

Modifications on Translation Initiation

Sarah F. Mitchell¹ and Roy Parker^{1,2,*}

¹Department of Biochemistry and Chemistry, University of Colorado, Boulder, CO 80309, USA ²Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA *Correspondence: roy.parker@colorado.edu http://dx.doi.org/10.1016/j.cell.2015.10.056

Two studies by Meyer et al. and Wang et al. demonstrate a role for m⁶A modification of mRNA in stimulating translation initiation. These findings add to the growing number of diverse mechanisms for translation initiation in eukaryotes.

The control of translation initiation is a critical aspect of modulating protein production, particularly when rapid responses to extracellular cues are required, such as during neuronal stimulation or stress conditions (Sonenberg and Hinnebusch, 2007). Translation initiation requires the delivery of the small 40S ribosomal subunit to the mRNA. In eukaryotes, this is primarily achieved in a mechanism that begins with binding of the 5' mRNA cap by the eIF4F complex, which recruits the 40S subunit pre-bound to a multifactor complex, including eIF3, eIF2, and the initiator tRNA (Figure 1A). The ribosome then scans along the 5' UTR to the AUG start codon, followed by joining of the large ribosomal subunit, producing a translation competent complex. In a second mechanism, specific mRNA structures referred to as internal ribosome entry sites (IRES) can recruit the 40S subunit either by binding to one of the initiation factors, which then recruits the 40S subunit, or by direct interaction with the 40S subunit, as in the case of CrPV IRES (Figure 1B) (Sonenberg and Hinnebusch, 2007). Two papers in this issue of Cell (Meyer et al., 2015; Wang et al., 2015) and a third study (Zhou et al., 2015) now argue that m⁶A modifications in mRNA can promote translation initiation and suggest two possible mechanisms by which such RNA modifications can lead to ribosome recruitment (Figures 1C and 1D).

Convincing evidence that m⁶A modifications can stimulate translation comes from the observations that uncapped m⁶A-containing mRNAs are much more efficiently translated in cell-free extracts than unmodified mRNAs, and m⁶A-modified mRNAs assemble translation initiation complexes in reconstituted systems in the absence of the elF4F complex, unlike unmodified mRNAs (Meyer et al., 2015). Strikingly, a single m⁶A in the 5' UTR is sufficient to boost cap-independent translation both in extracts and when mRNAs are introduced into cells by transfection (Meyer et al., 2015; Zhou et al., 2015). Evidence that m⁶A modifications promote translation in vivo is that depletion of the METTL3 m⁶A methyltransferase reduces ribosome occupancy for mRNAs with 5' UTR m⁶A modification sites (Meyer et al., 2015), and on mRNAs that are bound by YTHDF1, an m⁶A-binding protein (Wang et al., 2015). Moreover, for the Hsp70 mRNA, the extent of m⁶A modification corresponds to the rate of protein production and polysome occupancy during heat shock (Meyer et al., 2015; Zhou et al., 2015). Finally, transfected mRNAs with a cap unable to stimulate translation are effectively translated under stress conditions if they contain a 5' UTR m⁶A modification (Zhou et al., 2015).

Meyer et al. (2015) provide three observations that m⁶A stimulates cap-independent translation through interactions with eIF3, thereby leading to ribosome recruitment (Figure 1C). First, in a reconstituted system, eIF3 preferentially cross-links to RNA with m⁶A modifications. Second, in vivo, eIF3-binding sites defined by cross-linking significantly overlap with m⁶A modification sites in 5' UTRs. Third, overexpression of the FTO demethylating enzyme reduces the association of 5' UTR m⁶A-modified mRNAs with eIF3. Interestingly, the authors demonstrate that eIF3 prefers to bind m⁶A-modified mRNA when the modification is within the expected GAC sequence context. This may correlate with the observation that m⁶A is not able to stimulate translation in

all 5' UTRs, demonstrating the importance of context (Zhou et al., 2015). However, whether this observation is due to differences in eIF3 interactions has not been determined.

In contrast, several observations lead Wang et al. (2015) to suggest that m⁶A modifications in the 3' UTR, and possibly the coding region, may enhance translation by binding the C-terminal domain of the YTHDF1 m⁶A-binding protein, which then recruits the translation initiation complex through its N-terminal domain (Figure 1D). First, knockdown of YTHDF1 leads to reduced ribosome occupancy on mRNAs bound by YTHDF1. Second, tethering the N-terminal domain of YTHDF1 to an mRNA leads to some increase in translation. Finally, YTHDF1 co-purifies with a large number of proteins, including eIF3 in a RNase-resistant manner, suggesting that the interaction with eIF3 allows YTHDF1 to promote translation of m⁶A modified mRNA (Wang et al., 2015). Interestingly, Meyer et al. (2015) do not see changes in translation profiles in YTHDF1 knockdown cells when examining 5' UTR, 3' UTR, or all m⁶A-modified mRNAs, suggesting that YTHDF1 effect on translation would be limited to a subset of m⁶A-modified mRNAs.

A number of questions remain. Do these two proposed mechanisms for m⁶A stimulation of translation cooperate or compete in different contexts? How does the growing number of m⁶A-binding proteins (YTHDF1, YTHDF2, eIF3, etc.) recognize specific binding sites? eIF3 interacts preferentially with m⁶A modifications found in the 5' UTR, but these are a minority of such modifications in the transcriptome. What other protein factors or local mRNA features define an

Figure 1. Mechanisms of Translation Initiation in Eukaryotes

(A) Cap-dependent translation initiation. eIF4F complex binds the 5' cap of mRNA and then recruits the 40S ribosomal subunit pre-bound to a multifactor complex, including eIF3, eIF2, and the initiator tRNA, to start translation initiation.

(B) IRES-stimulated translation initiation. Some mRNAs contain specific IRES structures that recruit the 40S subunit either indirectly by binding to one of the initiation factors.

(C) 5' UTR m⁶A-mediated translation initiation. Translation initiation is stimulated by m⁶A modification of mRNA 5' UTR via direct recruitment of eIF3. (D) YTHDF1-mediated translation initiation. Translation initiation is stimulated by m⁶A modification of the 3' UTR of mRNA through recruitment of eIF3-binding site to prevent binding in other regions of the mRNA? How is the competition between m⁶A-binding factors properly balanced? Finally, since methylation is reversible, like many chromatin modifications, it will be important to determine the mechanisms regulating the rates of methylation and demethylation of specific sites.

A broader point from these papers is that eukaryotic cells contain a growing diversity of mechanisms for translation initiation, which has implications for our understanding of the predicted proteome. In addition to canonical capdependent translation. IRES, and now m⁶A modification-stimulated initiation, other mechanisms exist (Figures 1E and 1F). For example, ribosome shunting involves the translocation of 40S ribosomes from the cap region to internal sites for initiation, which can lead to the use of internal AUGs, and/or the skipping of 5' UTR RNA structures that would otherwise inhibit translation (Figure 1E) (Chappell et al., 2006). A mechanism by which ribosomes might be recruited to mRNAs independent of the cap is suggested by the binding of eIF3 to stem loops in specific 5' UTRs, which can result in either stimulation or inhibition of translation (Lee et al., 2015). Ribosome profiling studies have also identified translation initiation sites at nearcognate start codons, suggesting that the start site, as well as the initiation complex, is malleable (de Klerk and 't Hoen, 2015). A striking example of an unexpected mode of translation is seen in the case of repeat-associated non-AUG (RAN) translation, which occurs at disease-associated CAG repeats (Figure 1F) (Zu et al., 2011). Although the mechanism of RAN translation is not known, a reasonable prediction is that cells use that same non-AUG-dependent mode of translation in some context.

One has to anticipate that cells use additional yet-to-be-discovered mecha-

nisms to recruit ribosomes to mRNAs. For example, is has been suggested that some mRNAs recruit eukaryotic ribosomes by direct base pairing to rRNAs, similar to the bacterial mechanism of initiation in which the Shine-Dalgarno sequence 5' of the start codon base pairs to the small ribosomal subunit (Deforges et al., 2015). Moreover, one speculates that evolution is likely to have chanced upon sequence-specific RNA-binding proteins that interact with eIF3 or other initiation factors to recruit the 40S subunit in a cap-independent manner. Finally, it remains possible that other mRNA base modifications will also stimulate translation initiation in some context.

The growing diversity of translation initiation mechanisms allows the cell to preferentially control the translating population of mRNAs under different conditions. For example, cap-dependent translation is inhibited when the TOR pathway is inactive, such as under nutrient deprivation or stress. However, to survive such conditions, the cell must produce stress-response proteins, which can be done by utilizing cap-independent mechanisms of initiation. Consistent with this view, Meyer et al. (2015) observe that Hsp70 translation is stimulated via m⁶A during heat shock, when cap-dependent translation is inhibited. They also analyze m⁶A modification across the genome under heat and UV stress and find that m⁶A modifications specifically increase in the 5' UTR during stress. The increase in m⁶A 5' UTR modifications during heat shock may be due to nuclear import of YTHDF2 during heat stress, which allows it to compete with the demethylase FTO (Zhou et al., 2015). Importantly, many known variations of translation initiation have been identified under conditions considered non-standard, such as during development or under stress. As shown by Meyer et al. (2015) for m⁶A modifications, these variations of translation initiation may be functional during normal growth conditions but are likely more active during conditions in which inhibition of cap-dependent translation allows alternative mechanisms to be more competitive. Thus, studies of translation mechanisms in non-traditional cellular conditions may reveal an even broader set of translation initiation mechanisms.

YTHDF1, which subsequently recruits the translation initiation complex.

⁽E) Ribosome shunting. Ribosomal RNA base pairs with mRNA leading to the translocation of 40S subunit from the cap region to internal start codons for initiation.

⁽F) Repeat-associated non-AUG (RAN) translation. Translation initiation can occur at disease-associated CAG repeats.

REFERENCES

Chappell, S.A., Dresios, J., Edelman, G.M., and Mauro, V.P. (2006). Proc. Natl. Acad. Sci. USA *103*, 9488–9493.

de Klerk, E., and 't Hoen, P.A. (2015). Trends Genet. 31, 128–139.

Deforges, J., Locker, N., and Sargueil, B. (2015). Biochimie *114*, 48–57.

Lee, A.S.Y., Kranzusch, P.J., and Cate, J.H.D. (2015). Nature 522, 111–114.

Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T.V., Qian, S.-B., and Jaffrey, S.R. (2015). Cell *163*, this issue, 999–1010.

Sonenberg, N., and Hinnebusch, A.G. (2007). Mol. Cell 28, 721–729.

Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). Cell *161*, 1388–1399.

Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S.R., and Qian, S.-B. (2015). Nature *526*, 591–594.

Zu, T., Gibbens, B., Doty, N.S., Gomes-Pereira, M., Huguet, A., Stone, M.D., Margolis, J., Peterson, M., Markowski, T.W., Ingram, M.A.C., et al. (2011). Proc. Natl. Acad. Sci. USA *108*, 260–265.