of ¢ and let
L . o c
RHomggL 50 (S, — ® —) : D(S) x D($°) — D(5°)

denote the functor RHomg 40 (S, — ®';( —). Forall L € D(S) and L’ € D(S°) it yields derived
Hochschild cohomology modules with tensor-decomposable coefficients:

Ext S.L ® L') = H"(RHomggL ¢ (S, L ® L')).

S®L s (
These modules are related to vintage Hochschild cohomology.
For all S-modules L and L’ there are canonical natural maps

HH"(S|K; L ®k L') — Exthg (S, L ®k L)

of S°-modules, where the modules on the left are the classical ones, see 2.4.2. These are iso-
morphisms when S is K -projective; see [10, IX, §6]. When one of L or L’ is K -flat, there exist
canonical natural homomorphisms

Extlg 4o(S, L ®k L') 1 Extiy ¢o(S,L®k L) — Ext’__ (S, L®x L).

S®k s°
When S is K -flat the composition K — § => S is a flat DG resolution of 0 and ¢ : A — S is a
morphism of resolutions, so the theorem shows that the maps above are isomorphisms.

Construction 3.4. Let K — A % Sand K — A’ %> $° be flat DG algebra resolutions of o and
of °, respectively. We turn S into a DG module over A @ A’ by setting (a ®a’)s = a(a)sa’(a’).
The action of S€ on S commutes with that of A ® ¢ A’, and so confers a natural structure of
complex of S°-modules on

Homug 4/ (S, iaggar (Pa(L) ®k par(L))),

where ps and igg 4’ refer to the resolutions introduced in 2.3.1.

LetK > BY sandk — B' 2 4 S° be DG algebra resolutions of o and o°, respectively,

and w: A — B and o' : A’ — B’ be morphism of resolutions. We turn DG B-modules into DG
A-modules via w, and remark that the equality S = « implies that on S-modules the new action
of A coincides with the old one.

Let A : L — M be a morphism of DG S-modules and " : L’ — M’ one of DG S°-modules.
The lifting property of semiprojective DG modules yields diagrams

pA(L) — = pp(M) par(L)) — = py (M)

Ni lw and Ni lw (3.4.1)
A A

L%M L/%M/
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of DG A-modules and DG A’-modules, respectively, that commute up to homotopy. It provides
the morphism in the top row of a diagram of DG (A ® A’)-modules

X@KX/

pa(L) ®k pa (L) p(M) ®k pp (M)

iaog A’ (PA(L) ®k par(L))) ~ (3.4.2)

e a (e s (PR(M) @k Pr/ (M) <— g5 (P(M) @ Pg/(M")

that commutes up to homotopy, where ¢ is the chosen semiinjective resolution, and € is given by
the extension property of semiinjective DG module over A ® ¢ A’; for conciseness, we rewrite
these maps as E > I <& J. They are unique up to homotopy, as the liftings and extensions used
for their construction have this property.

The hypotheses Bw = «a and '@’ = &’ imply that @ and o’ are quasi-isomorphisms, hence so
is w ®g ', due to the K -flatness of A® and B’?. Since ¢ is a quasi-isomorphism, Lemma 2.3.2
shows that so is Homyg o (S, ¢); thus, the latter map defines in D(S°) an isomorphism, denoted
RHom,g o (S, 1). We set

[, ®'1(A, 2) = RHomyg,e (S, )™ o RHomug, 4/(S, €) : RHomag, 4/ (S, L ®% L)
— RHomgpg, p/ (S, M ®% M').
(3.4.3)

The first statement of the following lemma contains the existence of the functors
RHom e (S, — ®';( —), asserted in the theorem. The second statement, concerning the uniqueness
of these functors, is weaker than the desired one, because it only applies to resolutions that can be
compared through a morphism @ : A — B. On the other hand, it allows one to compare functors
defined by independently chosen resolutions of o and o°. The extra generality is needed in the
proof of Lemma 3.7.

Lemma 3.5. In the notation of Construction 3.4, the assignment
(L, L")+ Homag o' (S, iagga (Pa(L) @k par(L))),
defines a functor
RHom g, 4 (S, — ®% —) : D(S) x D(5°) — D(S°),
and the assignment

A A) = o, 0 (A, )),
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given by formula (3.4.3), defines a canonical natural equivalence of functors
[w,w']: RHomA®KA/(S, — ®';( —) — RHomB®K3/(S, — ®';( —).

IfK—C Y, Sand K — C' L5 S are flat DG algebra resolutions of o and o°, respectively,
and ¥ : B— C and ¥ : B — C’ are morphism of resolutions, then

[Pw, ¥ o] =9, ][, o'].

Proof. Recall that the maps E < [ <~ J are unique up to homotopy. Thus, Hom g, 4/(S, €) and
Hom,,g o' (S, t) are morphisms of complexes of S°-modules defined uniquely up to homotopy.
In view of (3.4.3), this uniqueness has the following consequences:

The morphism [w, @’](X, A”) depends only on A and A’; one has

[idA’ idA/](idL, idl‘/) _ idRHomA®KA’(SqL®;L’);

and for all morphism u : M — N and i’ : M’ — N’ of complexes of S-modules and S°-modules,
respectively, there are equalities

Do, 9 N(ur, w2y = 19,011, 1) o [, @14, 1).

Suitable specializations of these properties show that RHomyg, a7 (S, — ®';( —) is a functor
to D(S°) from the product of the categories of complexes over S with that of complexes over S°,
and that [w, @'] is a natural transformation.

To prove that [w, ®'] is an equivalence, it suffices to show that if A and A’ are quasi-
isomorphisms, then RHom,, g,/ (S, A ®';< A’) is an isomorphism.

By (3.4.3), it is enough to show that RHomyg, 4’ (S, €) is a quasi- 1somorph1sm As X and
A’ are quasi-isomorphisms, the diagrams in (3.4.1) imply that so are Py and 7. Due to the
K -flatness of A" and B’%, their semiprojective DG modules are K -flat, hence L@k N isa quasi-
isomorphism of DG modules over A ®x A’. Now diagram (3.4.2) shows that € : E — [ is a
quasi-isomorphism. It follows that it is a homotopy equivalence, because both E and J are semi-
injective DG modules over A ® ¢ A’. This implies that Hom g, 4’ (S, €) is a quasi-isomorphism,
as desired. O

To clarify how the natural equivalence in Lemmas 3.5 depends on w, we apply Quillen’s ho-
motopical approach in [25]. It is made available by the following result, see Baues and Pirashvili
[8,A3.1, A3.5]:

3.6. The category of DG K -algebras has a model structure, where

e the weak equivalences are the quasi-isomorphisms;

e the fibrations are the morphisms that are surjective in positive degrees;

e any DG K-algebra, whose underlying graded algebra is the tensor algebra of a non-
negatively graded projective K-module, is cofibrant; that is, the structure map from K
is a cofibration.
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We recall some consequences of the existence of a model structure, following [12]: For all
DG K-algebras T and A, there exists a relation on the set of morphisms 7' — A, known as left
homotopy, see [12,4.2]. It is an equivalence when T is cofibrant, see [12, 4.7], and then 7t (T, A
denotes the set of equivalence classes.

Lemma 3.7. There is a DG algebra resolution K — T — S of o with T cofibrant.

IfK - A% S is aflat DG algebra resolutions of o, then there is a morphism of resolutions
w: T — A. Any morphism of resolutions w : T — A is left homotopic to w, and the natural
equivalences defined in Lemma 3.5 satisfy

[a), a)o] = [w, wo] : RHomTe(S, - ®';( —) — RHom e (S, - ®';( —).

Proof. Being both a fibration and a weak equivalence, « is, by definition, an acyclic fibration.
The existence of w comes from a defining property of model categories — the left lifting property
of cofibrations with respect to acyclic fibrations; see axiom MC4(i) in [12, 3.3]. Composition
with « induces a bijection ne(T, A) —> n((T, S), see [12, 4.9], so aw = aw implies that & and
w are left homotopic.

By [12, 4.3, 4.4], the homotopy relation produces a commutative diagram

Y
/

L

Z @&

of DG K -algebras, with a quasi-isomorphism p. It induces a commutative diagram

T®K T® 0@k T°
L®KT°
T ®x T° pf C @k T° A®k TO
\ Tl,mp
TQkxT° ok T°

of morphisms of DG K -algebras, where p ® g T° is a quasi-isomorphism because 7° is K -flat.
The diagram above yields the following chain of equalities:

[0,1d7°] =[x, id" ][, id""] =[x, id" ][0, 1d""] " =[x, 1d"°" ][/, id""] = [, id"°].

A similar argument shows that the morphisms @® and @w® are left homotopic, and yields
[id4, w°] = [id4, =°]. Assembling these data, one obtains

[a), a)o] = [idA, a)o][a), idTo] = [idA, wo] [w, idTo] = [w, w°]. m|
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Proof of Theorem 3.2. Choose a DG algebra resolution K — T — S of ¢ with T cofibrant,
either by noting that the one in 3.1 has this property by 3.6, or referring to a defining property of
model categories; see axiom MC5(i) in [12, 3.3].

For each flat DG algebra resolution K — A — § of o, form the flat DG algebra resolution
K — A° — S° of 0°, and define a functor

RHomge (S, — ®% —) : D(S) x D(5°) — D(S°) (3.8.1)

by applying Lemma 3.5 with A’ = A°. As T is cofibrant, Lemma 3.7 provides a morphism of
resolutions w : T — A, and shows that it defines a natural equivalence

[a), a)o] : RHomye (S, — ®';{ —) — RHom ge (S, — ®|;( —);
that does not depend on the choice of w; set a)? =[w, ©°].

When K — U — § also is a flat DG algebra resolution of o with U cofibrant, one gets
morphisms of resolutions t: 7 — U and 6 : U — A. Both 6t : T — A and w are morphisms of
resolutions, so Lemmas 3.7 and 3.5 yield

a)? = [a), a)o] = [91, 901’0] = [9, 90] [r, ro] = a)f,a)g.

For each flat DG algebra resolution K — B — § of o set

0 := w8 (wf) " : RHomye (S, — ®Y% —) — RHompe (S, —®% —).  (3.8.2)

One clearly has 04¢ = wB€wA 8, and w? is independent of T', because

B A\—1_ B U A UN-1_ B U U\l A\=1 _ B¢ A\—I
or(w7)  =wgor(egor) =ogop (o) (0p)  =wp(eyg) -
It follows that w2 is the desired canonical natural equivalence. O

We proceed with a short discussion of other derived Hochschild functors. The proof of the
next result is omitted, as it parallels that of Theorem 3.2.

Theorem 3.9. Any flat DG algebra resolution K — A — S of o defines a functor
A ® 4e RHomg (—, —) : D(85)° x D(S) — D(SC).
For each flat DG algebra resolution K — B — S of o one has a canonical equivalence
wga : B®pe RHomg (—, —) = A ® e RHomg (—, —)
of functors, and every flat DG algebra resolution K — C — S of o satisfies

WCA = WBAWCB-
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Remark 3.10. We fix a DG algebra resolution K — A — S of ¢ and let

S ®§®%So RHomg (—, —) : D(S)% x D(S) — D(5°)

denote the functor A ® 4, A RHomg (—, —): The preceding theorem shows that it is independent
of the choice of A. For all M, N € D(S) it defines derived Hochschild homology modules of the
K -algebra S with Hom-decomposable coefficients:

rg®;s°(

To S,RHomg (M, N)) =H" (S ®5,, , RHomg (M, N)).

S®k 50

These modules are related to classical Hochschild homology:
For all S-modules M and N there are canonical natural maps

Tor3®x S (S, Homg (M, N)) — HH, (S| K ; Homg (M, N))
of S°-modules, where the modules on the left are the classical ones, see 2.4.2. They are iso-

morphisms when S is K-flat; see [10, IX, §6]. When M is K-projective there exist natural
homomorphisms

®;9(

Tor?®x2” (5, RHom (M, N)) : Tor, "> (S, RHom (M, N))

— TorS®xS° (S, Homg (M, N)).

n

When S is K-flat the composition K — § = S is a flat DG resolution of 0 and ¢ : A — S is a
morphism of resolutions, so the theorem shows that the maps above are isomorphisms.

The remaining two composed functors collapse in a predictable way.
Remark 3.11. Similarly to Theorems 3.2 and 3.9, one can define functors
RHomgg 5o (S, RHomg (—, —)) : D($)*® x D(S) — D(S°),
S ®sgt 5o (— ®k —) 1 D(S) x D(S) — D(5°),

that do not depend on the choice of the DG algebra resolution A. However, this is not necessary,
as for all M, N € D(S) there exit canonical isomorphisms

F{HomS@,;SO (S, RHomg (M, N)) ~ RHomg(M, N), (3.11.1)
L ~ L
S @t 50 (M ®g N)~M Q5 N. (3.11.2)
They are derived extensions of classical reduction results [10, IX.2.8, IX.2.8a].

We finish with a comparison of the content of this section and that of [31, §2].
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Remark 3.12. When M = N the statement of Theorem 3.2 bears a close resemblance to results
of Yekutieli and Zhang, see [31, 2.2, 2.3]. One might ask whether their proof can be adapted to
handle the general case.

Unfortunately, even in the special case above the argument for [31, Theorem 2.2] is deficient.
It utilizes the mapping cylinder of morphisms ¢, ¢ : M — M of DG modules over a DG alge-
bra, B. On page 3225, line 11, they are described as “the two B’-linear quasi-isomorphisms
¢o and ¢;” where B’ is a DG algebra equipped with rwo homomorphisms of DG algebras
Uy, Ug : B — B ; with this, an implicit choice is being made between u and u. Such a choice
compromises the argument, whose goal is to establish an equality xo = x; between morphism of
complexes x;, which have already been constructed by using ¢; and u; fori =0, 1.

The basic problem is that the relation between various choices of comparison morphisms of
DG algebra resolutions is not registered in the additive environment of derived categories. In
the proof of Theorem 3.2 it is solved by using the homotopy equivalence provided by a model
structure on the category of DG algebras.

4. Reduction of derived Hochschild functors over algebras

Let o : K — S be a homomorphism of commutative rings.
Recall that o is said to be essentially of finite type if it can be factored as

K — K[x1,...,x4] — V_IK[xl,...,xd] — S,
where xp, ..., xq are indeterminates, V is a multiplicatively closed subset, the first two maps are
canonical, and the third one is a surjective ring homomorphism.
The following theorem, which is the main algebraic result in the paper, involves the relative
dualizing complex D described in (1.0.2).
Theorem 4.1. If fdx S is finite, then in D(S) there are isomorphisms
L ~ o
RHomS@(S(S, M ®% N) ~RHomg(RHomg(M, D?),N),  (4.1.1)
RHomygg. s(S,RHomg(M, D) ®% N) ~ RHomg(M, N) (4.1.2)
forall M € P(o) and N € D(S); these morphisms are natural in M and N.
We record a useful special case, obtained by combining Theorems 4.1 and 1.1:
Corollary 4.2. Assume that o is flat, and let K — P — S be a factorization of o with K — P
essentially smooth of relative dimension d and P — S finite.

If M is a finite S-module that is flat over K, and N is an S-module, then for each n € 7, there
is an isomorphism of S-modules

Extig, s(S, M ®k N) = Exty ¢ (RHomp (M, 24 ;). N).

Before the proof of Theorem 4.1 we make a couple of remarks.
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4.3. For all complexes of P-modules L, X, and J there is a natural morphism
Homp(L, P)®p X ®p J — Homp (Homp (X, L), J)

defined by the assignment A@x ® j — (x > (—1)XFIFLDIA) 5 (x) j). This morphism is bijective
when L% and X7 are finite projective: This is clear when L and X are shifts of P. The case when
they are shifts of projective modules follows, as the functors involved commute with finite direct
sums. The general case is obtained by induction on the number of the degrees in which L and X
are not zero.

4.4. A DG algebra A is called graded-commutative if ab = (—1)1@lltlpg holds for all a, b € A.
The identity map A® — A then is a morphism of DG algebras, so each DG A-module is canoni-
cally a DG module over A°, and for all A-modules M and N the complexes RHom4 (M, N) and
M ®; N are canonically DG A-modules.

When A and B are graded-commutative DG algebras, then so is A ® ¢ B, and the canonical
isomorphisms in (2.1.1) and (2.1.2) represent morphisms in D(A @k B).

Proof of Theorem 4.1. The argument proceeds in several steps, with notation introduced as
needed. It uses chains of quasi-isomorphisms that involve a number of auxiliary DG algebras

and DG modules. We start with the DG algebras.

Step 1. There exists a commutative diagram of morphisms of DG K -algebras

o
K S
x /
P® ~
Iz P A
n° ~ \
L 1’]9®PeP n
o
Be A Be ®Pe P B
1°®pe A =
B®Qpet 5°@ pea W
Be®PeA:C—j>>C: B®p B

where =~ flags quasi-isomorphisms and —» tips surjections. The morphisms appearing in the
diagram are constructed in the following sequence:

Fix a factorization K % P &> S of o, with x essentially smooth of relative dimension d and
7 finite.

Set P = P ®k P and let u : P® — P denote the multiplication map, and note that the
projective dimension pdpe P is finite by 1.3.4.
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Choose a graded-commutative DG algebra resolution P® - A % P of u with Ag = P®, each
A; a finite projective P®-module, and sup A = pdpe P; see [2, 2.2.8].

Choose a graded-commutative DG algebra resolution P 2, B I, S of o, with By a finite free
P-module and each B; a finite free P-module; again, see [2, 2.2.8].

Set B =B ®k B andlet u': B ®p B — B be the multiplication map.

Letv:B®*®pe P—> B®p Bbethemapb®b' ® pr—> (bQb')p.

Lety : B®*®pe A— BQ®p Bbethemapb @ b' Q@ ar> (b ® b')a(a).

The diagram commutes by construction. The map v is an isomorphism by (2.1.2), and
B® ®pe « is a quasi-isomorphism because « is one and B® is a bounded below complex of
flat P®-modules.

We always specify the DG algebra operating on any newly introduced DG module. On DG
modules of homomorphisms and tensor products the operations are those induced from the argu-
ments of these functors; see 4.4.

Notation. Let P® => U be a semiinjective resolution over P®.
Set H =H(Hompe(P, U)).

Step 2. There exists a unique isomorphism inducing id” in homology:
H ~RHompe (P, P®) inD(P).

Proof. The isomorphism H = Extpe (P, P*®) of graded P-modules and (1.7.1) show that H is
projective, so Lemma 1.6 applies. O

Notation. Set L =Homp (H, P).
Let L => I be a semiinjective resolution over P.

Step 3. There exists an isomorphism D ~ RHomp (S, I) in D(S).
Proof. Theorem 1.1 provides the first isomorphism in the chain

D ~RHomp (S, 292 4 )
~ RHomp (S, RHomp (RHompe (P, P®), P))
~ RHomp (S, RHomp (H, P))
~ RHomp (S, I).

The remaining ones come from (1.7.2), Step 2, and the resolution L >~ 1. O

Notation. Let X’ = M be a semiprojective resolution over B, with X ! a finite projective P-
module for each i and inf X’ = infH(M), see 2.3.1; set ¢ = pdp M, and note that ¢ is finite by
Lemma 1.4.

Set X = X'/ X", where X|' = X fori > g, X; = 3(X4+1), and X]' =0 for i < g.Itis easy
to see that X” is a DG submodule of X', so the canonical map X’ — X is a surjective quasi-
isomorphism of DG B-modules. Since X’ => M is a semiprojective resolution over P, each
P-module X; is projective; see [3, 2.4.P].
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Let G => Homp (X, L) be a semiprojective resolution over B.
Let N => J be a semiinjective resolution over B.
Set J =Homgp (S, J).

Step 4. There exists an isomorphism
RHomg(RHomg(M, D?), N) ~ RHomg (RHomp (M, L), N) in D(B).

Proof. The map N => J induces the vertical arrows in the commutative diagram

~

—H S,N = H B,N
N omp ( ) HomaB.N) omp ( )
o N |-
J—H S, J - H B, J).
J omp (S, J) S omg (B, J)

Note that B acts on N through 8, which is surjective, so Hompg (8, N) is bijective. The map
Homp (B, J) is a quasi-isomorphism because $ is one and J is semiinjective. By 2.2.2(2), J is
semiinjective, so N — J is a semiinjective resolution over §. In the following chain of mor-
phisms of DG B-modules the isomorphisms are adjunctions:

Homg (Homg (M, Homp (S, 1)), J) = Homgs(Homp (M, I), J)
= Homg (Homp (M, I), Homp(S, J))
= Homp (S ®s Homp(M, 1), J)
= HomB(Homp(M, 1), J)
~ Homg (Homp (X', 1), J)
~ Hompg (Homp (X, 1), J)
~ Hompg (Homp (X, L), J)
~ Homg (G, J).
The quasi-isomorphisms are induced by M &X' S X, LS 1,and G = X, because [ is
semiinjective over P, J is semiinjective over B, and X is semiprojective over P. The chain

yields the desired isomorphism in D(B) as J is semiinjective over S, G is semiprojective over B,
and Step 3 gives Homp(S,I)~D°. 0O

Notation. Let F => B be a semiprojective resolution over C.
Step 5. There exists an isomorphism

RHompg (RHomp (M, L), N) ~ RHom¢ (B, RHomp (RHomp (M, L), N)) in D(C).
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Proof. The DG C-module C ®c F is semiprojective by 2.2.2(1). The map F => B induces the
vertical arrows in the commutative diagram of DG C-modules

IR

~

F C®cF ~
i—) lC JocF Cch
B— C®cB — C®c B

y®cB

where y ®¢ B is an isomorphism because y is surjective and C acts on B through y,and y ®¢c F
is a quasi-isomorphism because y is one and F is semiprojective.
The resulting quasi-isomorphism C @c F = B induces the quasi-isomorphism in the fol-
lowing chain, because Homp (G, J) is semiinjective over C by 2.2.2(2):
Homg (G, J) = Homg (B, Homp (G, J))
~ Homg (C_‘ ®c F,Homp (G, J))
= Hom¢ (F, Homp (G, J)).
The first isomorphism reflects the action of C=B® p B on Homp (G, J), the second one holds

by adjunction. The chain represents the desired isomorphism because Homp (G, J) is semiinjec-
tive over C;see 4.4. O

Notation. Let Y => N be a semiprojective resolution over B.
Step 6. There exists an isomorphism

RHomp (RHomp (M, L), N) ~ RHompe (P, P®) ®%. (M ®% N) inD(B®).
Proof. From G => Homp (X, L) one gets the first link in the chain

Homp (G, J) ~ Homp(Homp(X, L), J)
=Homp(L,P)®@p X®p J
=HQpXQpJ
~HQpXQpY
=HQpe (X®kY)
>~ Hompe(P,U) @pe (X Qg ¥)
of morphisms of DG C-modules; it is a quasi-isomorphism because the semiinjective DG B-
module J is semiinjective over P, see 2.2.2(4).
The equality reflects the definition of L.

The composition ¥ => N = J induces the third link; which is a quasi-isomorphism because
H and X are semiprojective over P.



L.L. Avramov et al. / Advances in Mathematics 223 (2010) 735-772 759

The second isomorphism holds by associativity of tensor products; see 2.1.2.
The quasi-isomorphism H >~ Hompe(A, P®) from Step 2 induces the last link, which is a
quasi-isomorphism because X ®x Y is semiflat over P°.
Finally, the semiinjectivity of J and the semiflatness of X ®x Y imply that the chain above
represents the desired isomorphism in D(B®). O
Step 7. There exists an isomorphism
RHompe (P, P®) ®%e (M ®% N) ~RHompe (P, M ®% N) in D(B®).
Proof. The resolutions A => P => U over P® induce quasi-isomorphisms
Hompe (P, U) ~ Hompe(A, U) ~ Hompe (A, P®)
of complexes of P®-modules, which in turn induce a quasi-isomorphism
Hompe (P, U) ®pe (X @k ¥) =~ Hompe (A, P®) ®pe (X Qg Y)
of DG B®-modules. To wrap things up, we use the canonical evaluation morphism

Hompe (A, P®) ®pe (X ®k ¥) — Hompe(A, X ® Y)

givenby A @ x ® y = (a — (—1)KIFDIel) (a)(x ® y)); it is bijective, because the DG algebra
A is a bounded complex of finite projective P®-modules. O

Notation. Let X ® ¢ ¥ = V be a semiinjective resolution over B®.
Step 8. There exists an isomorphism
RHomc (B, RHompe (P, M ®% N)) ~ RHomge (S, M ®% N) in D(B®).

Proof. The isomorphisms below come from adjunction formulas, see (2.1.1):

Homc (F, Hompe (A, X ®k Y)) = Hompe(F ®4 A, X ®k Y)
= Hompe(F, X @k Y)
~Hompe(F, V)
~ Hompge(S, V).

The quasi-isomorphisms are induced by X Qx ¥ >~ V and F =~ §, respectively, because F is
semiprojective over B® and V is semiinjective over B®. 0O

Step 9. The composed morphism of the chain of isomorphisms
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RHomg(RHomg (M, D?), N) ~ RHomg (RHomp (M, L), N)
~ RHom¢ (B, RHomp (RHomp (M, L), N))
~ RHomc (B, RHompe (P, P?) ®%e (M ®% N))
~ RHomc (B, RHompe (P, M ®% N))
~ RHomge (S, M ®% N)
~ RHomS®kS(S, M ®I;( N)

provided by Steps 4 through 8 and Theorem 3.2, defines an isomorphism in D(S).

Proof. The diagram of DG algebras in Step 1 provides a morphism from B® to every DG algebra
appearing in the chain of canonical isomorphisms above. Thus, each isomorphism in the chain
above defines a unique isomorphism in D(B¥®). Its source and target are complexes of S-modules,
on which B€ acts through the composed morphism of DG algebras B® — B — S. This map is
equal to the composition B® — S§¢ — §. Therefore, Lemma 2.3.3, applied first to the quasi-
isomorphism B€ — S€, then to the homomorphisms § — S§€ — § given by s — s ® 1 and
s ® s' > ss’, shows that the complexes above are also isomorphic in D(S). O

Step 10. The morphism in Step 9 is natural with respect to M and N.

Proof. The morphism in question is represented by a composition of quasi-isomorphisms of DG
modules over B¢, so it suffices to verify that each such quasi-isomorphism represents a natural
morphism in D(B®).

Three kinds of quasi-isomorphisms are used. The one chosen in Step 2 involves neither M
nor N, and so works simultaneously for all complexes of S-modules; thus, no issues of naturality
arises there. Some of the constituent quasi-isomorphisms themselves are natural isomorphisms,
such as Hom-tensor adjunction or associativity of tensor products. Finally, there are quasi-
isomorphisms of functors induced replacing some DG module with a semiprojective or a semi-
injective resolution. The induced morphism of derived functors are natural, because morphisms
of DG modules define unique up to homotopy morphisms of their resolutions; see 2.3.1. O

The isomorphism (4.1.1) and its properties have now been established.
Theorem 1.2(1) shows that formula (4.1.2) is equivalent to (4.1.1). O

The next result is an analog of Theorem 4.1 for the derived Hochschild functor from Re-
mark 3.10; it can be proved along the same lines, so the argument is omitted.

Theorem 4.6. If fdx S is finite, then in D(S) there are isomorphisms

S ®§®;S RHomg (M, N) ~ RHomg (M, D°) ®5 N, (4.6.1)
S ®'§®%{S RHomg (RHomg(M, D7), N) ~ M ®§ N, 4.6.2)

forall M € P(o) and N € D(S); this morphism is natural in M and N.
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Setting M = S = N in (4.6.1) produces a remarkable expression for D?:
Corollary 4.7. In D(S) there is an isomorphism

D°~§ ®§®LKS RHomg (S, ).
Remark 4.8. The right-hand sides of (4.1.2) and (3.11.1) coincide, so one might wonder whether
the induced isomorphism of the derived Hochschild functors on the right-hand side might be
induced by an isomorphism of their coefficients:

RHomg (M, D°) ®% N ~ RHomg (M, N).

To prove that no such isomorphism exists in general, it suffices to consider the case when K is
a field, S = K[x] a polynomial ring over K, and M = S = N. The factorization K — K[x] =
K[x] gives D° ~ K[x], hence the left-hand side is isomorphic to K[x] ® ¢ K[x]. On the other
hand, the S®-module RHomg (K [x], K[x]) on the right-hand side has an uncountable basis as a
K -vector space.

5. Global duality

We now reconsider a portion of the preceding results from a global point of view. The facts
needed from Grothendieck duality theory for schemes are summarized in this section, and the
globalized results given in the next.

While it is not difficult to show that the complexes and functors we will deal with specialize
over affine schemes to sheafifications of similar things that have appeared earlier, the correspond-
ing statement for functorial maps between such objects is not so easy to establish, and we will
not be settling this issue here. Indeed, giving concrete descriptions of abstractly characterized
functorial maps is one of the major problems of duality theory.

Schemes are assumed throughout to be noetherian.

A scheme-map f : X — Y is essentially of finite type if every y € Y has an affine open
neighborhood V = Spec(A) such that =V can be covered by finitely many affine open U; =
Spec(C;) such that the corresponding ring homomorphisms A — C; are essentially of finite
type.

If, moreover, each C; is a localization of A (that is, a ring of fractions) and A — C; is the
canonical map, then we say that f is localizing.

The property “essentially finite-type” behaves well with respect to composition and base
change: if f: X — Y and g: Y — Z are scheme-maps, and if both f and g are essentially of
finite type, then so is the composition gf; if gf and g are essentially of finite type then so is f’;
andif Y’ — Y is any scheme-map then X’ := Y’ xy X is noetherian, and the projection X’ — Y’
is essentially of finite type.

Similar statements hold with “localizing” in place of “essentially finite-type”.

If the scheme-map f is localizing and also injective (as a set-map) then we say that f is a
localizing immersion.

A scheme-map is essentially smooth, resp. essentially étale, if it is essentially of finite type
and formally smooth, resp. formally étale [14, §17.1].

For example, any localizing map is essentially étale: this assertion, being local (see
[14, (17.1.6)]), results from [14, (17.1.2)] and [13, (19.10.3)(ii)].
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Remark 5.1. In several places we will refer to proofs in [17] which make use of the fact that the
diagonal of a smooth map is a quasi-regular immersion. To ensure that those proofs apply here,
note that the same property for essentially smooth maps is given by [14, 16.10.2, 16.9.4].

In [24, 4.1], extending a compactification theorem of Nagata, it is shown that any essentially-
finite-type separated map f of noetherian schemes factors as f = fu with f proper and u a
localizing immersion.

Example 5.2 (Local compactification). A map f : X = Spec S — Spec K =Y coming from an
essentially finite-type homomorphism of noetherian rings K — S factors as

xLzdzay

where Z is the Spec of a finitely-generated K -algebra T of which S is a localization, j being the
corresponding map, where i is an open immersion, and where 7 is a projective map, so that m is
proper and ij is a localizing immersion.

In the rest of this section we review basic facts about Grothendieck duality, referring to [19,23]
for details.

Henceforth all scheme-maps are assumed to be essentially of finite type, and separated.

For a scheme X, D(X) is the derived category of the category of Ox-modules, Dc(X) C
D(X) (resp. Dgc(X) C D(X)) is the full subcategory whose objects are the Ox-complexes with
coherent (resp. quasi-coherent) homology modules, and D} (resp. Dy) is the full subcategory of
D, whose objects are the complexes E € D, with H"(E) := H_,,(E) = 0 for all n <« 0 (resp.
n > 0).

5.3. To any scheme-map f : X — Y one associates the right-derived direct-image functor
Rf« : Dge(X) — Dgc(Y) and its left adjoint, the left-derived inverse-image functor
Lf* :Dge(Y) = Dge(X) [19,3.2.2,3.9.1,3.9.2].

These functors interact with the left-derived tensor product ®" via a natural isomorphism

Lf*(E®Y F)—>Lf*E®5 Lf*F (E,F eD(Y)), (5.3.1)
see [19, 3.2.4]; via the functorial map
Rf.G®5 Rf.H — Rf.(G®% H) (G, H eD(X)) (53.2)
adjoint to the natural composite map
Lf*(RfG ®Y Rf.H) (ﬁ) Lf*Rf.G ®% Lf*RfH — G @Y% H;
and via the projection isomorphism

RfF ®) G—> Rf(F ®%Lf*G) (F €Dge(X), G € Dge(Y)), (5.3.3)
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defined qua map to be the natural composition

RfF ®y G = RfF @5 RALI'G — Rf(F 8% Lf"G).

see [19, 3.9.4].

5.4. Interactions with the derived (sheaf-)homomorphism functor RHom occur via natural bi-
functorial maps

Lf*RHomy(E, F) - RHomx (Lf*E,Lf*F) (E,F €D(Y)), (5.4.1)
Rf«RHomx(E, F) - RHomy (Rf«E,RfxF) (E,F € D(X)), (5.4.2)

the former corresponding via (5.5.1) below to the composite map

Lf*RHomx(E, F)® Lf*E_—> Lf*(RHomx(E, F) &Y E) LN
(53.1)~

with ¢ corresponding via (5.5.1) to the identity map of RHomy (E, F); and the latter correspond-
ing to the composite map

Rf.RHomyx (E, F) ®% Rf,.E = Rf.(RHomx (E, F) ®% E) 25 R, F.

The map (5.4.1) is an isomorphism if f is an open immersion, or if E € D (Y), F € Da‘C(Y)
and f has finite flat dimension [19, 4.6.7].

5.5. The fundamental adjunction relation between the derived tensor and derived homomorphism
functors is expressed by the standard trifunctorial isomorphism

RHomy (A ® B, C) —> RHomy (A, RHomx (B, C)) (A, B,C € D(X)),

see e.g., [19, §2.6]. Application of the composite functor HORI" (X, —) to this isomorphism pro-
duces a canonical isomorphism

Homp(x)(A ®% B, C) — Hompx) (A, RHomx (B, C)) (A, B,C eD(X)). (5.5.1)
From among the many resulting maps, we will need the functorial one
RHomyx (M, E) ®'5( F— RHomX(M, E ®'3( F) (M, E . Fe D(X)), (5.5.2)
corresponding via (5.5.1) to the natural composite map (with ¢ as above):
(RHomx (M, E) ®% F) ®% M — (RHomx (M, E) % M) ®% F R L ®Y F.
The map (5.5.2) is an isomorphism if the complex M is perfect (see Section 6). Indeed, the
question is local on X, so one can assume that M is a bounded complex of finite-rank free O -

modules. The assertion is then given by a simple induction — similar to the one in the second-last
paragraph in the proof of [19, 4.6.7] — on the number of degrees in which M doesn’t vanish.
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Similarly, the map (5.5.2) is an isomorphism if F is perfect.
5.6. For any commutative square of scheme-maps
X —— X
g g f

Y ——Y

one has the map 0z : Lu*R f, — Rg,Lv* adjoint to the natural composite map

Rf. — R/f:Rv.Lv* —> RusRg.Lv*.

~

When Z is a fiber square (which means that the map associated to Z is an isomorphism
X'—X xy Y'), and u is flat, then 0z is an isomorphism. In fact, for any fiber square =, 0z is
an isomorphism <= E is tor-independent [19, 3.10.3].

5.7. Duality theory focuses on the twisted inverse-image pseudofunctor
f1iDE () — D),

where “pseudofunctoriality” (also known as “2-functoriality”) entails, in addition to functoriality,
a family of functorial isomorphisms ¢, , : (gf )'— f'g", one for each composable pair X L>

Y3z, satisfying a natural “associativity” property vis-a-vis any composable triple, see, e.g.,
[19, 3.6.5].

This pseudofunctor is uniquely determined up to isomorphism by the following three proper-
ties:

(i) If f is essentially étale then f' is the usual restriction functor f*.

(ii) If f is proper then f' is right-adjoint to Rf, (which takes Dg(X) into Df.(Y)
[19, (3.9.2)]).

(iii) Suppose there is given a fiber square & as above, with f (hence g) proper and u (hence v)
essentially étale. Then the functorial base-change map

Bz(F):v*f'F — g'u*F (F e DY), (5.7.1)
defined to be adjoint to the natural composition

Rg. v f'F %) WRfyf'F — u*F,
03

is identical with the natural composite isomorphism
V' F =0 f'F 5 (fv)'F = (ug) F—>g'u'F = g'u*F.

For the existence of such a pseudofunctor, see [24, §5.2].
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Remarks 5.8. (a) If f has finite flat dimension (in addition to being proper), then (5.7.1) is an
isomorphism for all F € Dgc(Y) — see [19, 4.7.4] and [20, 1.2].

(b) Theorem 5.3 in [24] (as elaborated in [23, 7.1.6]) states that, moreover, one can associate,
in an essentially unique way, to any fiber square & with u (hence v) flat, a functorial isomorphism

=, agreeing with (5.7.1) when f is proper, and with the natural isomorphism v* f * s g u*

when f is essentially étale.

(c)Let f : X — Y be essentially smooth, so that by [14, 16.10.2] the relative differential sheaf
$27 is locally free over Ox. On any connected component W of X, the rank of §2 is a constant,
denoted d(W). There is a functorial isomorphism

F'F= 3" NG (27)®0y f*F (F €Dge(Y)). (5.8.1)

with X4 A\ %X (£27) the complex whose restriction to any W is dW) A [(IQ(VVVV)(Q_,‘~|W).

To prove this, one may assume that X itself is connected, and set d := d(X). Noting that the
diagonal A : X — X Xy X is defined locally by a regular sequence of length d [14, 16.9.4],
so that A!OXXYX QLLA*G = A!G forall G € Dgc(X xy X) [15, p. 180, 7.3], one can imitate
the proof of [30, p. 397, Theorem 3], where, in view of (b) above, one can drop the properness
condition and take U = X, and where finiteness of Krull dimension is superfluous.

In this connection, see also 5.10 below, and [11, §2.2].

5.9. The fact that Bz (F) in (5.7.1) is an isomorphism for all F € D;rC(Y) whenever u is an
open immersion and f is proper, is shown in [19, §4.6, part V] to be equivalent to sheafified
duality, which is that for any proper f : X — Y, and any E € Dgc(X), F € D;FC(Y), the natural
composition, in which the first map comes from 5.4.2,

RfiHomx (E, f'F) — RHomy (Rf.E,Rfyf'F) — RHomy (Rf:E, F),  (5.9.1)

is an isomorphism.

Moreover, if the proper map f has finite flat dimension, then sheafified duality holds for all
F €Dgc(Y), see [19, 4.7.4].

If f is a finite map, the isomorphism (5.9.1) with E = Oy determines the functor f* up to iso-
morphism. (See [11, §2.2].) In the affine case, for example, if f : Spec B — Spec A corresponds
to a finite ring homomorphism A — B, and ™~ denotes sheafification, then for an A-complex M,
the B-complex f'(M™) can be defined by the equality

f(M~) = RHomu(B, M)™. (5.9.2)

5.10. (f' and ®"). For any f = fu with f proper and u localizing, and E, F € D$:(Y) such that
E ®§, F e DarC(Y) (e.g., E perfect, see Section 6), there is a canonical functorial map

FEQYLf*F — fY(E®Y F) (5.10.1)
equal, when u = 1, to the map x/ adjoint to the natural composite map

RA(fE®YLf*F)—RfAfE®Y F— EQ}F
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(see (5.3.3)), and equal, in the general case, to the natural composition
FEQY L F=u* f'E QY% u'Lf*F
=u*(f'E®% Lf*F) wrl, W FE®Y F)= f(EQYF).  (5.102)

“Canonicity” means (5.10.2) depends only on f, not on the factorization f = fu. This is shown
by imitation of the proof of [19, 4.9.2.2], after one notes that for any composition X - X’ % Y’
with i a closed immersion and v localizing, the induced map from X to its schematic image in
Y’ is localizing: the question being local, this just means that for a multiplicative system M in
aring B, and a Bys-ideal J with inverse image [ in B, the natural map (B/I)y — By /J is
bijective. (See also [24, 5.8].)

5.10.3. By [24, Theorem 5.9], the map (5.10.1) is an isomorphism if f has finite flat dimension
and E = Oy — hence more generally if E is perfect, cf. end of Section 5.5. In particular, for any
g : Y — Z there is a natural isomorphism

() 07= f'g 07— 'Oy @5 LF*e' Oy

In combination with 5.8(c) and (6.2.1) below, this appears to be a globalization of
[6, Theorem 8.6]. But it is by no means clear (nor will we address the point further here) that for
maps of affine schemes the present isomorphism agrees with the sheafification of the one in [6].

5.11. (f' and RHom). Let f : X — Y be a scheme- map, E € D (Y), F € D (Y). There is a
canonical isomorphism

f'RHomy (E, F) —> RHomx (Lf*E, f'F). (5.11.1)

Indeed, by [15, p. 92, 3.3], RHomy(E, F) € D - (Y), so f'RHomy (E, F) € D -(X); and fur-
thermore, f Fe DqC(X) and, by [15, p. 99, 44], Lf*E € D; (X)), so that RHomX(Lf*E, f F)e
DarC(X). (Those proofs in [15] which are “left to the reader” use [15, p. 73, 7.3].) So when f is
proper (the only case we’ll need), the map (5.11.1) and its inverse come out of the following
composite functorial isomorphism, for any G € Darc(X ) — in particular, G = f'RHomy (E, F)
or G = RHomyx (Lf*E, f'F):

Hompx) (G, f'RHomy (E, F)) — Hompy) (R f+G, RHomy (E, F)) by 5.7(ii)

— Homp(y)(Rf:G ®} E, F) by (5.5.1)

(
(RS,
—> Hompy)(Rf+(G ®% LF*E). F) by (5.33)
— Homp(x)(G &% Lf*E, f'F) by 5.7(ii)

(G

— Homp(x) (G, RHomx (Lf*E, f'F)) by (5.5.1).

(For the general case, one compactifies, and shows canonicity....)
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6. Reduction of derived Hochschild functors over schemes

Terminology and assumptions remain as in the first part of Section 5. Again, all schemes
are assumed to be noetherian, and all scheme-maps to be essentially of finite type, and sepa-
rated.

An Ox-complex M is perfect if X can be covered by open sets U such that the restriction
M|y is D(U)-isomorphic to a bounded complex of finite-rank locally free Oy -modules. For a
scheme-map f : X — Y, with f the map f considered only as a map of topological spaces,
and f(;1 the left adjoint of the direct image functor fy, from sheaves of abelian groups on X
to sheaves of abelian groups on Y, there is a standard way of making fO_IOY into a sheaf of
commutative rings on X, whose stalk at any point x € X is Oy, r(x). An Ox-complex M is
f-perfect it M € Dc(X) and M is isomorphic in the derived category of fofl(’)y—modules to a
bounded complex of flat f ~1Oy-modules. Perfection is equivalent to idX -perfection, with id*
the identity map of X [16 p 135, 5.8.1].

If f factors as X & Z £, Y with g essentially smooth and i a closed immersion, then M
is f-perfect if and only if i, M is (id%-)perfect: the proof of [17, p. 252, 4.4] applies here (see
Remark 5.1). Using [17, p. 242, 3.3], one sees that f-perfection is local on X: M is f-perfect if
and only if every x € X has an open neighborhood U such that M|y is f|y-perfect. Note that,
f being a composite of essentially finite-type maps, and hence itself essentially of finite type,
there is always such a U for which f|U factors as (essentially smooth) o (closed immersion).

Let P(f) be the full subcategory of D(X) whose objects are all the f-perfect complexes; and
let P(X) := P(id¥) be the full subcategory of perfect Ox-complexes.

If f:X =SpecS — Spec K =Y corresponds to a homomorphism of noetherian rings o :
K — S, then P(f) is equivalent to the category P(c) of Section 4: in view of the standard
equivalence, given by sheafification, between coherent S-modules and coherent Ox-modules,
this follows from [17, p. 168, 2.2.2.1] and [17, p. 242, 3.3].

The central result in this section is the following theorem.

Theorem 6.1. Consider a commutative diagram of scheme-maps

N

Z%X/

\/

with & proper, f of finite flat dimension, u flat, and & a fiber square.
For M e P(f), E€P(Y)and N € Da;(Y/), the following assertions hold.

() w*E ®y N € DL, (Y').
(i) v*RHomx (M, f E) ®% Lg*N € Df(X").
(iii) There exist functorial isomorphisms

8!(U*RHomX(M, f!E) ®'3(, Lg*N) = RHomz(Lv*M, y!(u*E ®')‘,/ N))
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(Note that v is flat, so that v* = Lv*; and similarly for u.)
Before presenting a proof, we derive global versions of some results established earlier for
homomorphisms of rings.

Remark 6.2. If 0 : K — § is a homomorphism of rings that is essentially of finite type and
g:V =SpecS — Spec K = W is the corresponding scheme-map then, with ~ denoting sheafi-
fication — an equivalence of categories from D(S) to Dqc(V), with quasi-inverse RI"(V, —), see
[9, 5.5] — there is an isomorphism in D(V):

g'Ow = (D°)". 6.2.1)

To see this, factoroc as K — P := V! 'K[x),...,x4] = S (see (1.0.1)), so that, correspondingly,
g = 8,8, with g, essentially smooth of relative dimension d and g, a closed immersion; then by
(5.8.1), (5.9.2), and Theorem 1.1,

g!OW ~ g!zgiOW ~ x4 RHom p (S, .Q?J‘K) ~ (DJ)N.

So the following assertion, for an arbitrary scheme-map f : X — Y, globalizes Theo-
rem 1.2(1) — and supports our calling any Qx-complex isomorphic in D(X) to f'Oy a relative
dualizing complex for f. Set

DyM :=RHomy (M, f'Oy) (M eD(X)).

Then the contravariant functor Dy takes P(f) into itself, and for every M € P(f) the canonical
map is an isomorphism M = DyD¢M.

Indeed, the proof of [17, p. 259, 4.9.2] (in whose first line (4.8) should be (4.9)) applies
here, with “localizing immersion” in place of “open immersion,” and with “essentially smooth”
in place of “smooth,” see Remark 5.1. (Actually, the assertion being local on both X and Y,
for compactifiability of f one can use Example 5.2 rather than the compactification theorem
[24,4.1].)

For E = Oy and DyM in place of M, Theorem 6.1 and Remark 6.2 yield the next
corollary, which bears comparison — at least formally — with Verdier’s “kernel theorem”
[29, p. 44, Thm. 4.1]:

Corollary 6.3. Under the assumptions of 6.1 there exists a natural isomorphism
8!(U*M % Lg*N);RHomZ (Lv*DyM, y!N).

Corollary 6.4. Let f : X — Y be a flat scheme-map. Set X' := X xy X, with canonical projec-
tions X <L X' 22 X and diagonal map § : X — X'.
There are natural isomorphisms, for M e P(f), E € P(Y) and N € DOTC(X):

8'(mfRHomx (M, f'E) ®% 75 N) — RHomx (M, f*E ®% N).
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Proof. The maps 7 and 7, are flat along with f. The assertion is just the special case of The-
orem 6.1 corresponding to the data Z := X, Y’ := X, u := f, v :=my, and g := mp — so that
v=y=idX. O

The first isomorphism in the next corollary is, for flat f, a globalization of Theorem 4.1 insofar
as the objects involved are concerned. This is seen by using the description of §' given in 5.9 for
the finite map &, and the standard equivalence of D(S) and Dqc(Spec S) for a commutative ring S
[9, 5.5]. We won’t deal with the relation between the corresponding isomorphisms.

Corollary 6.5 (Global reduction formulae). With f and § : X — X’ as in 6.4, there exist, for
M € P(f) and N € D{,(X), natural isomorphisms

8!(7tikM ®|5(, b2 ) AN RHomX(RHomX(M, f!Oy), N);
B!RHomX/(nfM,né‘N) AN RHomX(M ®'3( f!(’)y, N).

Proof. For the first isomorphism, apply 6.4 with E = Oy and Dy M in place of M, and use the

isomorphism M= D¢ Dy M from Remark 6.2.
The second isomorphism is the composition

8!RHoer(nf‘M, JT;N) AN RHomx(L(S*nf‘M, 8!712* )
a
—;> R’Homx(M, RHomx(f!(’)y, N))
—:> RHomX(M ®I)} f!Oy, N),

where the isomorphism a comes from (5.11.1), b from the special case M = Oy of the first
isomorphism in 6.5, and ¢ from the first isomorphism in Section 5.5. O

The following lemma contains the key ingredient for the proof of Theorem 6.1.

Lemma 6.6. Let g : X' — Y’ be a scheme-map of finite flat dimension. For all M’ € P(g),
E' eP(Y')and F' € D(TC(Y’), the map from (5.5.2) is an isomorphism

¥ : RHomy (M', g'E') &Y% Lg* F' —> RHomy (M', g'E' ®%,/ Lg*F').  (6.6.1)

Proof. Using the isomorphisms (5.3.1) and (for open immersions) (5.4.1), one checks that ev-
erything here commutes with restriction to open subsets on X', whence the question is local on
both X" and Y’ (see Remark 5.8(b)). Thus it may be assumed that both X" and Y’ are affine and
that g factors as X' - Z’ L, ¥y’ with i a closed immersion and & essentially smooth.

Since i, preserves stalks of Ox/-modules, therefore i, is an exact functor, and furthermore,
since D-maps are isomorphisms if they are so at the homology level, it will suffice to show that
i () (= Ri4(¥)) is an isomorphism in D(Z’).

Before proceeding, note that RHomy (M’ ,i'h'E’) € D$(X/)- That’s because i, M’ € D (Z'),
so the duality isomorphism (5.9.1) and [15, p. 92, 3.3] give

i.RHomx (M',i'h'E') = RHomz (i.M'. h'E') € D}.(Z)).
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In fact, RHomyz (ixM’', h'E') is perfect because i,M' and h'E’ are both perfect (see (5.8.1),
[16, p. 130, 4.19.1] and [16, p. 148, 7.1]).

Recall from 5.10.3 that the map (5.5.2) is an isomorphism if the complex M is perfect; and
that the map (5.10.1) is an isomorphism when f is flat and FE is perfect.

Now, there is the sequence of natural isomorphisms:

i.(RHomy (M',¢'E') ®%, Lg*F')
— i (RHomy (M',i'h'E") @Y%, Li*Lh* F')
— i,RHomy/(M',i'h'E") ®%, Lh*F' by (5.3.3)
— RHomy (ixM',h'E") ®%, Lh*F' by (5.9.1)
— RHomz (ixM',h'E’' ®, Lh*F’) by (5.5.2)
—> RHomz (ixM', h'(E' ®%, F')) by (5.10.1)
— i,RHomy/(M',i'h'(E' ®%, F')) by (5.9.1)
— i.RHomy (M', g'(E' ®%, F'))
— i,RHomy/(M', g'E' ®%,/ Lg*F') by (5.10.1).

It can be shown that these isomorphisms compose to i,(y); but we avoid this somewhat
lengthy verification and instead use a “way-out” argument. Fix M’ and E’. Via the above se-
quence of isomorphisms, the source and target of i, (), considered as functors in F’, are isomor-
phic to the functor Y : D (Y) — D{(Z') given by T (F') = RHomy (ixM', h'E") %, Lh* F'.
Since RHomy (ixM’', h'E’) is perfect and h is flat, it follows that T is a bounded functor
[19, (1.11.1)], whence the same is true of the source and target of i,\.

Furthermore, one checks that ¢ (and hence i) is a morphism of A-functors (see [19, §1.5]).
By [15, p. 69, (iii)], it suffices therefore to prove that i,V is an isomorphism when F' is a quasi-
coherent module.

Since Y’ is affine, any such F’ is a homomorphic image of a free Oys-module. Hence, by
[15, p. 69, (iii)] (dualized), we may assume that F”’ itself is free.

Since T respects direct sums in that for any small family (F,) in D(Z’), the natural map is an
isomorphism

EBT(Fa)%T(EDFO,),

the same holds for the source and target of i, 1. There results a reduction to the trivial case when
F' = Oy
This completes the proof of Lemma 6.6. 0O

Proof of Theorem 6.1. Assertion (i) holds because u*E € P(Y’).

Since Z is a fiber square, the map v is flat along with u. For the same reason, the map g has
finite flat dimension — so that Lg*N € Dq+C(X’), see [19, §2.7.6], and the Oy/-complex v*M is
g-perfect, see [17, p. 257, 4.7]. We then have natural isomorphisms
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v*RHomy (M, f'E) ®%/ Lg*N — RHomy (v*M, v* f'E) ®%, Lg*N
LER RHomy: (v*M, g'u*E) ®%, Lg*N
s RHomy (v* M, g'w*E @Y, Lg"N)
—> RHomy: (v*M, g'(u*E ®}, N))

described, respectively, in and around (5 4.1), (5.8)(b), (6.6.1), and 5.10.3.
Since v*M € P(g) C D (X’) and g’ 'W*E ®%, N) e D .(X"), therefore

RHoer(v*M,g!(u*E ®y/ )) € DJr (X)),

cf. [15, p. 92, 3.3]. Assertion (ii) in 6.1 results.
The composition of the maps above induces the first isomorphism below:

8'(v*RHomx (M, f'E) ®Y% Lg*N) — §'RHomy: (v*M, g'(u*E &, N))
—> RHomyz (Ls*v* M, §'g'(u*E &Y, N))
—> RHomz (Lv*M, y'(u*E &Y, N)).
The second isomorphism is from (5.11.1). The third isomorphism is canonical. 0
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