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Abstract

Necessary and sufficient conditions for minimality of descriptor representations of impul-
sive-smooth behaviors are derived. We obtain a complete set of transformations by which
minimal descriptor representations that give rise to the same behavior can be transformed into
each other. In particular this leads to a jump-behavioral interpretation of the notion of strong
equivalence of descriptor representations. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Equivalence relations are a classical subject in the study of systems of linear dif-
ferential and algebraic equations. They are used for instance to transform a given sys-
tem to a canonical form so that various properties may be read off easily. Of course,
one has to specify which equivalence transformations are allowed. One way to settle
this is provided by the “behavioral approach” to systems theory, which has been
developed in particular by Willems [18]. Briefly, the behavioral method of defining
equivalence relations is the following.

Let a set of differential and algebraic equations be given. Suppose that some of
the variables in these equations are marked as the ones that provide connections to
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the outside world. Call these variables “external”, and let the remaining variables
be labeled “internal”. Select a function space where solutions of the given set of
differential and algebraic equations will be sought. In a suitable vector version of
this space we can form the collection of all trajectories of the external variables
for which there exists a corresponding trajectory of the external variables such that
the combined trajectory is a solution of the given system. This collection is called
theexternal behavior, or simply thebehavior, of the system. Two systems are said
to beexternally equivalent, or justequivalent, if they give rise to the same behav-
ior.

The behavioral definition of system equivalence is strongly focused on a des-
ignated set of external variables. This point of view can be motivated for instance
in the context of control systems where the inputs and outputs can be thought of as
external variables; representations involving only these variables, such as the transfer
function, are indeed extensively used in control theory. Another motivation can be
found in network modeling, by which we understand here the technique of modeling
a complex system as the interconnection of smaller subsystems. In this context, the
external variables of subsystem models are interpreted as the variables through which
connection to other parts of the system may take place. From a modular point of view,
each subsystem may be identified with its external behavior.

The behavioral definition of system equivalence can be applied in many different
contexts, which may vary according to system specification as well as according to
the function space that is being considered. Possible system specifications include
first-order equations that are solved for the derivative, implicit first-order equations,
higher-order equations, and so on. Concerning function spaces, one may for instance
think of C∞ functions, locally integrable functions, or spaces of generalized func-
tions. In each of these cases, the notion of equivalence can be defined as above. How-
ever, the “conceptual” definition as given above is not very convenient for purposes
such as reduction to a canonical form. For such purposes one needs a description of
the notion of external equivalence in a concrete, operational form.

For linear systems, the problem of finding a concrete description of the opera-
tions of external equivalence has been solved in a number of cases; see for instance
[3,7,12,18]. Typically, the transformations can be described in a nice way if it is
assumed that they take place between representations that are minimal in an appro-
priate sense. For nonminimal systems, there are other transformations which pro-
duce an equivalent minimal representation. In this paper we shall be concerned with
finding the concrete form of transformations under external equivalence fordescrip-
tor representationswhen solutions are considered in the space ofimpulsive-smooth
distributions[6]. This particular setting can be motivated as follows.

Descriptor representations are systems of differential and algebraic equations that
can be written in the form (see for instance [1,7])

Eẋ = Ax + Bu, (1.1)

y = Cx + Du, (1.2)
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whereE, A, B, C, andD are constant matrices. The matrixE may be singular or
nonsquare. Equations of this form arise naturally when a system description is ob-
tained by the coupling of equations of several subsystems. We will consider the vari-
ablesy andu as external variables; the variablex, which is sometimes called the
pseudo-state, will be taken as an internal variable.

In contrast to standard input/state/output equations, which are of the above form
with E equal to the identity matrix, descriptor equations may allowinconsistentini-
tial conditions, i.e. initial conditions that do not correspond to smooth solutions.
Inconsistent initial conditions typically arise as a consequence of an externally or
internally generated event, such as a switch being turned or a constraint becoming
active; see for instance [14] for a discussion of mode changes in dynamical systems.
An inconsistent initial condition must give rise to a state jump, which in the linear
context may be suitably described in the language of distribution theory. Therefore,
when looking at descriptor equations, it is natural to consider solutions that may in-
clude a distributional component having support at the initial time; a suitable setting
is provided by the space of impulsive-smooth distributions [6].

Distributional solutions to implicit systems of linear equations and corresponding
equivalence transformations have also been considered in [10], even for the case
of time-varying coefficients, but with no distinction between external and internal
variables. Note that an interpretation in which all variables are looked at as external
is produced by (1.1) if one takes the special choiceC = I andD = 0.

Our development here is close to the papers [2,3] where the problem of exter-
nal equivalence in the sense of impulsive-smooth distributions is considered for
so-calledpencilrepresentations, i.e. representations of the forms

Gż = Fz, (1.3)

w = Hz, (1.4)

wherew is a vector of external variables. In this paper we will make heavy use of
the results in [2,3]. By focusing on descriptor representations, it becomes possible
to make a comparison with equivalence notions for descriptor systems that have
been proposed in the literature (for instance [11,15,16]). We shall indeed find that a
certain transformation group that has been considered before can be interpreted as a
group of transformations under external equivalence. As a consequence, this group
of transformations obtains an interpretation in terms of jump behaviors. See the end
of Section 5 for more discussion.

The paper is structured as follows. Section 2 is devoted to preliminaries. In par-
ticular, the definition of the space of impulsive-smooth distributions is recalled, two
ways are given for associating an impulsive-smooth behavior to a descriptor rep-
resentation, and a summary is given of the results in [2,3] that will be used in the
present paper. To make use of the results in the cited papers, we need to establish
a number of connections between pencil representations and descriptor representa-
tions; this is done in Section 3. In order to get a nice description of the relation of
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external equivalence, we need to restrict ourselves to descriptor representations that
are minimal in an appropriate sense. The relevant minimality conditions are obtained
in Section 4. The concrete description of the relation of external equivalence for min-
imal descriptor representations follows in Section 5. Section 6 briefly summarizes
the conclusions.

2. Preliminaries

To describe jump behaviors mathematically, we use a simple fragment of the cal-
culus of distributions, following the framework laid out in [6]. Throughout the paper,
the first derivative of the Dirac distributionδ is denoted byp, and itskth deriva-
tive is denoted bypk. R[s] denotes, as usual, the ring of polynomials ins with real
coefficients. We denote byC(t0, t1) the set of restrictions ofC∞(R)-functions to
(t0, t1) with −∞ < t0 < t1 6 ∞. The product space(R[p] × C(t0, t1))

k is denoted
by Ck

imp(t0, t1); so elementsv of this space consist of a polynomial part, which we
shall refer to as the “purely impulsive part”vp-imp (representing a pulse at timet0)
and a function part, which is called the “smooth part”vsm. We writev = vp-imp +
vsm; the summation is motivated by the fact that elements ofCk

imp(t0, t1) may be
identified with certain distributions (for further detail see [2,6]). On the basis of this
identification, the convolution action of the operatorp may be described by

pv = pvp-imp + vsm(t+0 ) + v̇sm.

For the purposes of the present paper, one might simply take this as the definition
of the action ofp. It is easily verified that for instance the scalar differential equa-
tion v̇ = av with initial conditionv(0) = v0 can be expressed in the present frame-
work by the formulapv = av + v0. To alleviate the notation, explicit mention of the
interval(t0, t1) will be suppressed in what follows.

We shall consider systems with external variablesw, which will sometimes be
distinguished into inputsu and outputsy. The variablew takes values in a finite-
dimensional real vector spaceW = U × Y. ThebehaviorB of a given system of
differential and algebraic equations in internal and external variables is defined, as in
[17,18], as the set of time trajectories of the external variables that are admitted by
the system equations. In order to incorporate solutions that exhibit an initial jump,
we shall consider solutions in the spaceCk

imp of impulsive-smooth distributions; in
this we deviate from the setting of [17,18]. Behaviors defined in the space of impul-
sive-smooth distributions will be referred to asimpulsive-smooth behaviorsor jump
behaviors.

A study of impulsive-smooth behaviors was based on the so-calledpencil rep-
resentations [2,3]. A pencil representation by itself is just a triple of real matrices
satisfying certain size constraints. To such a triple one can associate a behavior in two
different ways, which are referred to as theconventionalstyle and theunconventional
style in [2]. The two ways of generating a behavior are equally expressive (in the
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sense that a behavior generated by one can also be generated by the other, and vice
versa); they differ though in the way in which the initial conditions are incorporated.
Unconventional pencil representations are defined as follows.

Definition 2.1. For a matrix triple(F,G,H) (F,G ∈ Rn×(n+k), H ∈ Rq×(n+k)),
theunconventionally associated impulsive-smooth behaviorBu(F,G,H) is

Bu(F,G,H)={w ∈ C
q

imp | ∃z ∈ Cn+k
imp , x0 ∈ Rn

s.t.pGz = Fz + x0, w = Hz}.
The triple(F,G,H) is said to constitute anunconventional pencil representationof
the impulsive-smooth behaviorB ⊂ Ck

imp if B = Bu(F,G,H).

The definition of conventional pencil representations is as follows.

Definition 2.2. For a matrix triple(F,G,H) (F,G ∈ Rn×(n+k), H ∈ Rq×(n+k)),
theconventionally associated impulsive-smooth behaviorBc(F,G,H) is

Bc(F,G,H)={w ∈ C
q

imp | ∃z ∈ Cn+k
imp , z0 ∈ Rn+k

s.t.pGz = Fz + Gz0, w = Hz}.
The triple(F,G,H) is said to constitute aconventional pencil representationof the
impulsive-smooth behaviorB ⊂ Ck

imp if B = Bc(F,G,H).

For a brief illustration of the difference between conventional and unconventional
representations, consider the situation in whichn = q = 1, k = 0, G = 0, F = 1,
andH = 1. The conventionally associated behavior is the one described by the equa-
tion z = 0, which is just the zero behavior. The unconventionally associated behavior
is given byz + x0 = 0, which generates the behavior that consists of all constant
multiples of the delta distribution. This “pure delta” behavior can also be generated
in the conventional way, but then one has to taken at least equal to 2; for instance,
one may use the equationspz1 = z2 + z10, z1 = 0, w = z2.

Analogously, we shall distinguish between conventional and unconventionalde-
scriptor representations given by quintuples(E,A,B,C,D) with E,A ∈ Rn1×n2,

B ∈ Rn1×m, C ∈ Rp×n2, andD ∈ Rp×m). The unconventional form is given in the
following way.

Definition 2.3. For a matrix quintuple(E,A,B,C,D), the unconventionally
associated impulsive-smooth behaviorBu(E,A,B,C,D) is

Bu(E,A,B,C,D) =
{[y

u

]
∈ C

p+m

imp

∣∣∣ ∃z ∈ C
n2
imp, x0 ∈ Rn1

s.t.pEz = Az + Bu + x0, y = Cz + Du
}
.
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The quintuple(E,A,B,C,D) is said to constitute anunconventional descriptor
representationof the impulsive-smooth behaviorB ⊂ Ck

imp if B = Bu(E,A,

B,C,D).

The conventional form is the following.

Definition 2.4. For a matrix quintuple(E,A,B,C,D), theconventionally associ-
ated impulsive-smooth behaviorBc(E,A,B,C,D) is

Bc(E,A,B,C,D) =
{[y

u

]
∈ C

p+m

imp

∣∣∣ ∃z ∈ C
n2
imp, z0 ∈ Rn2

s.t.pEz = Az + Bu + Ez0, y = Cz + Du
}
.

The quintuple(E,A,B,C,D) is said to constitute aconventional descriptor repre-
sentationof the impulsive-smooth behaviorB ⊂ Ck

imp if B = Bc(E,A,B,C,D).

As soon as we associate behaviors to matrix tuples, we obtain a notion ofequiv-
alence[17,18]; we say that systems areexternally equivalentif their associated be-
haviors are the same. Of course, the notion depends on the behavior that is being
associated, and so one must distinguish between external equivalence in the sense of
smooth behaviors, external equivalence in the sense of conventionally associated im-
pulsive-smooth behaviors, and external equivalence in the sense of unconventionally
associated impulsive-smooth behaviors. In this paper, we shall consider the latter two
equivalences for descriptor representations, as a follow-up to [2,3] where a similar
study was made for pencil representations.

A pencil representation(F,G,H) is said to beminimalif both the number of rows
and the number of columns of the matricesF andG are minimal among the set of all
triples equivalent to(F,G,H). Likewise, a descriptor representation(E,A,B,C,D)

is minimal if both the number of rows and the number of columns of the matrices
E andA are minimal among all equivalent descriptor representations. Note that the
notion of minimality depends on the notion of equivalence that is being used, so
that minimality in the sense of smooth behaviors is not the same as minimality
in the sense of impulsive-smooth behaviors, and in the latter case one has to dis-
tinguish between conventional and unconventional representations. In the case of
smooth behaviors, the difference between conventional and unconventional repre-
sentations is not relevant because the equationpGz = Fz + x0 does not give rise to
smooth solutions unlessx0 ∈ im G, and a similar remark can be made for descriptor
representations.

As there are two indices to be minimized, it is not obvious that minimal pencil
or descriptor representations exist at all. For the case of minimality in the sense of
smoothbehaviors, existence of minimal representations as well as necessary and
sufficient conditions for minimality in terms of the system parameters were estab-
lished in [8,9]. In these references, one can also find the transformations that relate
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equivalent minimal representations to each other. Similar results were obtained for
pencil representations of impulsive-smooth behaviors in [3]. Here we will carry out
the same program for descriptor representations of impulsive-smooth behaviors.

The development below will rely heavily on the minimality and equivalence re-
sults of [3]. For easy reference, we summarize these results here.

Theorem 2.5[3, Theorem 4.2]. A triple (F,G,H) is a minimal representation of
its unconventionally associated impulsive-smooth behaviorBu(F,G,H) if and only
if the following conditions hold:

(i) sG − F has full row rank as a rational matrix,

(ii)
[
G
H

]
has full column rank,

(iii)
[
sG−F

H

]
has full column rank for alls ∈ C.

Theorem 2.6[3, Theorem 4.4]. A triple (F,G,H) is a minimal representation of
its conventionally associated impulsive-smooth behavior, if and only if it satisfies the
conditions(i)–(iii ) of Theorem2.5 and the additional condition
(iv) F [kerG] ⊂ im G.

The following concrete description of the relation of external equivalence in the
sense of impulsive-smooth behaviors for minimal unconventional pencil representa-
tions was also given in [3].

Theorem 2.7[3, Theorem 4.1]. If the matrix triples(F,G,H) and(F̃ , G̃, H̃ ) both
satisfy conditions(i)–(iii ) of Theorem2.5, thenBu(F,G,H) = Bu(F̃ , G̃, H̃ ) if and
only if there exist constant nonsingular matrices S and T such thatF = SF̃ T −1,

G = SG̃T −1 andH = H̃T −1.

An analogous result for conventional pencil representations was not given in [3].
This void is filled below (Theorem 5.6).

3. From pencil to descriptor form and vice versa

In this section we present algorithms for transforming descriptor representations
of impulsive-smooth behaviors to pencil representations, and vice versa. These algo-
rithms will be used in the next section where we derive results on the minimality of
descriptor representations by using the known results for pencil representations that
were mentioned above.

The connections between pencil representations and descriptor representations
of smooth behaviors have been used in [8]. An algorithm is given for rewriting a
pencil representation in descriptor form in such a way that minimality is preserved.
In [9], an algorithm with a similar property for rewriting a descriptor representation
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in pencil form was presented and both algorithms were used for deriving minimality
conditions for descriptor representations of smooth behaviors.

In pencil representations we have a set of external variables that are not distin-
guished in “inputs” and “outputs”, whereas in descriptor representations we do have
such an explicit distinction. We therefore shall also consider pencil representations
in which the external variable spaceW has been split into an input spaceU and
an output spaceY, with a corresponding decomposition of the matrixH, so that for
instance the unconventional form becomes

pGz = Fz + x0

y = Hyz (3.1)

u = Huz.

A pencil representation of the above form will be denoted by the quadruple(F,G,

Hy,Hu). No conditions are imposed a priori on the decomposition of external vari-
ables into inputs and outputs. In [13], the question is considered whether all
decompositions are allowable given a certain type of representation (therepresent-
ability problem). It turns out that the conventional and unconventional descriptor
representations and the conventional descriptor representation allow any decompo-
sition into inputs and outputs, but there is a condition that needs to be satisfied for
representability in unconventional descriptor form; see the cited paper for details.

If we have a descriptor representation(E,A,B,C,D), it is always possible to
obtain a corresponding pencil representation via the simple transformations

G = [
E 0

]
, F = [

A B
]
, H =

[
C D

0 I

]
. (3.2)

It will follow from the results below that this transformation preserves minimality
in the case of unconventional representations but not in the case of conventional
representations.

The following lemma is essential for the proof of external equivalence of repre-
sentations of impulsive-smooth behaviors.

Lemma 3.1. LetP(s) ∈ Rn×m[s] andQ(s) ∈ Rq×m[s]. Consider

B(P,Q) := {w ∈ C
q

imp | ∃z ∈ Cm
imp, x0 ∈ Rn s.t.x0 = P(p)z, w = Q(p)z}.

Moreover, assume thatP(s) andQ(s) have the following form(with respect to con-
formable partitionings):

P(s)=
[
P1(s) P2(s)

0 P3(s)

]
,

Q(s)=[
0 Q2(s)

]
,

whereP1(s) has full row rank. Then, B(P,Q) = B(P3,Q2).
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Proof. It is immediately seen from the definitions thatB(P,Q) ⊂ B(P3,Q2). To
show the converse, letw ∈ B(P3,Q2) so that there exists an impulsive-smoothz2
and a constantx20 such thatw = Q2(p)z2 andP3(p)z2 = x20. SinceP1(s) has full
row rank, we can partitionP1(s) as

P1(s) = [
P11(s) P12(s)

]
,

whereP11(s) is nonsingular. Using the fact that the operatorP11(p) (as a map-
ping between spaces of vector-valued impulsive-smooth functions) is invertible (cf.
[2,4,6]), we can define

z11 = −P11
−1(p)P2(p)z2, z1 =

[
z11
0

]
, x0 =

[
0

x20

]
.

With these definitions, we haveP1(p)z1 + P2(p)z2 = x0 and it follows thatw ∈
B(P,Q). �

In the following we consider the transformation from pencil to descriptor rep-
resentations, both in the conventional and in the unconventional case. First, let us
consider the pencil representation given by Eq. (3.1). Decompose the internal vari-
able spaceZ (the space on whichF and G act) asZ = Z1 ⊕ Z2 ⊕ Z3, where
Z2 = kerG ∩ kerHu andZ2 ⊕ Z3 = kerG. Accordingly, write

G = [
G1 0 0

]
, F = [

F1 F2 F3
]
,

Hy = [
Hy1 Hy2 Hy3

]
, Hu = [

Hu1 0 Hu3
]
. (3.3)

The matricesG1 andHu3 both have full column rank.

Algorithm 3.2. Consider the behaviorBu(F,G,Hy,Hu). Assume that
Hu[kerG] = U and that the matricesF, G, Hy andHu are of the form as in (3.3).
The matrixHu3 is invertible (see the proof of Lemma 3.3 below). Define descriptor
matrices by

E = [
G1 0

]
, A = [

F̂1 F2
]
, B = F̂3,

C = [
Ĥy1 Hy2

]
, D = Ĥy3,

(3.4)

where

F̂1 = F1 − F3H
−1
u3 Hu1, F̂3 = F3H

−1
u3 ,

Ĥy1 = Hy1 − Hy3H
−1
u3 Hu1, Ĥy3 = Hy3H

−1
u3 .

(3.5)

Lemma 3.3. Let (E,A,B,C,D) be a descriptor representation that results from
applying Algorithm 3.2 to a pencil representation(F,G,Hy,Hu) satisfying
Hu[kerG] = U. Then these two representations are externally equivalent as uncon-
ventional representations of impulsive-smooth behaviors.
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Proof. We note that the assumptionHu[kerG] = U and the decomposition on the
internal variable space implyHu[kerG] = im[0 Hu3] = U. Therefore,Hu3 is non-
singular. Now, multiplyF, G, Hy andHu on the right by

T =

 I 0 0

0 I 0
−H−1

u3 Hu1 0 H−1
u3


 . (3.6)

Since the only operation that is involved in this algorithm is to choose another
basis for the internal variable space, according to Theorem 2.7 we will obtain the
following equivalent representation to the representation given in (3.1)

x0 = [
pG1 − F̂1 −F2 −F̂3

]

z1

z2
z3




(3.7)
[
y

u

]
=

[
Ĥy1 Hy2 Ĥy3

0 0 I

]
z1

z2
z3


 .

Thus,Bu(E,A,B,C,D) = Bu(F,G,Hy,Hu). �

Algorithm 3.4. Consider the behaviorBc(F,G,Hy,Hu). Assume that the matrices
F, G, Hy andHu are of the form as in (3.3). Then, by renumbering theu variables,
we can write

Hu1 =
[
H11
H21

]
, Hu3 =

[
H13
H23

]
, (3.8)

whereH23 is invertible (or empty, if kerG ⊂ kerHu). Now, define descriptor matri-
ces by

E =
[
G1 0
0 0

]
, A =

[
F̄1 F2

−H̄11 0

]
, B =

[
F̄3 0

−H̄13 I

]
,

(3.9)

C = [
H̄y1 Hy2

]
, D = [

H̄y3 0
]
,

where

F̄1 = F1 − F3H
−1
23 H21,

F̄3 = F3H
−1
23 ,

H̄y1 = Hy1 − Hy3H
−1
23 H21, (3.10)

H̄11 = H11 − H13H
−1
23 H21,

H̄y3 = Hy3H
−1
23 ,

H̄13 = H13H
−1
23 .
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Lemma 3.5. Let (E,A,B,C,D) be a descriptor representation that results from
applying Algorithm3.4 to a pencil representation(F,G,Hy,Hu). Then these two
representations are externally equivalent as conventional representations of impul-
sive-smooth behaviors.

Proof. Let us consider the representation given in (3.1) with behaviorBc(F,G,

Hy,Hu) and assume thatF, G, Hy andHu are given of the form as in Eq. (3.3).
Then, there exists an initial conditionz0 such thatx0 = Gz0. By takingHu1 = H21
andHu3 = H23 in Tand multiplyingF, G, Hy andHu on the right byT we will obtain
a conventional representation which is equivalent to the representation in (3.1) with
initial conditionGz0, and by Lemma 3.1 it is also equivalent to the representation
given below:

[
Gz0

0

]
=

[
pG1 − F̄1 −F2 −F̄3 0

H̄11 0 H̄13 −I

]



z1
z2
z3
u1


 ,


 y

u1
u2


 =


H̄y1 Hy2 H̄y3 0

0 0 0 I

0 0 I 0







z1
z2
z3
u1


 .

Thus,Bc(E,A,B,C,D) = Bc(F,G,Hy,Hu). �

In the following, we will present two algorithms for obtaining a pencil represen-
tation from a descriptor representation for an impulsive-smooth behavior.

First, let us consider the descriptor representation. Decompose the descriptor
spaceXd (the space on whichE and A act) asXd1 ⊕ Xd2, whereXd2 = kerE.
Decompose the equation spaceXe (the space thatE andA map into) asXe1 ⊕ Xe2 ⊕
Xe3, whereXe1 = im E andXe1 ⊕ Xe2 = im[E B]. Accordingly, write

E =

E11 0

0 0
0 0


 , A =


A11 A12

A21 A22
A31 A32


 ,

B =

B1

B2
0


 , C = [

C1 C2
]
.

(3.11)

Since the matrixB2 is surjective, by renumbering theu variables we can write
B1

B2
0


 =


B11 B12

B21 B22
0 0


 , D = [

D1 D2
]
, (3.12)

whereB22 is invertible.
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Algorithm 3.6. Consider the behaviorBu(E,A,B,C,D) and the matrices in (3.11)
and (3.12). Define pencil matrices as follows:

F =

 Ā11 Ā12 B̄11 0

−Ā21 −Ā22 −B̄21 −I

−A31 −A32 0 0


 ,

G =

E11 0 0 0

0 0 0 0
0 0 0 0


 , H =


C1 C2 D1 D2

0 0 I 0
0 0 0 I


 ,

(3.13)

where

Ā11=A11 − B12B
−1
22 A21,

Ā12=A12 − B12B
−1
22 A22,

B̄11=B11 − B12B
−1
22 B21, (3.14)

Ā21=B−1
22 A21,

Ā22=B−1
22 A22,

B̄21=B−1
22 B21.

Lemma 3.7. Let (F,G,H) be a pencil representation with behaviorBu(F,G,H)

that results from applying Algorithm3.6 to a descriptor representation with behavior
Bu(E,A,B,C,D). Then, these two representations are externally equivalent.

Proof. Let us consider a descriptor representation with behaviorBu(E,A,B,C,D)

determined by the equations:

pEz = Az + Bu + x0, (3.15)

y = Cz + Du. (3.16)

Assume that descriptor matrices are given in the form as in Eqs. (3.11) and (3.12).
Then, if we multiply Eq. (3.15) on the left by

S =

I −B12B

−1
22 0

0 B−1
22 0

0 0 I


 , (3.17)

we will obtain an equivalent representation. If we defineF, G andH as in (3.2), then
the descriptor representation can be regarded as a pencil representation(F,G,H)

with behaviorBu(F,G,H), whereF, G, andH are of the form given in (3.13).
Thus, the descriptor representation is externally equivalent to the pencil representa-
tion obtained by Algorithm 3.6. �

The following algorithm is similar to Algorithm 3.28 in [7].
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Algorithm 3.8. Consider the behaviorBc(E,A,B,C,D) and the matrices in Eqs.
(3.11) and (3.12). Define pencil matrices as follows:

G =
[
E11 0 0
0 0 0

]
, F =

[
Ā11 Ā12 B̄11
A31 A32 0

]
,

(3.18)

Hy = [
C̄1 C̄2 D̄1

]
, Hu =

[
0 0 I

−Ā21 −Ā22 −B̄21

]
,

where

C̄1 = C1 − D2Ā21, C̄2 = C2 − D2Ā22, D̄1 = D1 − D2B̄21 (3.19)

and the other matrices are the same as in Eq. (3.15).

Lemma 3.9. Let (F,G,H) be a pencil representation with behaviorBc(F,G,H)

that results from applying Algorithm3.8 to a descriptor representation with behavior
Bc(E,A,B,C,D). Then, these two representations are externally equivalent.

Proof. Consider a conventional descriptor representationBc(E,A,B,C,D). Then,
for any x0 ∈ im E there existsz0 such thatx0 = Ez0. Thus, if we follow the pro-
cedure given in the proof of the previous lemma, we will obtain the representation
below, which is externally equivalent to a pencil representation with conventional
behavior


E11z10

0
0


 =


pE11 − Ā11 −Ā12 −B̄11 0

−Ā21 −Ā22 −B̄21 −I

−A31 −A32 0 0







z1
z2
u1
u2


 , (3.20)


 y

u1
u2


 =


C1 C2 D1 D2

0 0 I 0
0 0 0 I







z1
z2
u1
u2


 . (3.21)

Here,z10, z1, z2 andu1, u2 are obtained by a suitable partitioning ofz0, z, andu
respectively. By Lemma 3.1 this representation is equivalent to the following repre-
sentation:

[
E11z10

0

]
=

[
pE11 − Ā11 −Ā12 −B̄11

−A31 −A32 0

]
z1

z2
u1


 , (3.22)


 y

u1
u2


 =


 C̄1 C̄2 D̄1

0 0 I

−Ā21 −Ā22 −B̄21





z1

z2
u1


 . (3.23)

Thus,Bc(E,A,B,C,D) = Bc(F,G,H). �
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Finally, we consider descriptor representations with a zero feedthrough term. The
following algorithm is similar to Algorithm 3.36 in [7].

Algorithm 3.10. Let a descriptor representation be given by(E,A,B,C) (i.e.D =
0). Decompose the descriptor spaceXd as Xd1 ⊕ Xd2 ⊕ Xd3, whereXd3 = A−1

[im E] ∩ kerE andXd2 ⊕ Xd3 = kerE. Decompose the equation spaceXe asXe1 ⊕
Xe2 ⊕ Xe3, whereXe1 = im E andXe2 = AXd2. Accordingly, write

E11z01
0
0


 =


pE11 − A11 −A12 −A13

−A21 −A22 0
−A31 0 0


 z −


B1

B2
B3


u (3.24)

y = [C1 C2 C3]z, (3.25)

whereE11 andA22 are nonsingular. Since

C2A
−1
22 ([−A21 −A22 0]z − B2u) = 0,

we can write

y = [
C1 − C2A

−1
22 A21 0 C3

]
z − C2A

−1
22 B2u.

Now, define a descriptor representation(Ẽ, Ã, B̃, C̃, D̃) by

Ẽ =
[
E11 0
0 0

]
, Ã =

[
A11 A13
A31 0

]
, B̃ =

[
B1
B3

]
,

C̃ = [
C̃1 C̃2

]
, D̃ = −C2A

−1
22 B2,

(3.26)

whereC̃1 = C1 − C2A
−1
22 A21, C̃2 = C3. SinceA22 is nonsingular and the rows ofz

corresponding to the columns ofA22 do not affect the behavior, then by Lemma 3.1
it is clear that

Bc(E,A,B,C) = Bc(Ẽ, Ã, B̃, C̃, D̃)

and

Ã[kerẼ] ⊂ im Ẽ.

4. Minimality of descriptor representations

In this section, we discuss the minimality of both conventional and unconven-
tional descriptor representations. We recall that a descriptor representation(E,A,B,

C,D) is said to be minimal if both the number of rows and the number of columns
of the matricesE andA are minimal among all equivalent descriptor representations.

In Lemma 3.3 above, we carried out the transition from unconventional pencil to
unconventional descriptor representation under the conditionHu[kerG] = U. It will
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be important below that this property is preserved under a certain transformation as
shown in the next lemma.

Lemma 4.1. LetG : Z → X be of the form

G =
[
G1 0
0 G2

]

with G2 full column rank and considerHu = [Hu1 Hu2]: Z → U. If Hu[kerG] =
U, then alsoHu1[kerG1] = U.

Proof. Takeu ∈ U, then we may write

u = [Hu1 Hu2]
[
z1
z2

]
with

[
G1 0
0 G2

] [
z1
z2

]
= 0.

From G2z2 = 0 it follows thatz2 = 0, so actuallyu = Hu1z1 with G1z1 = 0, i.e.
u ∈ Hu1[kerG1]. �

In the following lemma, we obtain already one part of the minimality conditions
for unconventional descriptor representations.

Lemma 4.2. A descriptor representation(E,A,B,C,D) is minimal in the sense of
unconventional representations of impulsive-smooth behaviors only if the following
condition holds:

[sE − A −B] has full row rank as a rational matrix.

Proof.Define a pencil representation as in (3.2). Note thatHu[kerG] = U. LetE and
A have sizen1 × n2, dimY = p and dimU = m. Then,G has sizen1 × (n2 + m).
If condition (i) does not hold, thensG − F will not have full row rank as a rational
matrix and hence a reduction is possible as in [3, Proof of Theorem 2.3] to a repre-
sentation of sizẽn1 × (ñ2 + m) with ñ1 < n1 andñ2 6 n2. By Lemma 4.1, we still
haveH̃u[kerG̃] = U in the reduced representation. By Lemma 3.3, we can therefore
find a descriptor representation of sizeñ1 × ñ2. Becausẽn1 < n1 andñ2 6 n2, the
representation that we started with is not minimal.�

The full set of minimality conditions for unconventional descriptor representa-
tions can be stated as follows.

Theorem 4.3. A descriptor representation(E,A,B,C,D) is a minimal represen-
tation of its unconventionally associated behaviorBu(E,A,B,C,D) if and only if
the following conditions hold:

(i)
[
sE − A −B

]
has full row rank as a rational matrix,

(ii)
[
E
C

]
has full column rank,

(iii)
[
sE−A

C

]
has full column rank for alls ∈ C.
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Proof. The necessity of condition (i) has already been shown in Lemma 4.2. The
other conditions are shown to be necessary exactly as in the case of smooth be-
haviors (see [8, Proof of Lemma 4.7] for (ii) and [7, Proof of Theorem 4.12] for
(iii)), by using the property given in Lemma 3.1. To prove the sufficiency, suppose
that (E,A,B,C,D) satisfies (i)–(iii). Then, it is readily verified on the basis of
Theorem 2.5 that the associated pencil representation defined by the equations in
(3.2) is minimal. Hence, there can be no smaller descriptor representation of the
same behavior. �

The analogous result for conventional representations is the following.

Theorem 4.4. A descriptor representation(E,A,B,C,D) is a minimal represen-
tation of its conventionally associated behaviorBc(E,A,B,C,D) if and only if
conditions(i)–(iii) of Lemma4.2 and the additional condition
(iv) A[kerE] ⊂ im E

are satisfied.

Proof. The proofs of conditions (i)–(iii) are similar to the proofs of the same condi-
tions in Lemma 4.3, with the initial condition being taken asx0 = Ez0 since we now
consider the conventional behaviorBc(E,A,B,C,D). To prove the necessity of
(iv), apply Algorithm 3.10 to(E,A,B,C,D). Then, we have(Ẽ, Ã, B̃, C̃, D̃) as in
(3.26) except that̃D = D − C2A

−1
22 B2. Because of the equality betweenBc(E,A,B,

C,D) andBc(Ẽ, Ã, B̃, C̃, D̃) and the minimality of(E,A,B,C,D), the matrix
A22, which is given in Eq. (3.25) in Algorithm 3.10, should be empty. Thus (iv)
holds. (Compare the argument in the proof of [7, Lemma 4.8].)

To prove sufficiency, suppose that(E,A,B,C,D) satisfies (i)–(iv). It can be ver-
ified that, when Algorithm 3.8 is applied to(E,A,B,C,D), the resulting pencil
representation(F,G,Hy,Hu) defined by the matrices in (3.18) satisfies conditions
(i)–(iv) of Theorem 2.6. Note in particular that condition (iv) impliesA32 = 0 and
condition (i) implies thatA31 in F (in (3.18)) has full row rank. So, by Theorem 2.6
(F,G,Hy,Hu) is minimal with respect to the behaviorBc(F,G,Hy,Hu). Hence,
there can be no smaller conventional descriptor representation having the same be-
havior. �

Comparing the result above to the minimality conditions for descriptor represen-
tations of smooth behaviors as given in [9], we see that the two sets of minimality
conditions are identical, except that for minimality in the sense of smooth behaviors
condition (i) above is replaced by the stronger requirement that the matrix[E B]
should have full row rank.

5. Equivalence of descriptor representations

In this section we obtain concrete descriptions of the transformations that re-
late minimal descriptor representations of impulsive-smooth behaviors, both in the
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conventional and in the unconventional case. We begin with some preparatory
material.

Definition 5.1. The triples(F,G,H) and(F̃ , G̃, H̃ ) are said to bestrongly similar
if there exist invertible matricesSandT such that[

sG̃ − F̃

H̃

]
=

[
S 0
0 I

] [
sG − F

H

]
T −1. (5.1)

Definition 5.2. The triples(F,G,H) and(F̃ , G̃, H̃ ) are said to beweakly similar
if there exist constant invertible matricesSandT and a constant matrixX such that[

sG̃ − F̃

H̃

]
=

[
S 0
X I

] [
sG − F

H

]
T −1. (5.2)

Condition (5.2) is equivalent to the requirementsF̃ = SFT −1, G̃ = SGT −1, H̃ =
(H − XF)T −1 andXG = 0. It is straightforward to prove the following lemma.

Lemma 5.3. Among matrix triples of equal dimensions, weak similarity is an equiv-
alence relation.

It is also easy to verify that the minimality conditions of Theorems 2.5 and 2.6
are similarity invariants, i.e. if a triple(F,G,H) satisfies the conditions of these
theorems, then the same holds for any triple that is weakly similar to(F,G,H). The
following lemma takes a little bit more effort.

Lemma 5.4. Weakly similar triples generate the same conventional behavior.

Proof. Assume that the triples(F,G,H) and(F̃ , G̃, H̃ ) are weakly similar. Then
there exist constant invertible matricesS andT and a constant matrixX such that
(5.2) holds. Takew ∈ Bc(F,G,H). Then by definition there existz ∈ Cn+k

imp and

z0 ∈ Rn+k such that

[
Gz0
w

]
=

[
pG − F

H

]
z. (5.3)

Definez̃ = T z andz̃0 = T z0. SinceXG = 0, we can then write

[
pG̃ − F̃

H̃

]
z̃ =

[
S 0
X I

] [
pG − F

H

]
T −1z̃ =

[
S 0
X I

] [
Gz0
w

]

=
[
SGT −1z̃0

w

]
=

[
G̃z̃0
w

]
. (5.4)
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It follows thatw ∈ Bc(F̃ , G̃, H̃ ). So we haveBc(F,G,H) ⊂ Bc(F̃ , G̃, H̃ ). Since
weak similarity is an equivalence relation, it follows that, actually, equality must
hold. �

Below we will have occasion to use the following lemma, which relates conven-
tional pencil representations to unconventional ones.

Lemma 5.5. If a triple (F,G,H) satisfies the minimality conditions(i)–(iv) men-
tioned in Theorem2.6, then(F,G,H) is weakly similar to a triple(F̂ , Ĝ, Ĥ ), where

F̂ =
[
F11 0
0 I

]
, Ĝ =

[
G11 G12

0 0

]
, Ĥ = [H1 0] (5.5)

in which[G11 G12] has full row rank and

no. of columns ofG12 = codim imG11. (5.6)

Moreover, the triple (F11,G11,H1) satisfies minimality conditions(i)–(iii) of
Theorem2.5, and we have

Bc(F,G,H) = Bu(F11,G11,H1). (5.7)

Proof. Let U be a constant nonsingular matrix such that

UG =
[
G1
0

]
, (5.8)

whereG1 has full row rank, and defineF1 andF2 by the comformable partitioning

UF =
[
F1
F2

]
. (5.9)

By minimality condition (i), the matrixF2 must have full row rank. Then there exists
a constant nonsingular matrixV such that

UFV =
[
F11 F12
0 F22

]
, (5.10)

whereF22 is nonsingular. Let

G1V = [G11 G12], HV = [H1 H2] (5.11)

with partitionings corresponding to those in (5.10). SinceF22 is nonsingular, we can
write down the following equation:


I −F12F

−1
22 0

0 F−1
22 0

0 H2F
−1
22 I





sG11 − F11 sG12 − F12

0 −F22
H1 H2




=

sG11 − F11 sG12

0 −I

H1 0


 . (5.12)
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By defining[
0 −F12F

−1
22

0 F−1
22

]
U =: S, [0 H2F

−1
22 ]U =: X, V −1 =: T , (5.13)

we will obtain[
S 0
X I

] [
sG − F

H

]
T −1 =

[
sĜ − F̂

Ĥ

]
. (5.14)

Thus,(F,G,H) and(F̂ , Ĝ, Ĥ ) are weakly similar.
BecauseG1 has full row rank, claim (5.6) is equivalent to saying that imG1 is the

direct sum of imG11 and imG12, and that the columns ofG12 are independent. This
in turn is the same as saying that a vectorz2 satisfiesG12z2 ∈ im G11 if and only if
z2 = 0. So, let us assume thatz2 is such thatG12z2 ∈ im G11. Then there existsz1
such thatG11z1 + G12z2 = 0, i.e.z := [zT

1 zT
2]T belongs to ker̂G. By condition (iv)

and weak similarity, we havêF [kerĜ] ⊂ im Ĝ. By the conformable partitionings of
F̂ andĜ, the relation

F̂

[
z1
z2

]
=

[
F11z1

z2

]
∈ im Ĝ

impliesz2 = 0.
Due to the special structure of the matrices in (5.5), it is straightforward to verify

that the triple(F11,G11,H1) satisfies the minimality conditions for unconventional
pencil representations. To prove the final claim, letw ∈ Bc(F,G,H); then there
existz0 ∈ Rn+k andz ∈ Cn+k

imp such thatpGz = Fz + Gz0, w = Hz. From Eq. (5.5)
we obtain

G11z10 + G12z20
0
w


 =


pG11 − F11 pG12

0 −I

H1 0




[
z1
z2

]
, (5.15)

where

V −1z0 =:
[
z10
z20

]
, V −1z =:

[
z1
z2

]
.

It is clear from the equation above thatz2 = 0 andw = H1z1. Then, if we letx0 =
G11z10 + G12z20 by Lemma 3.1 we havew ∈ Bu(F11,G11,H1). Conversely, since
[G11 G12] has full row rank, for givenx0 it is always possible to findz10 andz20
such thatx0 = G11z10 + G12z20 and (5.15) holds (settingz2 = 0). Consequently,
w ∈ Bu(F11,G11,H1) impliesw ∈ Bc(F,G,H). �

The following theorem completes the results in [3] on equivalence of minimal
pencil representations of impulsive-smooth behaviors.

Theorem 5.6. Suppose(F,G,H) and(F̃ , G̃, H̃ ) both satisfy conditions(i)–(iv) of
Theorem2.6. Then, Bc(F,G,H) = Bc(F̃ , G̃, H̃ ) iff (F,G,H) and(F̃ , G̃, H̃ ) are
weakly similar.
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Proof. The “if” part has already been proved in Lemma 5.4. So, let us prove the
“only if” part. By Lemmas 5.4 and 5.5 and by Theorem 2.5, we may assume without
loss of generality that

F =
[
F11 0
0 I

]
= F̃ , H = [H1 0] = H̃ ,

(5.16)

G =
[
G11 G12
0 0

]
, G̃ =

[
G11 G̃12
0 0

]
.

Because[G11 G̃12] has full row rank, we can writeG12 = G11T12 + G̃12T22 for
certain matricesT12 andT22, whereT22 must be square (by property (5.6)). Suppose
T22z2 = 0; thenG12z2 = G11T12z2 and it follows from (5.6) thatz2 = 0. SoT22
must be invertible. Now note that

F̃ =
[
I F11T12
0 T22

] [
F11 0
0 I

] [
I T12
0 T22

]−1

, (5.17)

G̃ =
[
I F11T12
0 T22

] [
G11 G12
0 0

] [
I T12
0 T22

]−1

, (5.18)

H̃ =
(

[H1 0] + [0 H1T12]
[
F11 0
0 I

]) [
I T12
0 T22

]−1

. (5.19)

If we let[
I F11T12
0 T22

]
=: S, [0 H1T12] =: X and

[
I T12
0 T22

]
=: T , (5.20)

then [
sG̃ − F̃

H̃

]
=

[
S 0
X I

] [
sG − F

H

]
T −1. � (5.21)

We now can characterize the relations between minimal unconventional descrip-
tor representations.

Theorem 5.7. Let (E,A,B,C,D) and (Ẽ, Ã, B̃, C̃, D̃) be descriptor representa-
tions. Assume that both of them satisfy conditions(i)–(iii) of Theorem4.3. Then

Bu(E,A,B,C,D) = Bu(Ẽ, Ã, B̃, C̃, D̃) (5.22)

if and only if there exist constant nonsingular matrices M and N and a constant
matrix Y such that[

sE − A −B

C D

]
=

[
M 0
0 I

] [
sẼ − Ã −B̃

C̃ D̃

] [
N Y

0 I

]
. (5.23)
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Proof. To prove the “if” part letw = [
y
u

] ∈ Bu(E,A,B,C,D). Then there exist
z ∈ C

n2
imp andx0 ∈ Rn1 such that[
x0
y

]
=

[
pE − A −B

C D

] [
z

u

]
. (5.24)

It follows that[
x0
y

]
=

[
M 0
0 I

] [
pẼ − Ã −B̃

C̃ D̃

] [
N Y

0 I

] [
z

u

]
(5.25)

and sow ∈ Bu(Ẽ, Ã, B̃, C̃, D̃). The reverse inclusion follows in the same way and
so we have (5.22).

To prove the “only if” part let us assume thatBu(E,A,B,C,D) = Bu(Ẽ, Ã, B̃,

C̃, D̃). By means of (3.2), let us define(F,G,H) from (E,A,B,C,D) and
(F̃ , G̃, H̃ ) from (Ẽ, Ã, B̃, C̃, D̃). Since both(E,A,B,C,D) and(Ẽ, Ã, B̃, C̃, D̃)

satisfy conditions (i)–(iii) of Theorem 4.3, both(F,G,H) and F̃ , G̃, H̃ ) satisfy
conditions (i)–(iii) of Theorem 2.5. Thus, both(F,G,H) and(F̃ , G̃, H̃ ) are mini-
mal representations of their unconventionally associated behaviorsBu(F,G,H) and
Bu(F̃ , G̃, H̃ ), and also the following relations hold:

Bu(F,G,H)=Bu(E,A,B,C,D)

=Bu(Ẽ, Ã, B̃, C̃, D̃) = Bu(F̃ , G̃, H̃ ). (5.26)

So, by Theorem 2.7 there exist constant nonsingular matricesSandT such that

F = SF̃T −1, G = SG̃T −1 and H = H̃T −1 (5.27)

so that, by (3.2),
sE − A −B

C D

0 I


 =


S(sẼ − Ã) −SB̃

C̃ D̃

0 I


 T −1. (5.28)

Now, let

T −1 =
[
T11 T12
T21 T22

]
. (5.29)

Then (5.28) and (5.29) imply

T21 = 0, T22 = I. (5.30)

SinceT is nonsingular,T11 is nonsingular and we can define

T11 =: N, T12 =: Y, S =: M (5.31)

to satisfy (5.23). �

The analogous result for conventional representations is the following.

Theorem 5.8. Let (E,A,B,C,D) and (Ẽ, Ã, B̃, C̃, D̃) be descriptor representa-
tions. Assume that both of them satify conditions(i)–(iv) of Theorem4.4. Then
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Bc(E,A,B,C,D) = Bc(Ẽ, Ã, B̃, C̃, D̃) (5.32)

if and only if there exist constant and nonsingular matrices M, N and constant ma-
trices X and Y such that[

M 0
X I

] [
sE − A −B

C D

]
=

[
sẼ − Ã −B̃

C̃ D̃

] [
N Y

0 I

]
. (5.33)

Proof. For the “if” part, takew = [
y
u

] ∈ Bc(E,A,B,C,D). By definition, there
exist a constantz0 and an impulsive-smoothzsuch that[

Ez0
y

]
=

[
pE − A −B

C D

] [
z

u

]
. (5.34)

Note that (5.33) implies thatME = ẼN andXE = 0. Therefore, it follows from
(5.33) that[

ẼNz0
y

]
=

[
pẼ − Ã −B̃

C̃ D̃

] [
Nz + Yu

u

]
(5.35)

so that
[
y
u

] ∈ Bc(Ẽ, Ã, B̃, C̃, D̃). The argument is completed as in the proof of the
previous theorem.

In order to prove the “only if” part, let us assume that(E,A,B,C,D) and
(Ẽ, Ã, B̃, C̃, D̃) satisfy conditions (i)–(iv) of Theorem 4.4 and their conventionally
associated behaviors are the same. Next, apply Algorithm 3.8 to both of them; this
yields conventionally externally equivalent pencil representations(F,G,H) and
(F̃ , G̃, H̃ ) which are minimal. Then by Theorem 5.6 they are weakly similar and
so there exist constant invertible matricesSandT and a constant matrixX such that[

sG̃ − F̃

H̃

]
=

[
S 0
X I

] [
sG − F

H

]
T −1. (5.36)

We may assume that both descriptor representations are in the form (3.11)–(3.12)
with E11 = I andB22 = −I . Then (5.36) may be written in further detail as



S1 S2 0 0 0
S3 S4 0 0 0
X1 X2 I 0 0
X3 X4 0 I 0
X5 X6 0 0 I







sI − A11 −A12 0
−A31 0 0

C1 + D2A21 C2 D1 + D2B21
0 0 I

A21 0 B21




=




sI − Ã11 −Ã12 0
−Ã31 0 0

C̃1 + D̃2Ã21 C̃2 D̃1 + D̃2B̃21
0 0 I

Ã21 0 B̃21





T1 T2 T3

T4 T5 T6
T7 T8 T9


 .

It now follows immediately that the matricesS3, X1, X3, X5, T2, T3, T8 must all be
zero matrices, andT9 = I . Then, sinceS andT are nonsingular,S1, S4, T1, andT5
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are nonsingular. Also note thatT7 = −X4A31. After tedious but in principle straight-
forward calculations, it can be verified that (5.33) is satisfied with

M :=

S1 S1B12 − B̃12 S2 − B̃12X6 + B̃11X4

0 I −X6 + B̃21X4
0 0 S4


 ,

N :=
[
T1 0
T4 T5

]
,

X := [
0 −D2 + D̃2 X2 − D̃2X6 − D̃1X4

]
,

Y :=
[

0 0
T6 0

]
. �

(5.37)

With the above result, we have completed the program of characterizing the trans-
formations of external equivalence in the sense of impulsive-smooth behaviors for
pencil and descriptor representations. The equivalence relation (5.33) is well-known
in the literature; it was introduced by Verghese et al. [16] under the name ofstrong
equivalence operation. The same transformation group was used earlier for descrip-
tor representations with zero feedthrough term by Van der Weiden and Bosgra [15],
who used the namerestricted system equivalence. Compare also Rosenbrock’s no-
tion of strict system equivalence[11, p. 52] which uses polynomial matrices in a
format similar to (5.33). The above theorem provides a motivation for the notion
of strong equivalence in terms of impulsive-smooth behaviors. The transformation
group (5.23) that we have found for unconventional descriptor representations has,
to our knowledge, not been considered before.

Our results generate two possible ways of describing versions of the “space of
linear input/output systems”: the collection of quintuples(E,A,B,C,D) satisfy-
ing the minimality conditions of Theorem 4.4 modulo the transformation group of
Theorem 5.8, and the collection of quintuples(E,A,B,C,D) satisfying the mini-
mality conditions of Theorem 4.3 modulo the transformation group of Theorem 5.7.
It follows from the results of [13] that the two objects so defined are not the same;
the second space contains only systems that have “Dirac free inputs” in the sense of
[13], whereas the systems in the first space are not subject to such a restriction. Both
spaces can be seen as extensions of spaces considered traditionally, such as the space
of rational matrices.

The first author who gave a motivation for strong equivalence from an intrinsically
defined notion of equivalence was Grimm [5]. The minimality conditions obtained
by Grimm were the same as the ones mentioned in Theorem 4.4 above, except that re-
quirement (i) is replaced in his paper by the stronger condition that the matrix[sE −
tA −B] should have full row rank forall pairs of complex numbers(s, t) /= (0, 0).
This condition can be interpreted as a controllability condition. A weaker notion of
minimality (so one that is satisfied in a wider class of systems) was used by Kuijper
and Schumacher [9]; they used external equivalence in the sense of smooth behav-
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iors, which leads to minimality conditions (i)–(iv) of Theorem 4.4 with condition
(i) replaced by the requirement that[E B] should have full row rank. This require-
ment can be interpreted as a condition of “controllability at infinity”. The operations
relating minimal representations (in the sense of smooth behaviors) to each other
were again identified in [9] as the operations of strong equivalence. The result above
gives an interpretation of strong equivalence that goes even further, since it applies
to systems satisfying the conditions of Theorem 4.4 as such; note that the condition
that [sE − A −B] should have full row rank as a rational matrix is equivalent to
requiring that the matrix[sE − tA −B] should have full row rank forsomepair of
complex numbers(s, t). Condition (i) as given in Theorem 4.4 is no longer a con-
trollability condition but rather a nonredundancy condition, as it requires that none
of the equations given by the rows ofpEz = Az + Bu + Ez0 should be obtainable
from the other equations by differentiating and taking linear combinations.

6. Conclusions

In this paper we have discussed minimality and equivalence of descriptor rep-
resentations for impulsive-smooth behaviors. As can be expected, the minimality
conditions are weaker than those for descriptor representations of smooth behaviors;
in particular, no form of controllability is required for minimality in the sense of
impulsive-smooth behaviors. In the case of conventional representations, minimal
representations turn out to be related by operations of strong equivalence as defined
in [16]. We have therefore given a motivation for strong equivalence that applies
to a wider class of systems than the classes considered earlier in [5,9]. The opera-
tions that we found for minimal unconventional representations have to our knowl-
edge not been considered before. We have also identified the transformation group
that describes the relations between minimal conventional pencil representations of
impulsive-smooth behaviors, thus completing the results in [3].
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