
Linear Algebra and its Applications 429 (2008) 673–687

Available online at www.sciencedirect.com

www.elsevier.com/locate/laa

On the existence of Hermitian positive definite solutions
of the matrix equation Xs + A∗X−tA = Q�

Xuefeng Duan a, Anping Liao a,b,∗

a College of Mathematics and Econometrics, Hunan University, Changsha 410082, PR China
b Institute of Mathematics, Changsha University, Changsha 410003, PR China

Received 1 June 2007; accepted 24 March 2008
Available online 15 May 2008

Submitted by R. Bhatia

Abstract

In this paper, the existence of Hermitian positive definite solutions of the general nonlinear matrix equation
Xs + A∗X−tA = Q is studied systematically and deeply. A new estimate of Hermitian positive definite
solutions is derived. Based on a fixed point theorem, some new sufficient conditions and new necessary
conditions for the existence of Hermitian positive definite solutions are obtained. In the end, a necessary and
sufficient condition for the existence of a Hermitian positive definite solution is proved.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the existence of Hermitian positive definite (HPD) solutions of the general non-
linear matrix equation

Xs + A∗X−tA = Q, (1.1)
where A is an n × n nonsingular matrix, Q is an n × n HPD matrix, s and t are positive inte-
gers. Nonlinear matrix equations of the form (1.1) often arise in control theory, ladder networks,
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dynamic programming, stochastic filtering and statistics, etc. (see [1,11,15,19] and the reference
therein).

The existence of HPD solutions of Eq. (1.1) has been investigated in some special cases.
In [3] it is assumed that A is a normal matrix, whereas in [16] it is assumed that A is a real
matrix. Some necessary and sufficient conditions for the existence of HPD solutions of Eq. (1.1)
with s = t = 1 have been derived by using the shorted operator approach [1] and the analytic
factorization approach [4]. By means of the matrix decomposition method, Hasanov and Ivanov
[9] and Zhan and Xie [19] presented some necessary and sufficient conditions for the existence
of an HPD solution to Eq. (1.1) with s = 1, t = n and s = 1, t = 1, but these conditions were not
easily checked. And the matrix sequence theory were also used to study the existence of HPD
solutions of the nonlinear matrix equations of type (1.1) (see [6,7,11,12,15]). Recently, fixed point
theory techniques play a key role in investigating the existence of HPD solutions of the nonlinear
matrix equations of type (1.1) (see [10,13,16,17,21]).

Based on Brouwer’s fixed point theorem [22, Theorem 4.2.6] and Banach’s fixed point theorem
[22, Theorem 1.3.1], we investigate the existence and uniqueness of HPD solutions of Eq. (1.1)
in this paper. In Section 2, we derive a new estimate of HPD solutions and a sufficient condi-
tion under which Eq. (1.1) has a unique HPD solution. In Section 3, under the assumption that

λ1(A
∗A) � s

s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q), we deepen some conclusions of Liu and Gao [16] and get some

new results on the existence of HPD solutions. In Section 4, a necessary and sufficient condition
for the existence of an HPD solution is given. Some results in [5,21] have been extended.

Throughout this paper, we write B > O(B � O) if the matrix B is positive definite (semidef-
inite). If B − C is positive definite (semidefinite), then we write B > C(B � C). We use λ1(B)

and λn(B) to denote the maximal and minimal eigenvalues of an n × n HPD matrix B. We use
‖B‖ and ‖B‖F to denote the spectral norm and Frobenius norm of a matrix B, and we also use
‖b‖ to denote l2-norms of a vector b. We use XS and XL to denote the minimal and maximal HPD
solution of Eq. (1.1), that is, for any HPD solution X of Eq. (1.1), then XS � X � XL. The symbol
I denotes the n × n identity matrix. The symbol ρ(B) denotes the spectral radius of B. Let P(n)

denote a set of n × n HPD matrices and [B, C] = {X|B � X � C}, (B, C) = {X|B < X < C}.
For B = (b1, b2, . . . , bn) = (bij ) and a matrix C, B ⊗ C = (bijC) is a Kronecker product and
vec(B) is a vector defined by vec(A) = (aT

1 , aT
2 , . . . , aT

n )T. In order to develop the paper, we
need that

vec(AXB) = (BT ⊗ A)vec(X) and ‖vec(X)‖ = ‖X‖F ,

where A, X and B are n × n complex matrix.

2. The general case

In this section, we give a new estimate of HPD solutions of Eq. (1.1). Based on fixed point
theorems, we derive a sufficient condition for the existence of a unique HPD solution of Eq. (1.1).
We begin with some lemmas.

Lemma 2.1 [18, Theorem 2.1]. If Eq. (1.1) has an HPD solution X, then

X ∈ ((AQ−1A∗)
1
t , Q

1
s ).

Lemma 2.2 [2]. If A � B > O (or A > B > O), then Aα � Bα > O (or Aα > Bα > O) for
all α ∈ (0, 1], and Bα � Aα > O (or Bα > Aα > O) for all α ∈ [−1, 0).
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Lemma 2.3 [14, p. 656]. For square nonsingular matrices A, B and C applications of Schur’s
lemma to the two matrices A + BC and A − BC yields that

(i) (A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1,

(ii) (A − BC)−1 = A−1 − A−1B(CA−1B − I )−1CA−1.

Lemma 2.4 [8, Theorem 2.1]. Let A and B be positive operators on a Hilbert space H such that
M1I � A � m1I > O, M2I � B � m2I > O and B � A > O. Then

At �
(

M1

m1

)t−1

Bt , At �
(

M2

m2

)t−1

Bt

hold for any t � 1.

So far, there are several estimates of HPD solutions of Eq. (1.1) and its special cases, such as,
Theorem 2.1 in Yang [18] (i.e. Lemma 2.1), Theorem 4 in Ivanov [13] and Theorem 4 in Hasanov
and Ivanov [10]. Now we give a new estimate which are sharper than that all of them.

Theorem 2.1. If Eq. (1.1) has an HPD solution X, then

X ∈ (M, N),

where

M =

⎧⎪⎨⎪⎩AQ−1A∗ + AQ−1

⎡⎣(
λ1(A

−∗QA−1)

λn(A−∗QA−1)

) s−1
t

(A−∗QA−1)
s
t − Q−1

⎤⎦−1

Q−1A∗

⎫⎪⎬⎪⎭
1
t

,

N =
⎡⎣Q −

(
λn(Q

−1)

λ1(Q−1)

) t−1
s

A∗Q− t
s A

⎤⎦
1
s

.

Proof. Let X be the HPD solution of Eq. (1.1), then from Lemma 2.1 it follows that

(AQ−1A∗)
1
t < X < Q

1
s . (2.1)

Applying Lemma 2.2 to (2.1) yields

Q− 1
s < X−1 < (AQ−1A∗)−

1
t . (2.2)

Since

λ
1
t
n (A−∗QA−1)I � (AQ−1A∗)−

1
t = (A−∗QA−1)

1
t � λ

1
t

1 (A−∗QA−1)I

and

λ
1
s
n (Q−1) � Q− 1

s = (Q−1)
1
s � λ

1
s

1 (Q−1),

then applying Lemma 2.4 to (2.2) yields

Q−1 <

(
λ1(A

−∗QA−1)

λn(A−∗QA−1)

) s−1
t

(A−∗QA−1)
s
t , (2.3)

X−t >

(
λn(Q

−1)

λ1(Q−1)

) t−1
s

Q− t
s (2.4)
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and

X−s <

(
λ1(A

−∗QA−1)

λn(A−∗QA−1)

) s−1
t

(A−∗QA−1)
s
t . (2.5)

Rewriting Eq. (1.1) and combining (2.4), we have

Q − Xs = A∗X−tA >

(
λn(Q

−1)

λ1(Q−1)

) t−1
s

A∗Q− t
s A,

which implies that

X <

⎡⎣Q −
(

λn(Q
−1)

λ1(Q−1)

) t−1
s

A∗Q− t
s A

⎤⎦
1
s

= N. (2.6)

On the other hand, Eq. (1.1) can also be rewritten as

Xt = A(Q − Xs)−1A∗. (2.7)

Applying Lemma 2.3 to (2.7) and combining (2.3) and (2.5) yield

Xt = A(Q − Xs)−1A∗

= A[Q−1 − Q−1(XsQ−1 − I )−1XsQ−1]A∗

= AQ−1A∗ + AQ−1(X−s − Q−1)−1Q−1A∗

> AQ−1A∗ + AQ−1

⎡⎣(
λ1(A

−∗QA−1)

λn(A−∗QA−1)

) s−1
t

(A−∗QA−1)
s
t − Q−1

⎤⎦−1

Q−1A∗,

which implies that

X >

⎧⎪⎨⎪⎩AQ−1A∗ + AQ−1

⎡⎣(
λ1(A

−∗QA−1)

λn(A−∗QA−1)

) s−1
t

(A−∗QA−1)
s
t − Q−1

⎤⎦−1

Q−1A∗

⎫⎪⎬⎪⎭
1
t

= M. (2.8)

Combining (2.6) and (2.8), we get

X ∈ (M, N). �

Remark 2.1. Comparing Theorem 2.1 with Lemma 2.1, it is easy to obtain that

(M, N) ⊂ ((AQ−1A∗)
1
t , Q

1
s ),

that is to say, our estimate of HPD solution of Eq. (1.1) is sharper than that of Yang [18].
Now we use an example to confirm the correctness of Theorem 2.1 and the sharpness of the

bounds of HPD solutions of Eq. (1.1).

Example 2.1. Consider the matrix equation

X + ATX−1A = I (2.9)
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with

A =
⎡⎣0.2000 0.2000 0.1000

0.2000 0.1500 0.1500
0.1000 0.1500 0.2500

⎤⎦ .

Here, A is normal and nonsingular. Therefore, from theorem 4.1 of Zhan and Xie [19] we
obtain that Eq. (2.9) has a maximal HPD solution

XL = 1

2
[I + (I − 4ATA)

1
2 ] ≈

⎡⎣ 0.8265 −0.1684 −0.1582
−0.1684 0.8316 −0.1633
−0.1582 −0.1633 0.8214

⎤⎦
and a minimal HPD solution

XS = 1

2
[I − (I − 4ATA)

1
2 ] ≈

⎡⎣0.1735 0.1684 0.1582
0.1684 0.1684 0.1633
0.1582 0.1633 0.1786

⎤⎦ .

After direct computations, we have

M ≈
⎡⎣0.1178 0.1128 0.1026

0.1128 0.1128 0.1077
0.1026 0.1077 0.1229

⎤⎦ and N ≈
⎡⎣ 0.9100 −0.0850 −0.0750

−0.0850 0.9150 −0.0800
−0.0750 −0.0800 0.9050

⎤⎦ .

It is easy to verify that XL and XS are in [M, N ]. Hence, all HPD solutions of Eq. (2.9) are in
[M, N ].

The next theorem describes a sufficient condition under which Eq. (1.1) has a unique HPD
solution.

Theorem 2.2. If (AQ−1A∗) s
t �Q, A∗X−tA�Q−(AQ−1A∗) s

t for all X∈[(AQ−1A∗) 1
t , Q

1
s ],

and

p = t‖A‖2
F

sλ
s+t
t

n (AQ−1A∗)
< 1,

then Eq. (1.1) has a unique HPD solution.

Proof. We consider the map F(X) = (Q − A∗X−tA)
1
s and let

X ∈ � =
{
X|(AQ−1A∗)

1
t � X � Q

1
s

}
.

Obviously, � is a convex, closed and bounded set and F(X) is continuous on �. If A∗X−tA �
Q − (AQ−1A∗) s

t for all X ∈ �, then we have

Q
1
s � (Q − A∗X−tA)

1
s � (Q − Q + (AQ−1A∗)

s
t )

1
s = (AQ−1A∗)

1
t ,

i.e.

(AQ−1A∗)
1
t � F(X) � Q

1
s .

Hence F(�) ⊆ �.
For arbitrary X, Y ∈ �, we have

A∗X−tA � Q − (AQ−1A∗)
s
t and A∗Y−tA � Q − (AQ−1A∗)

s
t ,
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i.e.
Q − A∗X−tA � (AQ−1A∗)

s
t and Q − A∗Y−tA � (AQ−1A∗)

s
t .

Hence

F(X) = (Q − A∗X−tA)
1
s � (AQ−1A∗)

1
t � λ

1
t
n (AQ−1A∗)I, (2.10)

F(Y ) = (Q − A∗Y−tA)
1
s � (AQ−1A∗)

1
t � λ

1
t
n (AQ−1A∗)I. (2.11)

From (2.10) and (2.11) it follows that

‖F(X)s − F(Y )s‖F =
∥∥∥∥∥

s−1∑
i=0

F(X)i(F (X) − F(Y ))F (Y )s−1−i

∥∥∥∥∥
F

=
∥∥∥∥∥vec

[
s−1∑
i=0

F(X)i(F (X) − F(Y ))F (Y )s−1−i

]∥∥∥∥∥
=

∥∥∥∥∥
s−1∑
i=0

vec[F(X)i(F (X) − F(Y ))F (Y )s−1−i]
∥∥∥∥∥

=
∥∥∥∥∥

s−1∑
i=0

(F (Y )s−1−i ⊗ F(X)i)vec(F (X) − F(Y ))

∥∥∥∥∥
�

s−1∑
i=0

(λ
s−1−i

t
n (AQ−1A∗)λ

i
t
n(AQ−1A∗))‖vec(F (X) − F(Y ))‖

= sλ
s−1

t
n (AQ−1A∗)‖F(X) − F(Y )‖F . (2.12)

According to the definition of the map F , we have
F(X)s − F(Y )s = (Q − A∗X−tA) − (Q − A∗Y−tA) = A∗(Y−t − X−t )A. (2.13)

Combining (2.12) and (2.13), we have

‖F(X) − F(Y )‖F � 1

sλ
s−1

t
n (AQ−1A∗)

‖F(X)s − F(Y )s‖F

= 1

sλ
s−1

t
n (AQ−1A∗)

‖A∗(Y−t − X−t )A‖F

�
‖A‖2

F

sλ
s−1

t
n (AQ−1A∗)

‖Y−t − X−t‖F

= ‖A‖2
F

sλ
s−1

t
n (AQ−1A∗)

∥∥∥∥∥
t∑

i=1

Y−(t+1)+i (X − Y )X−i

∥∥∥∥∥
F

= ‖A‖2
F

sλ
s−1

t
n (AQ−1A∗)

∥∥∥∥∥
t∑

i=1

(X−i ⊗ Y−(t+1)+i )vec(X − Y )

∥∥∥∥∥
�

‖A‖2
F

sλ
s−1

t
n (AQ−1A∗)

t∑
i=1

‖X−i ⊗ Y−(t+1)+i‖‖X − Y‖F .
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Since X, Y ∈ �, then we have

X−1 � (AQ−1A∗)−
1
t � λ

− 1
t

n (AQ−1A∗)I = 1

λ
1
t
n (AQ−1A∗)

I,

Y−1 � (AQ−1A∗)−
1
t � λ

− 1
t

n (AQ−1A∗)I = 1

λ
1
t
n (AQ−1A∗)

I.

Hence

‖F(X) − F(Y )‖F �
‖A‖2

F

sλ
s−1

t
n (AQ−1A∗)

t∑
i=1

‖X−i ⊗ Y−(t+1)+i‖‖X − Y‖F

�
‖A‖2

F

sλ
s−1

t
n (AQ−1A∗)

t

λ
t+1
t

n (AQ−1A∗)
‖X − Y‖F

= t‖A‖2
F

sλ
s+t
t

n (AQ−1A∗)
‖X − Y‖F

= p‖X − Y‖F .

Since p < 1, we know that the map F(X) is a contraction map in �. By Banach’s fixed point
theorem, the map F(X) has a unique fixed point in � and this shows that Eq. (1.1) has a unique

HPD solution in [(AQ−1A∗) 1
t , Q

1
s ]. Noting that Lemma 2.1, we know that Eq. (1.1) has a unique

HPD solution. The theorem is proved. �

3. The case which satisfies λ1(A
∗A)� s

s+t

(
t

s+t

) t
s
λ

t
s +1
n (Q)

In this section, we first use the similar method mentioned in Liu and Gao [16] to derive
a theorem for the existence of an HPD solution of Eq. (1.1) under the condition λ1(A

∗A) <

s
s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q). We continue to investigate HPD solutions of Eq. (1.1) when the condition

doesn’t satisfied. We get some new sufficient conditions and necessary conditions for the existence
of HPD solutions of Eq. (1.1). The new results are illustrated by a numerical example.

We assume that A and Q satisfies

λ1(A
∗A) <

s

s + t
xt∗λn(Q), (3.1)

where x∗ =
(

t
s+t

λn(Q)
) 1

s
.

From (3.1) we get

λn(A
∗A) <

s

s + t
xt∗∗λ1(Q), (3.2)

where x∗∗ =
(

t
s+t

λ1(Q)
) 1

s
.

Lemma 3.1. Let

f (x) = xt (θ − xs), θ > 0, x � 0.
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Then

(i) f is increasing on

[
0,

(
t

s+t
θ
) 1

s

]
and decreasing on

[(
t

s+t
θ
) 1

s
, +∞

)
;

(ii) fmax = f

((
t

s+t
θ
) 1

s

)
= s

s+t

(
t

s+t

) t
s
θ

t
s
+1.

Consider the following equations

xs+t − λn(Q)xt + λ1(A
∗A) = 0, (3.3)

xs+t − λ1(Q)xt + λn(A
∗A) = 0. (3.4)

By (3.1) and Lemma 3.1, we know that Eq. (3.3) has two positive real roots α2 < β1. We also
get that Eq. (3.4) has two positive real roots α1 < β2 from (3.2) and Lemma 3.1. It is easy to
prove that

0 < α1 � α2 < x∗ < β1 � β2.

We define matrix sets as follows:

ϕ1 = {X = X∗|α1I � X � α2I },
ϕ2 = {X = X∗|β1I � X � β2I },
ϕ3 = {X = X∗|α2I � X � β1I }.

Theorem 3.1. Suppose that A and Q satisfy (3.1), i.e.

λ1(A
∗A) <

s

s + t

(
t

s + t

) t
s

λ
t
s
+1

n (Q).

Then

(i) Eq. (1.1) has an HPD solution in ϕ1;
(ii) Eq. (1.1) has a unique HPD solution in ϕ2;

(iii) Eq. (1.1) has no HPD solution in ϕ3.

Proof. The proof is similar to that of Theorems 2.1 and 2.2 of Liu and Gao [16] and is omitted
here.

Now we begin to discuss the case which does not satisfy (3.1).

Theorem 3.2. If λ1(A
∗A) = s

s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q), then Eq. (1.1) has an HPD solution.

Proof. If λn(A
∗A) < λ1(A

∗A) = s
s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q), then Eq. (3.3) has a unique positive real

root α = x∗ = β1, and Eq. (3.4) has two positive real roots α1 < β2. It is easy to prove that

0 < α1 � α2 = x∗ = β1 � β2.

Let

ϕ4 = {X = X∗|α1I � X � α2I },
ϕ5 = {X = X∗|β1I � X � β2I }.
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Note that ϕ4 and ϕ5 are bounded closed convex sets. Consider the map G(X) = (A(Q −
Xs)−1A∗) 1

t which is continuous on ϕ4.
For any X ∈ ϕ4, we have

λn(G(X)) = λn((A(Q − Xs)−1A∗)
1
t )

� λ
1
t
n (A(Q − αs

1I )−1A∗)

�
[

λn(AA∗)
λ1(Q) − αs

1

] 1
t

= α1

and

λ1(G(X)) = λ1((A(Q − Xs)−1A∗)
1
t )

� λ
1
t

1 (A(Q − αs
2I )−1A∗)

�
[

λ1(AA∗)
λn(Q) − αs

2

] 1
t

= α2.

Hence G(X) maps ϕ4 into ϕ4, by Brouwer’s fixed point theorem, we know that G(X) has a
fixed point on ϕ4 which is an HPD solution of Eq. (1.1) on ϕ4.

If λn(A
∗A) = λ1(A

∗A) = s
s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q), we will consider the following cases.

If λn(Q) < λ1(Q), we can obtain that Eq. (1.1) has an HPD solution by the method mentioned
above.

On the other hand, if λn(Q) = λ1(Q), we have

0 < α1 = α2 = x∗ = β1 = β2.

Thus, there exist positive real numbers a, q such that

A∗A = AA∗ = a2I, Q = qI.

Then the matrix X = x∗I = (q t
s+t

)
1
s I is an HPD solution of Eq. (1.1). In fact, since x∗ =

(q t
s+t

)
1
s is a solution of Eq. (3.3), i.e.(
q

t

s + t

) s+t
s − q

(
q

t

s + t

) t
s + a2 = 0, (3.5)

which implies that

a2 = q1+ t
s

(
t

s + t

) t
s
(

s

s + t

)
. (3.6)

And

Xs + A∗X−tA = (x∗I )s + A∗(x∗I )−tA

= q
t

s + t
I + A∗

(
q

t

s + t

)− t
s

A

= q
t

s + t
I +

(
q

t

s + t

)− t
s

a2I. (3.7)
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Combining (3.6) and (3.7), we have

Xs + A∗X−tA = q
t

s + t
I +

(
q

t

s + t

)− t
s

q1+ t
s

(
t

s + t

) t
s
(

s

s + t

)
I

= qI

= Q,

i.e. X = x∗I is an HPD solution of Eq. (1.1).

In a word, if λ1(A
∗A) = s

s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q), Eq. (1.1) has an HPD solution. �

According to Theorems 3.1 and 3.2, we have the following result.

Corollary 3.1. If λ1(A
∗A) � s

s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q), then Eq. (1.1) has an HPD solution.

Theorem 3.3. If Eq. (1.1) has an HPD solution, then λn(A
∗A) � s

s+t

(
t

s+t

) t
s
λ

t
s
+1

1 (Q).

Proof. Let X be the HPD solution of Eq. (1.1), i.e.

Xs + A∗X−tA = Q.

From

λs
1(X) = λ1(X

s)

= λ1(Q − A∗X−tA)

� λ1(Q) − λn(A
∗X−tA)

� λ1(Q) − λn(A
∗A)

λt
1(X)

and Lemma 3.1, we have

λn(A
∗A) � λ1(Q)λt

1(X) − λs+t
1 (X)

= λt
1(X)(λ1(Q) − λs

1(X))

� s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q).

The theorem is proved. �

Theorem 3.4. Suppose that λ1(A
∗A) � s

s+t

(
t

s+t

) t
s
λ

t
s
+1

n (Q) and X is an HPD solution of Eq.

(1.1), then

α1 � λn(X) � α2 or β1 � λn(X) � β2,

α1 � λ1(X) � α2 or β1 � λ1(X) � β2.

Proof. The proof is similar to that of Theorem 2 of Zhang [21] and is omitted here. �
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Remark 3.1. From Theorem 3.4 it follows that when the matrices A and Q satisfy

λ1(A
∗A) � s

s + t

(
t

s + t

) t
s

λ
t
s
+1

n (Q),

a necessary condition for existence an HPD solution X of Eq. (1.1) is that X satisfies

X ∈ [α1I, α2I ] ∪ [β1I, β2I ] ∪ {X| α1 � λn(X) � α2, β1 � λ1(X) � β2}.

The following example confirms the correctness of Theorems 3.2–3.4.

Example 3.1. Consider the matrix equation

X + A∗X−2A = Q, (3.12)

with

A =
[

2 0
0 1

]
and Q =

[
5 0
0 3

]
.

It is easy to obtain that the matrices A and Q satisfy the condition of Theorem 3.2, i.e.

λ1(A
∗A) = 4 = 1

3

(
2

3

)2

λ3
n(Q).

By solving the Eqs. (3.3) and (3.4), we have

α1 = 0.4698, α2 = 2, β1 = 2 and β2 = 4.9593.

In fact, Eq. (3.12) exactly has the following four different HPD solutions

X1 =
[

4.8284 0
0 2.8794

]
, X2 =

[
4.8284 0

0 0.6527

]
and

X3 =
[

1.0000 0
0 2.8794

]
, X4 =

[
1.0000 0

0 0.6527

]
.

Evidently, these four solutions satisfy

X1 ∈ [β1I, β2I ], X4 ∈ [α1I, α2I ]
and

X2, X3 ∈ {X|0.4696 � λn(X) � 2, 2 � λ1(X) � 4.9593}.
And we also obtain that

λn(A
∗A) = 1 <

500

27
= 1

3

(
2

3

)2

λ3
1(Q),

i.e. the matrices A and Q satisfy the conclusion of Theorem 3.3.

4. The case with AA∗ = A∗A and AQ = QA

In this section, we will investigate the existence of HPD solutions of Eq. (1.1) when AA∗ =
A∗A and AQ = QA. We first give a property of commuting matrices. Then we prove a necessary
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condition for the existence of HPD solutions of Eq. (1.1). In the end, a necessary and sufficient
condition for the existence of a Hermitian positive definite solution is given.

Lemma 4.1 [20, Theorem 3.2]. Let B and C be square matrices of the same size. If BC = CB,

then there exists a unitary matrix W such that W ∗BW and W ∗CW are both upper-triangular.

Lemma 4.2. Let A be an n × n nonsingular matrix and Q be an n × n Hermitian matrix. If
AQ = QA and AA∗ = A∗A, then there exists a unitary matrix U and diagonal matrices T , T̂

such that

U∗AU = T and U∗QU = T̂ .

Proof. According to Lemma 4.1, if AQ = QA, then there exists a unitary matrix U such that

U∗AU = T and U∗QU = T̂ ,

where T and T̂ are upper-triangular matrices.
Since Q is an Hermitian matrix, i.e. Q = Q∗, we have

T̂ = U∗QU = U∗Q∗U = T̂ ∗.
Hence, T̂ is a diagonal matrix.

Since A is a nonsingular matrix and A∗A = AA∗, then we have

UT ∗U∗UT U∗ = A∗A = AA∗ = UT U∗UT ∗U∗,
i.e.

T ∗T = T T ∗.
Now let

T =

⎡⎢⎢⎢⎣
t11 t12 · · · t1n

0 t22 · · · t2n

...
...

. . .
...

0 0 · · · tnn

⎤⎥⎥⎥⎦ , then T ∗ =

⎡⎢⎢⎢⎣
t̄11 0 · · · 0
t̄12 t̄22 · · · 0
...

...
. . .

...

t̄1n t̄2n · · · t̄nn

⎤⎥⎥⎥⎦ .

Since T ∗T = T T ∗, then using that T ∗T and T T ∗ have the same entries of diagonal line, we
get

tij = 0 (i /= j).

Hence, T is also a diagonal matrix. �

Theorem 4.1. Let AQ = QA and AA∗ = A∗A, if Eq. (1.1) has an HPD solution X, then

λ1(A
∗A) � s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q).

Proof. From Lemma 4.2, we obtain that if AQ = QA and A∗A = AA∗, there exists a unitary
matrix U = (u1, u2, . . . , un) such that

U∗AU = T and U∗QU = T̂ , (4.1)

where T = diag(t1, t2, . . . , tn) and T̂ = diag(t̂1, t̂2, . . . , t̂n).
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From (4.1) it follows that

Aui = tiui and Qui = t̂iui , i = 1, 2, . . . , n. (4.2)

That is to say, ti and t̂i are the eigenvalue of A and Q respectively, and their corresponding
eigenvectors are ui .

Multiplying right side of Eq. (1.1) by ui and left side by u∗
i , we have

u∗
i X

sui + |ti |2u∗
i X

−t ui = t̂i , i = 1, 2, . . . , n. (4.3)

Since X is an HPD solution of Eq. (1.1), then there exists a unitary matrix V such that

X = V ∗�V, (4.4)

where � = diag(σ1, σ2, . . . , σn).
Let Z = V ui = (z1, z2, . . . , zn)

T, then we have Z∗Z = 1.
Combining (4.3) and (4.4), we have

Z∗�sZ + |ti |2Z∗�−tZ = t̂iZ
∗Z, i = 1, 2, . . . , n

i.e.

|ti |2 = Z∗(t̂iI − �s)Z

Z∗�−tZ
=

∑n
j=1 |zj |2(t̂i − σ s

j )∑n
j=1 |zj |2σ−t

j

, i = 1, 2, . . . , n.

Without loss of generality, let t1 = ρ(A). Since A∗A = AA∗, then

λ1(A
∗A) = |t1|2 =

∑n
j=1 |zj |2(t̂1 − σ s

j )∑n
j=1 |zj |2σ−t

j

. (4.5)

From Lemmas 2.1 and 3.1, we have

(t̂1 − σ s
j )σ t

j � s

s + t

(
t

s + t

) t
s

(t̂1)
t
s
+1

� s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q).

Then we have

n∑
j=1

|zj |2
⎡⎢⎣ (t̂1 − σ s

j )σ t
j − s

s+t

(
t

s+t

) t
s
λ

t
s
+1

1 (Q)

σ t
j

⎤⎥⎦ � 0,

i.e.
n∑

j=1

|zj |2
[
(t̂1 − σ s

j ) − s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q)σ−t
j

]
� 0,

which implies

n∑
j=1

|zj |2(t̂1 − σ s
j ) � s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q)

n∑
j=1

|zj |2σ−t
j ,
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i.e. ∑n
j=1 |zj |2(t̂1 − σ s

j )∑n
j=1 |zj |2σ−t

j

� s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q). (4.6)

Combining (4.5) and (4.6), we have

λ1(A
∗A) � s

s + t

(
t

s + t

) t
s

λ
t
s
+1

1 (Q). �

Example 4.1. Consider the matrix equation (3.12). It is easy to obtain that A and Q satisfy the
conditions of Theorem 4.1. Hence

λ1(A
∗A) = 4 <

500

27
= 1

3

(
2

3

)2

λ3
1(Q).

According to Corollary 3.1 and Theorem 4.1, we have the following result.

Corollary 4.1. Let A∗A = AA∗ and Q = bI (b > 0). Then Eq. (1.1) has an HPD solution if
and only if

λ1(A
∗A) � s

s + t

(
t

s + t

) t
s

b
t
s
+1.

Remark 4.1. Theorem 11 of Engwerda [5] and Theorem 1 of Zhang [21] are special case of
Corollary 4.1.
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