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1. Introduction and preliminaries

It is well known that the real Dirichlet distribution is derived from the gamma distribution defined by

γp,σ (dy) = exp(−σ y)yp−1σ p(
Γ (p)

)−1
1(0,+∞)(y)dy,

where σ > 0 is the scale parameter and p > 0 is the shape parameter. In fact, if Y1, . . . , Yq are independent random variables
with respective gamma distributions γp1,σ , . . . , γpq,σ , and if we define

S = Y1 + · · · + Yq and X =
(

Y1

S
, . . . ,

Yq

S

)
,

then the distribution of X is called the Dirichlet distribution with parameters (p1, . . . , pq) and is denoted D(p1,...,pq) . For
the definition of multivariate analogs of the real Dirichlet distribution, the gamma distribution is replaced by the Wishart
distribution on symmetric matrices and the ordinary division in real numbers is replaced by a division algorithm (see [6]
or [1]). An interesting question within the framework of the Wishart distribution is: “Are the variables obtained from a
Wishart–Dirichlet random variable by some projections and some inversions of the matrix margins are still Dirichlet?”.
The aim of the paper is to give an answer to this question. We will consider it in a more general setting. In fact the
Wishart distribution represent a particular example of the more general Riesz distribution on the cone of positive symmetric
matrices or on any symmetric cone. The definition of these distributions is based on the notion of generalized power in
a Jordan algebra which reduces to the ordinary determinant in a particular situation (see [3]). We first use the class of
Riesz distribution and an appropriate division algorithm to introduce an extension of the class of the Wishart–Dirichlet
distributions which we call the class of Riesz–Dirichlet distributions. We then show that some variables related to the
Pierce decomposition of the Riesz–Dirichlet and in particular of the Wishart–Dirichlet distribution are also Dirichlet. Our
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results are presented in the general framework of Jordan algebras and symmetric cones with the emphasis upon the algebra
of symmetric matrices.

Recall that a Euclidean Jordan algebra is a finite dimensional Euclidean space E of dimension n, with a scalar product
〈x, y〉 and a bilinear map

E × E → E, (x, y) �→ xy

which verify some specific properties (for more details, see Faraut and Korányi [2]). A Euclidean Jordan algebra is said to
be simple if it does not contain a nontrivial ideal. Actually to each Euclidean simple Jordan algebra, one attaches the set of
Jordan squares

Ω = {
x2; x ∈ E

}
.

Its interior Ω is a symmetric cone, i.e. a cone which is self dual that is

Ω = {
x ∈ E; 〈x, y〉 > 0 ∀y ∈ Ω \ {0}}

and homogeneous, i.e. the group G(Ω) of linear automorphisms preserving Ω acts transitively on Ω . We denote by G the
identity component of G(Ω) and K = G ∩ O (E), where O (E) is the orthogonal group of E . An element k of K satisfies
k(xy) = k(x)k(y). In particular, ke = e and this equality characterizes K , that is K = {g ∈ G; ge = e}. For each x ∈ E , we
define L(x) : E → E by L(x)y = xy, y ∈ E and the trace of x is trace(x) = 〈x, e〉. The inner product on E is then given by
〈x, y〉 = trace(xy). Consider the map P (x) : E → E , defined by

P (x) = 2L(x)2 − L
(
x2).

Then the map x �→ P (x) is called the quadratic representation of E . An element c ∈ E is idempotent if c2 = c. A scalar α is
an eigenvalue of c ∈ E if there exists a nonzero x ∈ E such that cx = αx. If c is idempotent then it can be shown that its
eigenvalues must be equal to 1,1/2 or 0 (see [2, p. 62]). The corresponding eigenspaces are respectively denoted by E(c,0),
E(c,1/2) and E(c,1) and the decomposition

E = E(c,0) ⊕ E(c,1/2) ⊕ E(c,1)

is called the Peirce decomposition of E with respect to c. An idempotent c is primitive if it is nonzero and is not expressible
as the sum of two nonzero idempotents. Two idempotents c1 and c2 are orthogonal if c1c2 = 0. A maximal system of
orthogonal primitive idempotents is called a Jordan frame. It may be shown that any Jordan frame has the same number, r,
of elements; and r is called the rank of Ω . If {c1, . . . , cr} is a Jordan frame, then c1 + · · · + cr = e, the identity element in E .
Let us choose and fix a Jordan frame {c1, . . . , cr} in E and define a collection of subspaces, for 1 � i, j � r

Ei j =
{

E(ci,1) = Rci if i = j,

E(ci,
1
2 ) ∩ E(c j,

1
2 ) if i �= j.

Then (see [2, Theorem IV.2.1]) we have E = ⊕
i� j Ei j , each E jj , for j = 1, . . . , r, is a one-dimensional subalgebra. Further,

the subspaces Eij , for i, j = 1, . . . , r with i �= j, all have a common dimension, called the Peirce constant, denoted by d. The
constant d is independent of the choice of Jordan frame. It may be shown that n,d and r are related by the formula

n = r + r(r − 1)
d

2
.

For 1 � k � r, let Pk the orthogonal projection on the Jordan subalgebra

Ek = E(c1 + · · · + ck,1),

det(k) the determinant in the subalgebra Ek and, for x in E , Δk(x) = det(k)(Pk(x)). Then Δk is called the principal minor of
order k with respect to the Jordan frame (ci)1�i�r . For s = (s1, . . . , sr) ∈ R

r , and x in Ω , we write

Δs(x) = Δ1(x)s1−s2Δ2(x)s2−s3 · · ·Δr(x)sr .

This is the generalized power function. Note that if x = ∑r
i=1 λici , then Δs(x) = λ

s1
1 λ

s2
2 · · ·λsr

r and that Δs(x) = (det x)λ if
s = (λ, . . . , λ) with λ ∈ R. It is also easy to see that Δs+s′ (x) = Δs(x)Δs′ (x). In particular, if m ∈ R and s + m = (s1 + m,

. . . , sr + m), we have Δs+m(x) = Δs(x)(det x)m .
In the case where E is the space of r × r real symmetric matrices, all these concepts are familiar. The Jordan product

xy of two symmetric matrices x and y is defined by 1
2 (x.y + y.x) where x.y is the ordinary product of the matrices x and

y, the cone Ω is the cone of r × r positive definite symmetric matrices, and its closure Ω is the cone of positive r × r
positive semi-definite symmetric matrices and d = 1. Also if x = (xij)1�i, j�r is an (r, r)-symmetric positive definite matrix,
then Pk(x) = (xij)1�i, j�k and Δk(x) = det(xij)1�i, j�k .
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2. Riesz–Dirichlet distributions on symmetric cones

As we mentioned above, for the definition of the Dirichlet distribution on a symmetric cone, we need a notion of
quotient. In general, there is not a single way to define a quotient. For example, in the matrix case, if Y is a positive definite

matrix, one can write Y = Y
1
2 Y

1
2 and define the ratio X by Y as Y − 1

2 XY − 1
2 . We can also use the Cholesky decomposition

Y = U U∗ , where U is a lower triangular matrix and define the ratio as (U−1)X(U−1)∗. More generally, a division algorithm
on a symmetric cone is a measurable map g from Ω into G such that, for all x in Ω , g(x)(x) = e. The two examples given
above for symmetric matrices are the most usual and most important. The definition of the first in any symmetric cone is

based on the quadratic representation, it is given by g(x) = P (x− 1
2 ). The second algorithm takes its values in the triangular

group T . For the definition of T , we need to introduce some other facts concerning a Jordan algebra. For x and y in E , let
x � y denote the endomorphism of E defined by

x � y = L(xy) + [
L(x), L(y)

] = L(xy) + L(x)L(y) − L(y)L(x). (2.1)

If c is an idempotent and if z is an element of E(c, 1
2 ),

τc(z) = exp(2z � c)

is called a Frobenius transformation, it is an element of the group G .
Given a Jordan frame (ci)1�i�r , the subgroup of G

T =
{
τc1

(
z(1)

) · · ·τcr−1

(
z(r−1)

)
P

(
r∑

i=1

aici

)
, ai > 0, z( j) ∈

r⊕
k= j+1

E jk

}

is called the triangular group corresponding to the Jordan frame (ci)1�i�r . It is an important result [2, p. 113, Prop. VI.3.8]
that the symmetric cone Ω of the algebra E is parameterized by the set

E+ =
{

u =
r∑

i=1

uici +
∑
i< j

ui j, ui > 0

}
. (2.2)

More precisely, if

tu = τc1

(
z(1)

) · · ·τcr−1

(
z(r−1)

)
P

(
r∑

i=1

uici

)
(2.3)

where zi j = uij
ui

, i < j and z( j) = ∑r
k= j+1 z jk , then the map u �→ tu(e) is a bijection from E+ into Ω with a Jacobian equal to

2r ∏r
i=1 u1+d(r−i)

i . Also, for all x in E , we have

Δk
(
tu(x)

) = u2
1 · · · u2

kΔk(x) = Δk
(
tu(e)

)
Δk(x). (2.4)

It is shown that, for each b in Ω , there exists a unique t in the triangular group T such that b = t(e). Hence the map

g : Ω → T ; b �→ t−1 (2.5)

realizes a division algorithm. This algorithm is the most appropriate for the division of Riesz random variable and so we
will use it in all what follows.

Now consider the absolutely continuous Wishart distribution on Ω , with shape parameter p > d
2 (r − 1) and scale param-

eter σ ,

W p,σ (dx) = (detσ)p

ΓΩ(p)
exp

(−〈σ , x〉)(det x)p− n
r 1Ω(x)dx. (2.6)

Let p1, . . . , pq be in ( d
2 (r − 1),+∞), q � 2, and let σ be in Ω . If Y1, . . . , Yq are mutually independent random variables in E

with Wishart distributions W p1,σ , . . . , W pq,σ , respectively, and if S = Y1 +· · ·+ Yq , then the distribution of the random vari-
able (X1, . . . , Xq) = (g(S)Y1, . . . , g(S)Yq) is called the Wishart–Dirichlet distribution on E with parameters (p1, . . . , pq), it
is denoted by D(p1,...,pq) . It is proved in [1] that the random variable (X1, . . . , Xq−1) is independent of S and its distribution
does not depend on the parameter σ . In fact, the vector (X1, . . . , Xq−1) has the density(

BΩ(p1, . . . , pq)
)−1

(det x1)
p1− n

r · · · det(e − x1 − · · · − xq−1)
pq− n

r

where BΩ(p1, . . . , pq) is the beta function defined by

BΩ(p1, . . . , pq) = ΓΩ(p1) · · ·ΓΩ(pq)

ΓΩ(p)
,

where p = p1 + · · · + pq .
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We come now to the definition of the Riesz–Dirichlet distribution. It relies on the following fundamental theorem proved
by Hassairi et al. [4]. Recall that the absolutely continuous Riesz distribution on a symmetric cone is defined by these
authors by

R(s, σ )(dx) = 1

ΓΩ(s)Δs(σ−1)
e−〈σ ,x〉Δs− n

r
(x)1Ω(x)dx,

where σ is in Ω , s = (s1, . . . , sr) is in R
r such that si > (i − 1) d

2 for 1 � i � r, and

ΓΩ(s) = (2π)
n−r

2

r∏
j=1

Γ

(
s j − ( j − 1)

d

2

)
.

The distribution R(s, σ ) reduces to the Wishart given in (2.6), when s1 = · · · = sr = p.

Theorem 2.1. Let Y1, . . . , Yq be q independent Riesz random variables with the same σ , Y j ∼ R(s j, σ ), where s j = (s j
1, . . . , s j

r ) ∀1 �
j � q. If we set S = Y1 + · · · + Yq and X j = g(S)(Y j), then

(i) S is a Riesz random variable, S ∼ R(
∑q

j=1 s j, σ ) and is independent of (X1, . . . , Xq−1).
(ii) The density of the joint distribution of (X1, . . . , Xq−1) with respect to the Lebesgue measure is

ΓΩ(
∑q

j=1 s j)∏q
j=1 ΓΩ(s j)

q−1∏
j=1

Δs j− n
r
(x j)Δsq− n

r

(
e − (x1 + · · · + xq−1)

)

where x j ∈ Ω, 1 � j � q − 1 and e − ∑q−1
j=1 x j ∈ Ω .

Definition 2.1. The distribution of (X1, . . . , Xq) is called the Riesz–Dirichlet distribution on E with parameters (s1, . . . , sq), it
is also denoted by D(s1,...,sq) .

Note that, if s j
k = p j; 1 � k � r, then D(s1,...,sq) is nothing but the Wishart–Dirichlet distribution D(p1,...,pq) . Also for

q = 2, that is if X and Y are two independent random variables; X ∼ R(s, σ ) and Y ∼ R(s′, σ ),then we have that the
random variable Z = g(X + Y )(X) is independent of X + Y and has the density

(
BΩ(s, s′)

)−1
Δs− n

r
(z) Δs′− n

r
(e − z)1Ω∩(e−Ω)(z)dz,

where BΩ(s, s′) is the beta function defined on the symmetric cone Ω (see [2, p. 130]) by BΩ(s, s′) = ΓΩ(s)ΓΩ(s′)
ΓΩ(s+s′) . The

distribution of the random variable Z = g(X + Y )(X) is called the beta-Riesz distribution with parameters s and s′ .

3. The Projection of a Riesz–Dirichlet distribution

In this section, we state and prove our main results concerning the projections of a Riesz–Dirichlet distribution on
a symmetric cone. Recall that Pk(x) denotes the orthogonal projection of an element x of E on the Jordan subalgebra
Ek = E(c1 + · · · + ck,1). We will denote by Ωk the symmetric cone of Ek . We also denote by ek the unity in Ek , by T k the
corresponding triangular group with respect to the Jordan frame (ci)1�i�k , and we set gk the division algorithm defined
by the Cholesky decomposition in the cone Ωk . Similarly, these objects are defined for the subalgebra E j = E(cr− j+1 +
· · ·+cr,1), 1 � j � r−1. The projection on E j is denoted P∗

j and the symmetric cone of E j is denoted Ω j , it is parameterized
by the set (E+) j . Also e j , T j , K j and g j denote respectively the unity, the triangular group, the orthogonal group, and the
division algorithm corresponding to E j .

Our first theorem shows that the direct orthogonal projection of a Riesz–Dirichlet distribution on Ek is still Riesz–
Dirichlet.

Theorem 3.1. Let X = (X1, . . . , Xq) be a Riesz–Dirichlet random variable with distribution D(s1,...,sq) . Then for all 1 � k � r, the

random variable (Pk(X1), . . . , Pk(Xq)) has a Dirichlet distribution on E(c1 + · · · + ck,1) with distribution D(s1,...,sq) , where si =
(si

1, . . . , si
k), ∀1 � i � q.

Our second main result uses the inversion in a symmetric cone and the orthogonal projection P∗
j on the subalgebra

E j = E(cr− j+1 + · · · + cr,1), 1 � j � r − 1.
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Theorem 3.2. Let X = (X1, . . . , Xq) be a Riesz–Dirichlet random variable with distribution D(s1,...,sq) , and let 1 � j � r − 1. Setting

S j = ∑q
l=1(P∗

j (X−1
l ))−1 , we have that

(
g j(S j)

(
P∗

j

(
X−1

1

))−1
, . . . , g j(S j)

(
P∗

j

(
X−1

q

))−1)
has a Riesz–Dirichlet distribution on the algebra E(cr− j+1 + · · · + cr,1) with distribution D

(s1−(r− j) d
2 ,...,sq−(r− j) d

2 )
, where si =

(si
r− j+1, . . . , si

r), ∀1 � i � q.

Remarks. (i) Particular statements of Theorems 3.1 and 3.2 may be given replacing the Riesz–Dirichlet distributions by the
ordinary Wishart–Dirichlet distribution.

(ii) From Theorem 3.1, we have in particular that (P1(X1), . . . , P1(Xq)) is a real Dirichlet random variable with parameters
(s1

1, . . . , sq
1).

(iii) Theorem 3.2 implies that(
(P∗

1(X−1
1 ))−1∑q

l=1(P∗
1(X−1

l ))−1
, . . . ,

(P∗
1(X−1

q ))−1∑q
l=1(P∗

1(X−1
l ))−1

)

is a real Dirichlet random variable with parameters (s1
r − (r − 1) d

2 , . . . , sq
r − (r − 1) d

2 ).

The rest of the paper is devoted to the proofs of Theorems 3.1 and 3.2. For this we need to establish two results
concerning the projections Pk and P∗

j which are important in their own rights in the framework on Jordan algebras and
their symmetric cones.

Proposition 3.1. Let u and v be in Ω and let x = g(u + v)(u). Then, for 1 � k � r, we have

Pk(x) = gk(Pk(u) + Pk(v)
)(

Pk(u)
)
.

Proof. As u + v ∈ Ω , then there exist α in E+ such that

u + v = tα(e),

so that

x = t−1
α (u).

Using the fact that

Pk
(
tu(x)

) = tPk(u)

(
Pk(x)

)
, (3.1)

(see [2, p. 114]), we get

Pk(x) = t−1
Pk(α)

(
Pk(u)

)
and

Pk(u + v) = tPk(α)

(
ek).

Then

gk(Pk(u) + Pk(v)
) = t−1

Pk(α).

Hence

Pk(x) = gk(Pk(u) + Pk(v)
)(

Pk(u)
)
. �

Proposition 3.2. Let u and v be in Ω and let x = g(u + v)(u). Then, for 1 � j � r, we have(
P∗

j

(
x−1))−1 = g j

((
P∗

j

(
(u + v)−1))−1)(

P∗
j

(
u−1))−1

.

Proof. As (u + v) ∈ Ω , there exists a unique α in E+ , such that u + v = tα(e), and we have (see [3]) that(
P∗

j (u + v)−1)−1 = tα(e j). (3.2)

Since (P∗
j (u + v)−1)−1 ∈ Ω j then there exists a unique β j in (E+) j such that

(
P∗(u + v)−1)−1 = tβ j (e j). (3.3)
j
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Comparing (3.2) and (3.3), we obtain that

t−1
β j

◦ tα|E j
∈ T j ∩ K j,

and since the only orthogonal transformation which is triangular with positive diagonal entries is the identity (see
[2, p. 111]), then

tα|E j
= tβ j .

On the other hand it is proved in [4] that

tα
((

P∗
j

(
x−1))−1) = (

P∗
j

(
u−1))−1

.

Since (P∗
j (x−1))−1 ∈ E j , one obtains(

P∗
j

(
x−1))−1 = t−1

β j

((
P∗

j (u)−1)−1)
.

Using (3.3), we get(
P∗

j

(
x−1))−1 = g j

((
P∗

j (u + v)−1)−1)(
P∗

j

(
u−1))−1

. �
This concludes the proof of Proposition 3.2 and we are now ready to prove the theorems.

Proof of Theorem 3.1. Suppose that the distribution of X is D(s1,...,sq) . Then there exist Y1, . . . , Yq independent Riesz random
variables with the same scale parameter σ and respective shape parameters s1, . . . , sq such that, if S = Y1 + · · · + Yq , we
have X = (X1, . . . , Xq) = (g(S)Y1, . . . , g(S)Yq).

From Proposition 3.1, we obtain that

(
Pk(X1), . . . , Pk(Xq)

) =
(

gk

( q∑
i=1

Pk(Yi)

)
Pk(Y1), . . . , gk

( q∑
i=1

Pk(Yi)

)
Pk(Yq)

)
.

We now use a result due to Hassairi et al. [5] which says that for all 1 � i � q, Pk(Yi) is a Riesz random variable with
parameters si and σ1 − P (σ12)σ

−1
0 , where σ1, σ12, σ0 are the peirce components with respect to c1 + · · · + ck of σ . Since

Pk(Y1), . . . , Pk(Yq) are independent, one obtains that (Pk(X1), . . . , Pk(Xq)) has the Dirichlet distribution D(s1,...,sq) . �
Proof of Theorem 3.2. Suppose that the distribution of X is D(s1,...,sq) . Then there exist Y1, . . . , Yq independent Riesz random
variables with the same scale parameter σ and respective shape parameters s1, . . . , sq such that, if S = Y1 + · · · + Yq , we
have X = (X1, . . . , Xq) = (g(S)Y1, . . . , g(S)Yq).

From Proposition 3.2, we have that for all 1 � i � q(
P∗

j

(
X−1

i

))−1 = g j
((

P∗
j (Y1 + · · · + Yq)

−1)−1)(
P∗

j

(
Y −1

i

))−1
.

Then

S j = g j
((

P∗
j (Y1 + · · · + Yq)

−1)−1)( q∑
i=1

(
P∗

j

(
Y −1

i

))−1

)
. (3.4)

As (P∗
j (Y1 + · · · + Yq)

−1)−1 ∈ Ω j , then there exist γ j in (E+) j such that(
P∗

j (Y1 + · · · + Yq)
−1)−1 = tγ j (e j). (3.5)

On the other hand S j ∈ Ω j , there exist ν j in (E+) j , such that

S j = tν j (e j).

This with (3.4) and (3.5) imply that
q∑

i=1

(
P∗

j

(
Y −1

i

))−1 = tγ j (S j) = tγ j ◦ tν j (e j). (3.6)

In fact

g j(S j)
(

P∗
j

(
X−1

i

))−1 = (
t−1
ν j

◦ t−1
γ j

)((
P∗

j

(
Y −1

i

))−1)
.

From (3.6), we immediately get

g j(S j)
(

P∗
j

(
X−1

i

))−1 = g j

( q∑(
P∗

j

(
Y −1

i

))−1

)(
P∗

j

(
Y −1

i

))−1
. (3.7)
i=1
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From (3.7), we obtain that(
g j(S j)

(
P∗

j

(
X−1

1

))−1
, . . . , g j(S j)

(
P∗

j

(
X−1

q

))−1)
=

(
g j

( q∑
l=1

(
P∗

j

(
Y −1

l

))−1

)(
P∗

j

(
Y −1

1

))−1
, . . . , g j

( q∑
l=1

(
P∗

j

(
Y −1

l

))−1

)(
P∗

j

(
Y −1

q

))−1

)
.

We know use a result due to Hassairi et al. [5] which says that for all 1 � i � q, (P∗
j (Y −1

i ))−1 is a Riesz random variable

with parameters si − (r − j) d
2 and σ0, where σ1, σ12, σ0 are the peirce components with respect to cr− j+1 + · · · + cr of σ .

Since (P∗
j (Y −1

1 ))−1, . . . , (P∗
j (Y −1

q ))−1 are independent, one obtains that

(
g j(S j)

(
P∗

j

(
X−1

1

))−1
, . . . , g j(S j)

(
P∗

j

(
X−1

q

))−1)
has the Dirichlet distribution D

(s1−(r− j) d
2 ,...,sq−(r− j) d

2 )
. �
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