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Abstract

Necessary and sufficient conditions for minimality of descriptor representations of impul-
sive-smooth behaviors are derived. We obtain a complete set of transformations by which
minimal descriptor representations that give rise to the same behavior can be transformed into
each other. In particular this leads to a jump-behavioral interpretation of the notion of strong
equivalence of descriptor representations. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Equivalence relations are a classical subject in the study of systems of linear dif-
ferential and algebraic equations. They are used for instance to transform a given sys-
tem to a canonical form so that various properties may be read off easily. Of course,
one has to specify which equivalence transformations are allowed. One way to settle
this is provided by the “behavioral approach” to systems theory, which has been
developed in particular by Willems [18]. Briefly, the behavioral method of defining
equivalence relations is the following.

Let a set of differential and algebraic equations be given. Suppose that some of
the variables in these equations are marked as the ones that provide connections to
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the outside world. Call these variables “external”, and let the remaining variables
be labeled “internal”. Select a function space where solutions of the given set of
differential and algebraic equations will be sought. In a suitable vector version of

this space we can form the collection of all trajectories of the external variables

for which there exists a corresponding trajectory of the external variables such that
the combined trajectory is a solution of the given system. This collection is called

the external behavigror simply thebehavior of the system. Two systems are said

to beexternally equivalentor justequivalentif they give rise to the same behav-

ior.

The behavioral definition of system equivalence is strongly focused on a des-
ignated set of external variables. This point of view can be motivated for instance
in the context of control systems where the inputs and outputs can be thought of as
external variables; representations involving only these variables, such as the transfer
function, are indeed extensively used in control theory. Another motivation can be
found in network modeling, by which we understand here the technique of modeling
a complex system as the interconnection of smaller subsystems. In this context, the
external variables of subsystem models are interpreted as the variables through which
connection to other parts of the system may take place. From a modular point of view,
each subsystem may be identified with its external behavior.

The behavioral definition of system equivalence can be applied in many different
contexts, which may vary according to system specification as well as according to
the function space that is being considered. Possible system specifications include
first-order equations that are solved for the derivative, implicit first-order equations,
higher-order equations, and so on. Concerning function spaces, one may for instance
think of C* functions, locally integrable functions, or spaces of generalized func-
tions. In each of these cases, the notion of equivalence can be defined as above. How-
ever, the “conceptual” definition as given above is not very convenient for purposes
such as reduction to a canonical form. For such purposes one needs a description of
the notion of external equivalence in a concrete, operational form.

For linear systems, the problem of finding a concrete description of the opera-
tions of external equivalence has been solved in a number of cases; see for instance
[3,7,12,18]. Typically, the transformations can be described in a nice way if it is
assumed that they take place between representations that are minimal in an appro-
priate sense. For nonminimal systems, there are other transformations which pro-
duce an equivalent minimal representation. In this paper we shall be concerned with
finding the concrete form of transformations under external equivalence $arip-
tor representationsvhen solutions are considered in the spacengulsive-smooth
distributions[6]. This particular setting can be motivated as follows.

Descriptor representations are systems of differential and algebraic equations that
can be written in the form (see for instance [1,7])

Ex = Ax + Bu, (1.1
y =Cx + Du, (1.2)
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whereE, A, B, C, andD are constant matrices. The matixmay be singular or
nonsquare. Equations of this form arise naturally when a system description is ob-
tained by the coupling of equations of several subsystems. We will consider the vari-
ablesy andu as external variables; the variabiewhich is sometimes called the
pseudo-state, will be taken as an internal variable.

In contrast to standard input/state/output equations, which are of the above form
with E equal to the identity matrix, descriptor equations may allogonsistentni-
tial conditions, i.e. initial conditions that do not correspond to smooth solutions.
Inconsistent initial conditions typically arise as a consequence of an externally or
internally generated event, such as a switch being turned or a constraint becoming
active; see for instance [14] for a discussion of mode changes in dynamical systems.
An inconsistent initial condition must give rise to a state jump, which in the linear
context may be suitably described in the language of distribution theory. Therefore,
when looking at descriptor equations, it is natural to consider solutions that may in-
clude a distributional component having support at the initial time; a suitable setting
is provided by the space of impulsive-smooth distributions [6].

Distributional solutions to implicit systems of linear equations and corresponding
equivalence transformations have also been considered in [10], even for the case
of time-varying coefficients, but with no distinction between external and internal
variables. Note that an interpretation in which all variables are looked at as external
is produced by (1.1) if one takes the special chdice 7 andD = 0.

Our development here is close to the papers [2,3] where the problem of exter-
nal equivalence in the sense of impulsive-smooth distributions is considered for
so-calledpencilrepresentations, i.e. representations of the forms

Gz=Fz, (1.3)
w=Hz, (1.4)

wherew is a vector of external variables. In this paper we will make heavy use of
the results in [2,3]. By focusing on descriptor representations, it becomes possible
to make a comparison with equivalence notions for descriptor systems that have
been proposed in the literature (for instance [11,15,16]). We shall indeed find that a
certain transformation group that has been considered before can be interpreted as a
group of transformations under external equivalence. As a consequence, this group
of transformations obtains an interpretation in terms of jump behaviors. See the end
of Section 5 for more discussion.

The paper is structured as follows. Section 2 is devoted to preliminaries. In par-
ticular, the definition of the space of impulsive-smooth distributions is recalled, two
ways are given for associating an impulsive-smooth behavior to a descriptor rep-
resentation, and a summary is given of the results in [2,3] that will be used in the
present paper. To make use of the results in the cited papers, we need to establish
a number of connections between pencil representations and descriptor representa-
tions; this is done in Section 3. In order to get a nice description of the relation of
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external equivalence, we need to restrict ourselves to descriptor representations that
are minimal in an appropriate sense. The relevant minimality conditions are obtained
in Section 4. The concrete description of the relation of external equivalence for min-
imal descriptor representations follows in Section 5. Section 6 briefly summarizes
the conclusions.

2. Preliminaries

To describe jump behaviors mathematically, we use a simple fragment of the cal-
culus of distributions, following the framework laid out in [6]. Throughout the paper,
the first derivative of the Dirac distributiod is denoted byp, and itskth deriva-
tive is denoted by*. R[s] denotes, as usual, the ring of polynomialsiwith real
coefficients. We denote b¥ (7o, t1) the set of restrictions o#°°(R)-functions to
(t0, 11) With —oc0 < 19 < 11 < 0o. The product spaceR[p] x % (1o, 11))* is denoted
by fgi"mp(to, t1); so elements of this space consist of a polynomial part, which we
shall refer to as the “purely impulsive pantp-imp (representing a pulse at timg)
and a function part, which is called the “smooth pargm. We write v = vp-imp +
vsm; the summation is motivated by the fact that element%{%(to, t1) may be
identified with certain distributions (for further detail see [2,6]). On the basis of this
identification, the convolution action of the operagpanay be described by

PV = pUp-imp + Usm(lg—) + Usm.

For the purposes of the present paper, one might simply take this as the definition
of the action ofp. It is easily verified that for instance the scalar differential equa-
tion v = av with initial conditionv(0) = vg can be expressed in the present frame-
work by the formulgpv = av + vg. To alleviate the notation, explicit mention of the
interval (1o, t1) will be suppressed in what follows.

We shall consider systems with external variahlesvhich will sometimes be
distinguished into inputsl and outputsy. The variablew takes values in a finite-
dimensional real vector spacé = % x %. Thebehavior# of a given system of
differential and algebraic equations in internal and external variables is defined, as in
[17,18], as the set of time trajectories of the external variables that are admitted by
the system equations. In order to incorporate solutions that exhibit an initial jump,
we shall consider solutions in the spaﬁﬁn of impulsive-smooth distributions; in
this we deviate from the setting of [17,18f. Behaviors defined in the space of impul-
sive-smooth distributions will be referred to iaspulsive-smooth behavioos jump
behaviors

A study of impulsive-smooth behaviors was based on the so-cp#edil rep-
resentations [2,3]. A pencil representation by itself is just a triple of real matrices
satisfying certain size constraints. To such a triple one can associate a behavior in two
differentways, which are referred to as ttenventionastyle and theinconventional
style in [2]. The two ways of generating a behavior are equally expressive (in the
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sense that a behavior generated by one can also be generated by the other, and vice
versa); they differ though in the way in which the initial conditions are incorporated.
Unconventional pencil representations are defined as follows.

Definition 2.1. For a matrix triple(F, G, H) (F, G € R™ "0 g ¢ pax+h)y
theunconventionally associated impulsive-smooth beha®¥{@iF, G, H) is
Bu(F, G, H)={w € € |3z € CiiF, xo € R
Sst.pGz = Fz+ x0, w = Hz}.

The triple(F, G, H) is said to constitute annconventional pencil representatioh
the impulsive-smooth behavie# ¢ %X __if # = #y(F, G, H).

imp

The definition of conventional pencil representations is as follows.

Definition 2.2. For a matrix triple(F, G, H) (F, G € R™"h g ¢ Rax01+h)y
theconventionally associated impulsive-smooth behadgiF, G, H) is
ABo(F, G, H)={w € 6,13z € ¥, z0 € R*T
st.pGz = Fz+ Gzo, w = Hz).

The triple(F, G, H) is said to constitute eonventional pencil representatiarf the
impulsive-smooth behavie# C @}, if # = Bo(F, G, H).

For a briefillustration of the difference between conventional and unconventional
representations, consider the situation in whick ¢ =1,k =0,G =0, F =1,
andH = 1. The conventionally associated behavior is the one described by the equa-
tionz = 0, which is just the zero behavior. The unconventionally associated behavior
is given byz + xo = 0, which generates the behavior that consists of all constant
multiples of the delta distribution. This “pure delta” behavior can also be generated
in the conventional way, but then one has to talka least equal to 2; for instance,
one may use the equatiops; = z2 + z10, z1 = 0, w = z2.

Analogously, we shall distinguish between conventional and unconventienal
scriptor representations given by quintuples, A, B, C, D) with E, A € R"1*"2,

B e R C e RP*"2, andD € RP*™). The unconventional form is given in the
following way.

Definition 2.3.  For a matrix quintuple(E, A, B, C, D), the unconventionally
associated impulsive-smooth behavigy(E, A, B, C, D) is

BuE,A,B,C,D) = { [y] c grim \ 32 € 6" xp e R™
u

imp imp>

St.pEz=Az+ Bu+xo, y :Cz+Du].



58 U. Baser, J.M. Schumacher / Linear Algebra and its Applications 318 (2000) 53-77

The quintuple(E, A, B, C, D) is said to constitute annconventional descriptor
representationof the impulsive-smooth behavio# C fgikmp if % =2%u(E, A,
B, C, D).

The conventional form is the following.

Definition 2.4. For a matrix quintupléE, A, B, C, D), theconventionally associ-
ated impulsive-smooth behavigi.(E, A, B, C, D) is

#E. A B.C.D) =[] vt |3z e 6, e R
u

St.pEz=Az+ Bu+ Ezo, y = Cz—i—Du].

The quintupla E, A, B, C, D) is said to constitute aonventional descriptor repre-
sentationof the impulsive-smooth behavigf C fg{‘mp if #=%(E, A, B,C, D).

As soon as we associate behaviors to matrix tuples, we obtain a notémuinf
alence[17,18]; we say that systems agrternally equivalenif their associated be-
haviors are the same. Of course, the notion depends on the behavior that is being
associated, and so one must distinguish between external equivalence in the sense of
smooth behaviors, external equivalence in the sense of conventionally associated im-
pulsive-smooth behaviors, and external equivalence in the sense of unconventionally
associated impulsive-smooth behaviors. In this paper, we shall consider the latter two
equivalences for descriptor representations, as a follow-up to [2,3] where a similar
study was made for pencil representations.

A pencil representatio(¥, G, H) is said to beninimalif both the number of rows
and the number of columns of the matri¢éeandG are minimal among the set of all
triples equivalenttdF, G, H). Likewise, a descriptor representatidn, A, B, C, D)
is minimal if both the number of rows and the number of columns of the matrices
E andA are minimal among all equivalent descriptor representations. Note that the
notion of minimality depends on the notion of equivalence that is being used, so
that minimality in the sense of smooth behaviors is not the same as minimality
in the sense of impulsive-smooth behaviors, and in the latter case one has to dis-
tinguish between conventional and unconventional representations. In the case of
smooth behaviors, the difference between conventional and unconventional repre-
sentations is not relevant because the equat@n = Fz + xp does not give rise to
smooth solutions unlesg € im G, and a similar remark can be made for descriptor
representations.

As there are two indices to be minimized, it is not obvious that minimal pencil
or descriptor representations exist at all. For the case of minimality in the sense of
smoothbehaviors, existence of minimal representations as well as necessary and
sufficient conditions for minimality in terms of the system parameters were estab-
lished in [8,9]. In these references, one can also find the transformations that relate
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equivalent minimal representations to each other. Similar results were obtained for
pencil representations of impulsive-smooth behaviors in [3]. Here we will carry out
the same program for descriptor representations of impulsive-smooth behaviors.

The development below will rely heavily on the minimality and equivalence re-
sults of [3]. For easy reference, we summarize these results here.

Theorem 2.5[3, Theorem 42]. A triple (F, G, H) is a minimal representation of
its unconventionally associated impulsive-smooth beha#i@#, G, H) if and only
if the following conditions hold

(i) sG — F has full row rank as a rational matrix

(ii) [§] has full column rank
(iiiy [*“; "] has full column rank for alk € C.

Theorem 2.6[3, Theorem 4]. A triple (F, G, H) is a minimal representation of
its conventionally associated impulsive-smooth behaifiand only if it satisfies the
conditions(i)—(iii ) of Theoren®.5 and the additional condition

(iv) FlkerG] c imG.

The following concrete description of the relation of external equivalence in the
sense of impulsive-smooth behaviors for minimal unconventional pencil representa-
tions was also given in [3].

Theorem 2.7[3, Theorem 41]. If the matrix triples(F, G, H) and (F, G, H) both
satisfy conditionsi)—(iii ) of Theoren®.5, then%y(F, G, H) = %y(F, G, H) if and
only if there exist constant nonsingular matrices S and T suchkhatSFT 1,
G=SGTlandH = HT L.

An analogous result for conventional pencil representations was not given in [3].
This void is filled below (Theorem 5.6).

3. From pencil to descriptor form and vice versa

In this section we present algorithms for transforming descriptor representations
of impulsive-smooth behaviors to pencil representations, and vice versa. These algo-
rithms will be used in the next section where we derive results on the minimality of
descriptor representations by using the known results for pencil representations that
were mentioned above.

The connections between pencil representations and descriptor representations
of smooth behaviors have been used in [8]. An algorithm is given for rewriting a
pencil representation in descriptor form in such a way that minimality is preserved.
In [9], an algorithm with a similar property for rewriting a descriptor representation
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in pencil form was presented and both algorithms were used for deriving minimality
conditions for descriptor representations of smooth behaviors.

In pencil representations we have a set of external variables that are not distin-
guished in “inputs” and “outputs”, whereas in descriptor representations we do have
such an explicit distinction. We therefore shall also consider pencil representations
in which the external variable spacg has been split into an input spageand
an output spac@/, with a corresponding decomposition of the matfixso that for
instance the unconventional form becomes

pGz=Fz+xo
y=H,z (3.1)
u = HuZ~

A pencil representation of the above form will be denoted by the quadtéple,
Hy, H,). No conditions are imposed a priori on the decomposition of external vari-
ables into inputs and outputs. In [13], the question is considered whether all
decompositions are allowable given a certain type of representatioreitesent-
ability problem). It turns out that the conventional and unconventional descriptor
representations and the conventional descriptor representation allow any decompo-
sition into inputs and outputs, but there is a condition that needs to be satisfied for
representability in unconventional descriptor form; see the cited paper for details.

If we have a descriptor representatigi, A, B, C, D), it is always possible to
obtain a corresponding pencil representation via the simple transformations
C D
0 I} 3.2)
It will follow from the results below that this transformation preserves minimality
in the case of unconventional representations but not in the case of conventional
representations.

G=[E 0. F=[A B]. H:[

The following lemma is essential for the proof of external equivalence of repre-
sentations of impulsive-smooth behaviors.
Lemma 3.1. Let P(s) € R"*[s] and Q(s) € R?*"[s]. Consider
B(P, Q) ={we (giqmp |3dz € (gm,lp, x0 € R"s.t.xop= P(p)z, w= Q(p)z}.

Moreover assume thaP (s) and Q(s) have the following forngwith respect to con-
formable partitionings

[ Pi(s)  Pa(s)
P(S)—|: 0 P3(S)i| )

0()=[0 Qa(s)].
where P (s) has full row rank. ThenZ(P, Q) = #(Ps, Q»).
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Proof. It is immediately seen from the definitions th&i(P, Q) Cc #4(Ps3, Q2). To
show the converse, let € #(P3, Q2) so that there exists an impulsive-smogh
and a constantyg such thatw = Q2(p)z2 and P3(p)z2 = x20. SincePi(s) has full
row rank, we can partitio (s) as

Pi(s) = [Pra(s)  P12(s)],

where P11(s) is nonsingular. Using the fact that the operafai(p) (as a map-
ping between spaces of vector-valued impulsive-smooth functions) is invertible (cf.
[2,4,6]), we can define

0
- —P -1 P . = <11 s = .
711 11 (P P2(p)z2, 21 [0 Xo=1|

With these definitions, we have(p)z1 + P2(p)z2 = xo and it follows thatw €
AP, Q). O

In the following we consider the transformation from pencil to descriptor rep-
resentations, both in the conventional and in the unconventional case. First, let us
consider the pencil representation given by Eq. (3.1). Decompose the internal vari-
able spaceZ (the space on whick andG act) as%? = 21 ® %> & <3, where
¥ =kerG nkerH, andZ, & %3 = kerG. Accordingly, write

G=[G1 0 0], F=[F1 F2 F3],

H, = [Hyl Hyp Hyg], H, = [Hul 0 Hug]. (3.3)
The matrices51 and H,3 both have full column rank.
Algorithm 3.2.  Consider the behavior#y(F, G, Hy, Hy). Assume that
Hy[kerG] = % and that the matrices, G, H, and H, are of the form as in (3.3).

The matrixH,3 is invertible (see the proof of Lemma 3.3 below). Define descriptor
matrices by

E=[G1 0], A=[f F)], B=F,

A (3.4)
C=[Hy1 Hyp]. D=Hgz
where
Fi=Fi— F3Hg Ha, Fs=FsHg,
(3.5)

Hy = Hy — HyaH g H,  Hys= HyaH g

Lemma 3.3. Let (E, A, B, C, D) be a descriptor representation that results from
applying Algorithm 3.2 to a pencil representationF, G, H,, H,) satisfying
H,[kerG] = %. Then these two representations are externally equivalent as uncon-
ventional representations of impulsive-smooth behaviors.
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Proof. We note that the assumptidti, [kerG] = % and the decomposition on the
internal variable space impl§f, [kerG] = im[0 H,3] = %. Therefore,H,3 is non-
singular. Now, multiplyF, G, H, and H,, on the right by
I 0 0
T = 0 1 0o |. (3.6)
-1 -1
—H, 3 Hy1 0 H,3
Since the only operation that is involved in this algorithm is to choose another

basis for the internal variable space, according to Theorem 2.7 we will obtain the
following equivalent representation to the representation given in (3.1)

<1
xo=[pG1—ﬁ1 ) —ﬁg] 2
23

(3.7)

. ~ 1]z
Y| _ Hy1 Hy2 Hy3 2
u 0 0 1

23

Thus,4u(E, A, B,C, D) = #y(F, G, Hy, Hy). 0O

Algorithm 3.4. Consider the behavig¥.(F, G, H,, Hy). Assume that the matrices
F, G, H, andH, are of the form as in (3.3). Then, by renumbering theariables,
we can write

H H
Ha =[] ma={5E]. @9

whereH,3 is invertible (or empty, if keG C ker H,). Now, define descriptor matri-
ces by

_|G1 O _ Fy F> _ F3 0
E_[O 0] A_[—Hll 0]’ B_[—Hls 1]’

(3.9)
C=[H1 Hp], D=[Hs 0],
where
Fi1=F— F3H2_31H21,
F3 = F3H,y,
Hy1 = Hy1 — Hy3Hy3 Hon, (3.10)

Hi1= Hi1— H13H2_31H21,
5 -1
Hysz = Hy3H,3,
Hiz= H13H2_31-
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Lemma 3.5. Let (E, A, B, C, D) be a descriptor representation that results from
applying Algorithm3.4 to a pencil representatio0F, G, H,, H,). Then these two
representations are externally equivalent as conventional representations of impul-
sive-smooth behaviors.

Proof. Let us consider the representation given in (3.1) with beha#giF, G,

H,, H,) and assume thd, G, H, and H, are given of the form as in Eq. (3.3).
Then, there exists an initial conditiag such thatxg = Gzg. By taking H,1 = H>1
andH,3 = Hp3in T and multiplyingF, G, H, andH,, on the right byl we will obtain

a conventional representation which is equivalent to the representation in (3.1) with
initial condition Gzp, and by Lemma 3 it is also equivalent to the representation
given below:

21
[Gzo| _ pGi—F1 —F2 —F3 0[]z
i 0 | H11 0 Hiz -1 z3 |’
u1
- - - 21
y Hyy Hy, Hyz O -
ur | =1 0 0 0 I
U2 o o 1 ofl*
L uy

Thus,4¢(E, A, B,C, D) = #¢(F,G, Hy, H,). O

In the following, we will present two algorithms for obtaining a pencil represen-
tation from a descriptor representation for an impulsive-smooth behavior.

First, let us consider the descriptor representation. Decompose the descriptor
spaceZy (the space on whiclke and A act) asZ'g1 ® Z 42, whereZ ;2> = kerE.
Decompose the equation spatg(the space thd andAmap into) ast’'c1 & Ze2 ©
Z ¢3, WhereZ',1 = im E andZ .1 ® 4.2 = im[E B]. Accordingly, write

[E11 O Al Az
E=1] 0 O, A=Az A2,
0 0 Az1 Az
- (3.11)
B1
B=|By|, C= [Cl Cz].
| 0
Since the matrix3; is surjective, by renumbering thevariables we can write
B1 Bi1 B2
B2|=|Ba Ban|. D=[D1 D2, (3.12)
0 | 0 0

whereB>s is invertible.
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Algorithm 3.6. Considerthe behavia¥(E, A, B, C, D) and the matricesin (3.11)
and (3.12). Define pencil matrices as follows:

Ain Az Bui O

F=|—-Ax —A»p —-Bxx -—1|,
—A31 —A3z2 0 0
- (3.13)
Eix O O O Ci, Co D1 Dp

G=| 0 0 0 0/, H=1|0 0 1 0|,
_0 0O 0 O 0 0 0 I

where

Ap1=A11— 3123521A21,

A1p=A12— 31232_21A22,

B11=B11— 3123521321, (3.14)
A21=B§21A21,

A= 32_21A22,

321= Bz_leZL

Lemma 3.7. Let(F, G, H) be a pencil representation with behavi#,(F, G, H)
that results from applying Algorithi316 to a descriptor representation with behavior
Bu(E, A, B, C, D). Then these two representations are externally equivalent.

Proof. Let us consider a descriptor representation with beha#ig&, A, B, C, D)
determined by the equations:

pEz = Az + Bu + xo, (3.15)
y = Cz+ Du. (3.16)

Assume that descriptor matrices are given in the form as in Egs. (3.11) and (3.12).
Then, if we multiply Eq. (3.15) on the left by

I —Bi2Byy O
S=10 Bys 0. (3.17)
0 0 1

we will obtain an equivalent representation. If we defin& andH as in (3.2), then
the descriptor representation can be regarded as a pencil represe@tationH )
with behavior#,(F, G, H), whereF, G, andH are of the form given in (3.13).
Thus, the descriptor representation is externally equivalent to the pencil representa-
tion obtained by Algorithm 3.6. O

The following algorithm is similar to Algorithm 3.28 in [7].
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Algorithm 3.8. Consider the behaviaB.(E, A, B, C, D) and the matrices in Egs.
(3.11) and (3.12). Define pencil matrices as follows:

G— [Ell 0 0] F_ |:All A1z 311]’

0 0 o’ A31 Az 0
(3.18)
- - _ 0 0 I
Hy=[Ci C; Di], H.=| : - L
y=[Cr G D ! [—A21 —Az —le]
where
C1=C1— DAz, Co=C2— DAz, Di1=D1— D2Bxn (3.19)

and the other matrices are the same as in Eq. (3.15).

Lemma 3.9. Let(F, G, H) be a pencil representation with behavi#e(F, G, H)
that results from applying Algorithi®18 to a descriptor representation with behavior
B(E, A, B, C, D). Then these two representations are externally equivalent.

Proof. Consider a conventional descriptor representa##e(E, A, B, C, D). Then,

for any xp € im E there existgo such thatvg = Ezg. Thus, if we follow the pro-
cedure given in the proof of the previous lemma, we will obtain the representation
below, which is externally equivalent to a pencil representation with conventional
behavior

[ E11210| pEi1—An —Aiz2 —Bu 0 il

0 = —A21 —A22 —Bo1 -1 Mi , (3.20)
L 0 i —A31 —A32 0 0 o
[y i C2 D1 Do |
wr|=10 0 1 0% (3.21)
luz| O 0 0 1 Z;

Here,z10, 21, z2 andu1, uz are obtained by a suitable partitioning 2f, z, andu
respectively. By Lemma 3.1 this representation is equivalent to the following repre-
sentation:

= - - 21
E11zi0| _ | pE11— A11 —A12 —Bn
[ 0 ] B [ —Az1 —As; 0 [| 2 (3:22)
u1
y C_'l C_'z Dl <1
ul | = _0 _0 _I 22 . (3.23)
u —Ap1 —Axp —Boi||u1

Thus,%4c(E, A, B,C, D) = #(F,G,H). O



66 U. Baser, J.M. Schumacher / Linear Algebra and its Applications 318 (2000) 53-77

Finally, we consider descriptor representations with a zero feedthrough term. The
following algorithm is similar to Algorithm 3.36 in [7].

Algorithm 3.10. Let a descriptor representation be givenBy A, B, C) (i.e.D =
0). Decompose the descriptor spatg as Xq1 ® Xq2 ® X3, whereX 3 = A~1
[im E]NkerE andX 2 & X43 = ker E. Decompose the equation spateasX,.1 @
Xe2 ® X 3, WhereX,1 = im E andX,.» = AX 2. Accordingly, write

E11z01 pE11—A1n —A1p —Aiz B
0 = —A21 —A22 0 z— | B2 |u (3.24)

0 —A31 0 0 B3
y=[C1 C2 C3lz, (3.25)

whereE11 and A2z are nonsingular. Since
C2A%; (1= A21 —A22 0]z — Bou) =0,

we can write
y=[C1—-C2A5 A1 0 C3]z— C2A,) Bou.

Now, define a descriptor representatidh A, B, C, D) by

~ E1n O ~ A11 Az ~ B1
E = , A= , B= ,

[ 0 O} [A?»l 0 ] [33} (3.26)
C=[C1 C3]. D=-CrA5Bs,

whereC1 = C1 — C2A55 A21, C2 = C3. SinceAp is nonsingular and the rows af
corresponding to the columns ab, do not affect the behavior, then by Lemma 3.1
it is clear that

B(E, A, B,C) = B(E, A, B, C, D)
and

AlkerE]l Cc imE.

4. Minimality of descriptor representations

In this section, we discuss the minimality of both conventional and unconven-
tional descriptor representations. We recall that a descriptor represeriatian B,
C, D) is said to be minimal if both the number of rows and the number of columns
of the matrice€ andA are minimal among all equivalent descriptor representations.
In Lemma 3.3 above, we carried out the transition from unconventional pencil to
unconventional descriptor representation under the condifjokerG] = %. It will
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be important below that this property is preserved under a certain transformation as
shown in the next lemma.

Lemmad.l. LetG: & — % be of the form

_|G1 0
G= [ 0 G21|
with G2 full column rank and considefl, = [H,1 H,2]: & — . \f H,[kerG] =
U, then alsoH,1[kerG1] = %.

Proof. Takeu € %, then we may write

_ 71 - G1 0 ||za| _
2] i % 0][]=0

From G2z2 = 0 it follows thatzo = 0, so actuallyy = H,1z1 with G1z1 =0, i.e.
u € HylkerGy]. 0O

In the following lemma, we obtain already one part of the minimality conditions
for unconventional descriptor representations.

Lemma 4.2. A descriptor representatiof¥, A, B, C, D) is minimal in the sense of
unconventional representations of impulsive-smooth behaviors only if the following
condition holds

[sE — A —B]has full row rank as a rational matrix

Proof. Define a pencil representation as in (3.2). Note figkerG] = %. LetEand

A have sizei1 x np, dim% = p and dim% = m. Then,G has sizei1 x (n2 + m).

If condition (i) does not hold, thenG — F will not have full row rank as a rational
matrix and hence a reduction is possible as in [3, Proof of Theorem 2.3] to a repre-
sentation of sizé1 x (n2 + m) with n1 < n1 andny < n2. By Lemma 4.1, we still
haveH,[kerG] = % in the reduced representation. By Lemma 3.3, we can therefore
find a descriptor representation of size x 7. Becauséi; < n1 andnz < na, the
representation that we started with is not minimalJ

The full set of minimality conditions for unconventional descriptor representa-
tions can be stated as follows.

Theorem 4.3. A descriptor representatio(E, A, B, C, D) is a minimal represen-
tation of its unconventionally associated behavify(E, A, B, C, D) if and only if
the following conditions hotd

(i) [s£E — A —B] has full row rank as a rational matrix

(i) [£] has full column rank

(iiiy [**~"] has full column rank for alk e C.



68 U. Baser, J.M. Schumacher / Linear Algebra and its Applications 318 (2000) 53-77

Proof. The necessity of condition (i) has already been shown in Lemma 4.2. The
other conditions are shown to be necessary exactly as in the case of smooth be-
haviors (see [8, Proof of Lemma 4.7] for (ii) and [7, Proof of Theorem 4.12] for
(iii)), by using the property given in Lemma 3.1. To prove the sufficiency, suppose
that (E, A, B, C, D) satisfies (i)—(iii). Then, it is readily verified on the basis of
Theorem 2.5 that the associated pencil representation defined by the equations in
(3.2) is minimal. Hence, there can be no smaller descriptor representation of the
same behavior. [

The analogous result for conventional representations is the following.

Theorem 4.4. A descriptor representatiotE, A, B, C, D) is a minimal represen-
tation of its conventionally associated behavigg(E, A, B, C, D) if and only if
conditions(i)—(iii) of Lemmad.2 and the additional condition

(iv) A[kerE] CimE

are satisfied.

Proof. The proofs of conditions (i)—(iii) are similar to the proofs of the same condi-
tions in Lemma 4.3, with the initial condition being takemas= Ezg since we now
consider the conventional behavigt(E, A, B, C, D). To prove the necessity of
(iv), apply Algorithm 3.10 to(E, A B, C, D). Then, we havéE, A, B, C, D) asin
(3.26) exceptthaD D — C2A22 B>. Because of the equality betwe@e(E A, B,

C, D) and %.(E, A, B, C, D) and the minimality of(E, A, B, C, D), the matrix
Az, which is given in Eqg. (3.25) in Algorithm 3.10, should be empty. Thus (iv)
holds. (Compare the argumentin the proof of [7, Lemma 4.8].)

To prove sufficiency, suppose th@, A, B, C, D) satisfies (i)—(iv). It can be ver-
ified that, when Algorithm 3.8 is applied t&, A, B, C, D), the resulting pencil
representationF, G, H,, H,) defined by the matrices in (3.18) satisfies conditions
(h—(iv) of Theorem 2.6. Note in particular that condition (iv) impligg, = 0 and
condition (i) implies thatdzq in F (in (3.18)) has full row rank. So, by Theorem 2.6
(F, G, Hy, H,) is minimal with respect to the behavigt.(F, G, Hy, H,). Hence,
there can be no smaller conventional descriptor representation having the same be-
havior. O

Comparing the result above to the minimality conditions for descriptor represen-
tations of smooth behaviors as given in [9], we see that the two sets of minimality
conditions are identical, except that for minimality in the sense of smooth behaviors
condition (i) above is replaced by the stronger requirement that the matrig]
should have full row rank.

5. Equivalence of descriptor representations

In this section we obtain concrete descriptions of the transformations that re-
late minimal descriptor representations of impulsive-smooth behaviors, both in the
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conventional and in the unconventional case. We begin with some preparatory
material.

Definition 5.1. The triples(F, G, H) and(F, G, H) are said to bstrongly similar
if there exist invertible matriceSandT such that

sG — F S O|[sG—-F].,_
[ )-B A

Definition 5.2. The triples(F, G, H) and(F, G, H) are said to beveakly similar
if there exist constant invertible matricBandT and a constant matriX such that

sG — F S 0][sG—-F].._
[ e

Condition (5.2) is equivalent to the requiremeiits= SFT-1, G = SGT1, H =
(H — XF)T~tandXG = 0. Itis straightforward to prove the following lemma.

Lemma 5.3. Among matrix triples of equal dimensigngeak similarity is an equiv-
alence relation.

It is also easy to verify that the minimality conditions of Theorems 2.5 and 2.6
are similarity invariants, i.e. if a tripléF, G, H) satisfies the conditions of these
theorems, then the same holds for any triple that is weakly similgF to;, H). The
following lemma takes a little bit more effort.

Lemma 5.4. Weakly similar triples generate the same conventional behavior.
Proof. Assume that the triple¢F, G, H) and (F, G, H) are weakly similar. Then

there exist constant invertible matricBsand T and a constant matriX such that
(5.2) holds. Takew € #¢(F, G, H). Then by definition there exist € "% and

imp
70 € R™* such that
Gzo| _ |pG—F
BEAE 59
Definez = Tz andzg = Tzo. SinceXG = 0, we can then write
pG —F . S O||pG—-F 71z S 0f[Gzo
g |*7 |x 1 H Tox oI w

[SGT‘lio} _ [Gzo] . (5.4)

w w
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It follows thatw € %¢(F, G, H). So we have#.(F, G, H) C #¢(F, G, H). Since
weak similarity is an equivalence relation, it follows that, actually, equality must
hold. O

Below we will have occasion to use the following lemma, which relates conven-
tional pencil representations to unconventional ones.

Lemma5.5. If a triple (F, G, H) satisfies the minimality condi}ior@—A(iv) men-
tioned in Theorer?.6, then(F, G, H) is weakly similar to a triplé F, G, H), where

~ | F1a 0 A |G1n Gi2 g o_
po[ 9. oofor O a-umo -

in which[G11 G12] has full row rank and
no. of columns ofG12 = codimimG11. (5.6)

Moreover the triple (F11, G11, H1) satisfies minimality conditiongi)—iii) of
Theoren?.5, and we have

Be(F, G, H) = Bu(F11, G11, H1). (5.7)

Proof. Let U be a constant nonsingular matrix such that

UG = [Gl} , (5.8)
0
whereG1 has full row rank, and defing; and F> by the comformable partitioning
_|n
vr=[5] 59)

By minimality condition (i), the matrixr> must have full row rank. Then there exists
a constant nonsingular mattiksuch that

_ | F11 F12
UFV_[O &J, (5.10)
whereF>»; is nonsingular. Let
G1V =[G11G12]l, HV =|[H1 H?] (5.11)

with partitionings corresponding to those in (5.10). Siggis nonsingular, we can
write down the following equation:

1 —F12F2_21 0| |sG11— F11 sGi2— F12
0 F2_21 0 0 —F2
0 HoFy 1 Hy Hp
sG11— F11 sGi2
- 0 1 |. (5.12)
Hy 0
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By defining
-1
[0 _Flz_?z]Uz:s, [0 HoF U =: X, V7h=iT, (5.13)
0 Fyy
we will obtain
S O|[sG—F.,.1 [sG-F
[X 1][ - ]le[ ; ] (5.14)

Thus,(F, G, H) and(F, G, H) are weakly similar.

Becaus&5; has full row rank, claim (5.6) is equivalent to saying thatimis the
direct sum of imG 11 and imG 12, and that the columns @f 12 are independent. This
in turn is the same as saying that a vectosatisfiesG12z2 € im G11 if and only if
z2 = 0. So, let us assume that is such thaiG12z> € im G11. Then there exists;
such thaG11z1 + G12z2 = 0, i.e.z := [z] z3]" belongs to ke6. By condition (iv)
and weak similarity, we haveé[kerG] c im G. By the conformable partitionings of
F andG, the relation

P [11} _ I:Fllzl:| cimé
22 22
implieszz = 0.
Due to the special structure of the matrices in (5.5), it is straightforward to verify
that the triple(F11, G11, H1) satisfies the minimality conditions for unconventional

pencil representations. To prove the final claim,det %.(F, G, H); then there
existzo € R"* andz € "% such thapGz = Fz + Gzo, w = Hz. From Eq. (5.5)

) imp
we obtain
G11z10+ G12220 pGi1—Fu1 pGr .
0 = 0 —1I [ 1}, (5.15)
w H, 0 2

Vi = |:Zlo] , Vlz= [Zl} .
220 <2

It is clear from the equation above that= 0 andw = H1z;. Then, if we letxg =
G11210 + G12z20 by Lemma 3.1 we have € #(F11, G11, H1). Conversely, since
[G11 G12] has full row rank, for givenxg it is always possible to find1p andz2o
such thatxg = G11z10 + G12z20 and (5.15) holds (setting, = 0). Consequently,
w € By(F11, G11, Hy) impliesw € %4¢.(F, G, H). O

The following theorem completes the results in [3] on equivalence of minimal
pencil representations of impulsive-smooth behaviors.

Theorem 5.6. SupposéF, G, H) and(F, G, H) both satisfy condition§)—(iv) of
Theoren®.6. Then %.(F, G, H) = %#.(F, G, H) iff (F,G, H) and(F, G, H) are
weakly similar.
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Proof. The “if” part has already been proved in Lemma 5.4. So, let us prove the
“only if” part. By Lemmas 5.4 and 5.5 and by Theorem 2.5, we may assume without
loss of generality that

F:|:F81 ﬂ:ﬁ, H=[H, 0]=H,

(5.16)

_|G11 G2 - [Gu G2
G—[o o] G‘[o ol
BecausgG11 G12] has full row rank, we can writ€&12 = G11T12 + G12T2> for
certain matrice§12 andT>2, whereT>2 must be square (by property (5.6)). Suppose
T22z2 = 0; thenG12z2 = G11T12z2 and it follows from (5.6) that, = 0. So 722
must be invertible. Now note that

1

= |1 FuaTi2||Fi1 0|1 Ti2

P=lo B[S Al ] 617

~1

=~ |1 FuTi2||Gun1 Giz2| |l Ti2

o=lo "% Sl 61

5 Fn O\\[I T2]"

H=<[H1 01+1[0 H1T12][0 ID [O Tzz] . (5.19)
If we let

I FuTio| . . I Tiz| .

[0 oo ]—. S, [0 HiTipl=:X and [O TZZ] =T, (5.20)
then

sG—F _|S O|[sG—-F|. .1

PP [s pe ] o w2

We now can characterize the relations between minimal unconventional descrip-
tor representations.

Theorem 5.7. Let(E, A, B, C, D) and(E, A, B, C, D) be descriptor representa-
tions. Assume that both of them satisfy conditi@ngiii) of Theoren®.3. Then
Bu(E,A,B,C,D) =%y, A,B,C,D) (5.22)

if and only if there exist constant nonsingular matrices M and N and a constant
matrix Y such that

sE—A —B M O|[sE—A —-B|[N Y
et PR At Sl T e
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Proof. To prove the “if” part letw =[] € Zu(E, A, B, C, D). Then there exist

2 € 6o, andxo € R such that

m N [pEC_ ! _5] [i] ' (5.24)

It follows that

= et 2l L (525)

and sow € %y(E, A, B, C, D). The reverse inclusion follows in the same way and
so we have (5.22).

To prove the “only if” part let us assume th&t(E, A, B, C, D) = By(E, A
C, D) By means of (3. 2) let us define”, G, H) from (E, A, B, C, D) and
(F,G, H) from (E, A, B, C, D). Since both E, A, B, C, D) and(E ,B,C,D)
satisfy conditions (i)—(iii) of Theorem 4.3, bottF, G, H) and F, G, H) satisfy
conditions (i)—(iii) of Theorem 2.5. Thus, bott¥, G, H) and(F, G, H) are mini-
mal representations of their unconventionally associated beha#igfs G, H) and
%y(F, G, H), and also the following relations hold:

‘%U(Fa Ga H)=<%U(E7Av Bv Ca D)

=%Bu(E,A,B,C, D)= %F,G, H). (5.26)
So, by Theorem 2.7 there exist constant nonsingular mat8easl T such that
F=SFT™', G=SGT™! and H=HT* (5.27)
so that, by (3.2),
sE—A —B SSE—A) —SB
c D | = c D |17t (5.28)
0 1 0 1
Now, let
T
ri- (5.29)
Then (5.28) and (5.29) imply
To1 =0, Tor=1. (5.30)
SinceT is nonsingular7y1 is nonsingular and we can define
Ti1=:N, Tip=Y, S=M (5.31)

to satisfy (5.23). O
The analogous result for conventional representations is the following.

Theorem 5.8. Let(E, A, B, C, D) and(E, A, B, C, D) be descriptor representa-
tions. Assume that both of them satify conditifipgiv) of Theoremt.4. Then
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B(E,A,B,C,D) =%(E,A,B,C, D) (5.32)

if and only if there exist constant and nonsingular matriced\vand constant ma-
trices X and Y such that

M O|[sE—A -B sE—A —B][N Y
F | e B R | R

Proof. For the “if” part, takew =[] € %c(E, A, B, C, D). By definition, there
exist a constandp and an impulsive-smoothsuch that

Ezo| |pE—A —B||z
-2 )
Note that (5.33) implies tha E = EN and XE = 0. Therefore, it follows from
(5.33) that
ENzo _ pE—A —B|[Nz+Yu
(V] [pE A BN 539
sothat[)] € 4c(E, A, B, C, D). The argument is completed as in the proof of the
previous theorem.
_In_order to prove the “only if” part, let us assume thdt, A, B, C, D) and
(E, A, B, C, D) satisfy conditions (i)—(iv) of Theorem 4.4 and their conventionally
associated behaviors are the same. Next, apply Algorithm 3.8 to both of them; this
yields conventionally externally equivalent pencil representatignsG, H) and
(F, G, H) which are minimal. Then by Theorem 5.6 they are weakly similar and
so there exist constant invertible matricandT and a constant matriX such that

sG— F S O0||sG—F|.._
GBI

We may assume that both descriptor representations are in the form (3.11)—(3.12)
with E11 = I andB22 = —I. Then (5.36) may be written in further detail as

ST S 0 0 O sl —A11 —A12 0
S3 S 0 O O —A3 0 0
X1 Xo I 0 Of|C1+D2A21 C2 D1+ D2Bp1
X3 X4 0 I O 0 0 1
Xs X 0 O I Aoq 0 Bo1
sl — All —Alz 0

—Agl 0 0 Tn T T3

= C~‘1 + [)21421 CN‘z 51 + bzézl Ty Ts Ts
0 0 I T; Ts To
Az 0 By

It now follows immediately that the matricess, X1, X3, X5, T2, T3, Tg must all be
zero matrices, an@lg = 1. Then, sinceSandT are nonsingular$i, S4, 71, andTs
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are nonsingular. Also note that = — X4A31. After tedious but in principle straight-
forward calculations, it can be verified that (5.33) is satisfied with

S1 S1Biz— Bz So— élZXGj- B11X4

M:=10 1 —X6+ B21X4 )
0 0 Sa
|1 0

X = [O —Do + Dz X2 — DzXe — D1X4] ,

0 O
Y.=|:T6 0] O

With the above result, we have completed the program of characterizing the trans-
formations of external equivalence in the sense of impulsive-smooth behaviors for
pencil and descriptor representations. The equivalence relation (5.33) is well-known
in the literature; it was introduced by Verghese et al. [16] under the narsionfy
equivalence operatiohe same transformation group was used earlier for descrip-
tor representations with zero feedthrough term by Van der Weiden and Bosgra [15],
who used the nameestricted system equivalendgompare also Rosenbrock’s no-
tion of strict system equivalendél, p. 52] which uses polynomial matrices in a
format similar to (5.33). The above theorem provides a motivation for the notion
of strong equivalence in terms of impulsive-smooth behaviors. The transformation
group (5.23) that we have found for unconventional descriptor representations has,
to our knowledge, not been considered before.

Our results generate two possible ways of describing versions of the “space of
linear input/output systems”: the collection of quintuplés A, B, C, D) satisfy-
ing the minimality conditions of Theorem 4.4 modulo the transformation group of
Theorem 5.8, and the collection of quintuplegs A, B, C, D) satisfying the mini-
mality conditions of Theorem 4.3 modulo the transformation group of Theorem 5.7.

It follows from the results of [13] that the two objects so defined are not the same;

the second space contains only systems that have “Dirac free inputs” in the sense of
[13], whereas the systems in the first space are not subject to such a restriction. Both
spaces can be seen as extensions of spaces considered traditionally, such as the space
of rational matrices.

The first author who gave a motivation for strong equivalence from an intrinsically
defined notion of equivalence was Grimm [5]. The minimality conditions obtained
by Grimm were the same as the ones mentioned in Theorem 4.4 above, except that re-
quirement (i) is replaced in his paper by the stronger condition that the niafrix
tA —B] should have full row rank faall pairs of complex numbers, ) + (0, 0).

This condition can be interpreted as a controllability condition. A weaker notion of
minimality (so one that is satisfied in a wider class of systems) was used by Kuijper
and Schumacher [9]; they used external equivalence in the sense of smooth behav-
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iors, which leads to minimality conditions (i)—(iv) of Theorem 4.4 with condition

(i) replaced by the requirement thi@ B] should have full row rank. This require-
ment can be interpreted as a condition of “controllability at infinity”. The operations
relating minimal representations (in the sense of smooth behaviors) to each other
were again identified in [9] as the operations of strong equivalence. The result above
gives an interpretation of strong equivalence that goes even further, since it applies
to systems satisfying the conditions of Theorem 4.4 as such; note that the condition
that[sE — A —B] should have full row rank as a rational matrix is equivalent to
requiring that the matrigs E —tA — B] should have full row rank fosomepair of
complex numberss, t). Condition (i) as given in Theorem 4.4 is no longer a con-
trollability condition but rather a nonredundancy condition, as it requires that none
of the equations given by the rows pEz = Az + Bu + Ezo should be obtainable

from the other equations by differentiating and taking linear combinations.

6. Conclusions

In this paper we have discussed minimality and equivalence of descriptor rep-
resentations for impulsive-smooth behaviors. As can be expected, the minimality
conditions are weaker than those for descriptor representations of smooth behaviors;
in particular, no form of controllability is required for minimality in the sense of
impulsive-smooth behaviors. In the case of conventional representations, minimal
representations turn out to be related by operations of strong equivalence as defined
in [16]. We have therefore given a motivation for strong equivalence that applies
to a wider class of systems than the classes considered earlier in [5,9]. The opera-
tions that we found for minimal unconventional representations have to our knowl-
edge not been considered before. We have also identified the transformation group
that describes the relations between minimal conventional pencil representations of
impulsive-smooth behaviors, thus completing the results in [3].
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