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a b s t r a c t

A ductile fracture criterion is newly proposed to model fracture behavior of sheet metals for nucleation,
growth and shear coalescence of voids during plastic deformation. In the new ductile fracture criterion,
void nucleation is described as a function of the equivalent plastic strain, void growth is a function of the
stress triaxiality and void coalescence is controlled by the normalized maximal shear stress. The new
ductile fracture criterion is applied to construct a fracture forming limit diagram (FFLD) of a dual phase
steel sheets of DP780 (1.0t). The FFLD is approximated using both the reverse engineering method and
circle grid analysis (CGA) since DP780 fails with slight thickness reduction from the analysis of the frac-
ture surface. Predicted FFLDs are compared to experimental results to validate the performance of the
new criterion in the intermediate stress triaxiality between 1/3 and 2/3. The new criterion is also applied
to construct the fracture locus of Al 2024-T351 (Bao and Wierzbicki, 2004) to validate the performance of
the new criterion in the low and negative stress triaxiality. The fracture locus constructed by the new cri-
terion are close to the experimental data points for all these two materials in a wide stress range from the
uniaxial compression to the balanced biaxial tension. The new ductile fracture criterion is recommended
to be utilized in finite element analysis to predict the onset of ductile fracture of sheet metals.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Forming limit diagrams (FLD) have been widely used to predict
the formability in sheet metal forming processes since FLDs were
proposed by Keeler and Backofen (1963) and Goodwin (1968).
FLDs can be constructed by experiments such as hemispherical
punch-stretch tests and Marciniak cup tests (Marciniak et al.,
1973). These experimental methods, however, require intensive ef-
forts and tremendous time. For more efficient construction of FLDs,
many analytical models were proposed such as Hill’s localized
necking model (Hill, 1952), Swift’s diffuse necking model (Swift,
1952), the Marciniak–Kuczynski model (M–K model) (Marciniak
and Kuczynski, 1967), the Vertex theory (Stören and Rice, 1975;
Zhu et al., 2001), the modified maximum force criterion (MMFC)
(Hora et al., 1996). The analytical models reviewed above are
mainly applied to predict formability of sheet metals based on
necking or thickness reduction. Consequently, failure cannot be
estimated by these models in low or negative stress triaxiality
where there is no or negligible thickness reduction.

Metals and alloys usually fail as the result of nucleation, growth
and coalescence of microscopic voids. Nucleation of voids was
investigated and modeled by Argon et al. (1975), Goods and Brown
ll rights reserved.

: +82 42 350 3210.
(1979) and Gurson (1977). Rice and Tracey (1969) modeled the
growth of a single spherical void in an infinite solid. McClintock
(1968) analytically described the growth of voids with a cylindrical
shape. Coalescence of voids was experimentally investigated by
Weck and Wilkinson (2008) using model materials.

Based on tremendous experimental observation and analytical
studies of nucleation, growth and coalescence of voids, dozens of
ductile fracture criteria were also proposed which could be used
to predict forming limits in low and negative stress triaxiality
(Cockcroft and Latham, 1968; Brozzo et al., 1972; Oh et al., 1979;
Oyane et al., 1980; Clift et al., 1990; Ko et al., 2007). The forming
limits predicted by ductile fracture criteria are named as fracture
forming limit diagrams (FFLD) which present forming limits in
the space of (e2, e1) from the uniaxial compression to the balanced
biaxial tension.

Many research works (Takuda et al., 1999a,b, 2000; Han and
Kim, 2003; Ozturk and Lee, 2004; Liu et al., 2009; Chen et al.,
2010; Lou et al., 2010a,b) have been carried out to verify the appli-
cability of ductile fracture criteria to predict the formability of
sheet metals. However, the stress triaxiality of these applications
is limited to its range between 1/3 and 2/3 which ranges
from the uniaxial tension to the balanced biaxial tension, respec-
tively. Formability in the low and negative stress triaxiality
(�1/3 < g < 1/3) has not been comprehensively studied until a
series of tests were conducted by Bao and Wierzbicki (2004). These
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Nomenclature

e1, e2 two principal strains in plane stress conditions, e1 P e2
�e;�ef equivalent plastic strain and equivalent plastic strain to

fracture
�et0; �ep0;�eb0; �es0 equivalent plastic strain to fracture in the uniaxial

tension, plane strain, balanced biaxial tension and pure
shear conditions, respectively

b strain path, b = de2/de1

r1, r2, r3 three principal stresses, r1 P r2 P r3

s1, s2, s3 three deviatoric principal stresses, s1 P s2 P s3

rm mean or hydrostatic stress, rm = (r1 + r2 + r3)/3

�r or re equivalent stress
smax maximal shear stress
g stress triaxiality, g ¼ rm=�r
h; �h Lode angle and Lode angle parameter
L Lode parameter, L = (2r2 � r1 � r3)/(r1 � r3)
K, e0, n coefficients in the Swift strain hardening model
C1, C2, C3 material constants in the new ductile fracture criterion
Dn, Dg, Dc damage accumulation caused by nucleation, growth

and coalescence of voids, respectively
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tests included upsetting tests, shear tests and tensile tests of Al
2024-T351. The test results provided clues to fracture strain for a
wide range of the stress triaxiality. Since then, shear fracture in
the low and negative stress triaxiality attracted increasing atten-
tion and effort. Bao and Wierzbicki (2004) proposed a fracture lo-
cus with dependence on the stress triaxiality. Bai and Wierzbicki
(2008) developed an asymmetric fracture model in the space of
the equivalent plastic strain to fracture, the stress triaxiality and
the Lode angle parameter. Wierzbicki et al. (2005) evaluated seven
fracture models based on the experimental results of Al 2024-
T351. Xue (2008) incorporated void shearing damage effect in
the Gurson–Tvergaard–Needleman model (Gurson, 1977; Tverg-
aard and Needleman, 1984). Bai and Wierzbicki (2010) trans-
formed the Mohr–Coulomb criterion to construct the fracture
locus in the space of the equivalent plastic strain to fracture, the
stress triaxiality and the Lode angle parameter by combining the
Mohr–Coulomb criterion with a new hardening rule with pressure
and Lode angle dependence. Li et al. (2010) applied the modified
Mohr–Coulomb criterion to predict shear-induced fracture in sheet
metal forming. Ductile fracture criteria developed recently are
based on the assumption that the equivalent plastic strain to
fracture depends on the stress triaxiality and the Lode angle
parameter. Effect of the stress triaxiality was studied extensively
on nucleation and growth of voids (Rice and Tracey, 1969; Brozzo
et al., 1972; Oyane et al., 1980; Gurson, 1977; Tvergaard and
Needleman, 1984). The role of the Lode angle parameter and its
physical mechanisms, however, remain unclear (Li et al., 2011).
Another limitation of ductile fracture criteria proposed above is
that the cut-off value of the stress triaxiality is not correctly mod-
eled which was reported to be important in high velocity impact
simulation (Teng and Wierzbicki, 2006).

In this paper, nucleation, growth and coalescence of voids are
analyzed comprehensively to develop reasonable models to de-
scribe these processes. These models are combined to construct a
new ductile fracture criterion. Parametric study is carried out to
investigate the effect of the normalized maximum shear stress
and the stress triaxialility on the shape of FFLDs. The new criterion
is applied to construct the FFLD of DP780 as well as the fracture lo-
cus of Al 2024-T351 to validate their performance on prediction of
the equivalent plastic strain to fracture in a wide range of stress
states from the uniaxial compression to the balanced biaxial ten-
sion of sheet metals.
2. Development of a new ductile fracture criterion

2.1. Microscopic analysis of ductile fracture

In the microscopic viewpoint, ductile fracture is preceded by se-
vere plastic deformation involving nucleation, growth and coales-
cence of voids in metals and alloys. These three mechanisms will
be carefully analyzed and proper models will be selected and pro-
posed in this section.
2.1.1. Nucleation of voids
Void nucleation initiates at interfaces of inclusions and second

phase particles with plastic deformation. A number of models have
been proposed to explain the mechanism of void nucleation. Nor-
mally these models involve a critical debonding stress between
material matrices and inclusions or second phase particles (Argon
et al., 1975; Goods and Brown, 1979). With these stress-based
nucleation criteria, there is no macroscopic tension force to debond
interfaces of inclusions or second phase particles in upsetting tests
with a stress triaxiality of about �1/3. Moreover, a negative stress
triaxiality suppresses the growth of voids as explained in the fol-
lowing section. Consequently, ductile fracture cannot be estimated
in upsetting tests if nucleation of voids is modeled as a function of
the critical debonding stress, which conflicts with experimental
observation of ductile fracture in upsetting tests with a negative
hydrostatic stress (Bao and Wierzbicki, 2004; Li et al., 2011). Alter-
natively, Gurson (1977) proposed a strain controlled nucleation
model which says that the rate of void nucleation is a function of
the equivalent plastic strain. With a strain-based nucleation model,
voids nucleate when metals deforms plastically at the grain bound-
ary due to existence of the microscopic tensile force though the
macroscopic mean stress is negative. These processes increase the
number and density of voids. With strain-based nucleation models,
the nucleation of voids can be reasonably described in upsetting
tests. From the analysis above, strain-based nucleation models are
more reasonable than stress-based nucleation ones for the macro-
scopic modeling of ductile fracture. Consequently, void nucleation
is modeled as a function of the equivalent plastic strain as below:

Dn ¼ Dnð�eÞ ð1Þ

Here the number of voids nucleated is assumed to be a function the
equivalent plastic strain.
2.1.2. Growth of voids
Void growth is mainly influenced by the mean stress rm accord-

ing the experimental observation (McClintock, 1968; Li et al.,
2011). High mean stress accelerates void growth while negative
mean stress suppresses void growth, thereby delaying fracture
(Hosford and Caddell, 1983). Void growth has been described by
numerous mathematical models such as the Rice–Tracey (Rice
and Tracey, 1969) and the McClintock criteria (McClintock, 1968)
with the influence of the mean stress. Accordingly, the mean stress
is adopted to describe void growth here. The influence of the mean
stress is introduced by the terminology of the non-dimensional
stress triaxiality g defined as the ratio of the mean stress to the
equivalent stress. The equation of the stress triaxiality is further
extended to include a cut-off value of �1/3 for the stress triaxiality
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below which ductile fracture will never occur (Bao and Wierzbicki,
2005). The extended equation then has in a form of

Dg ¼ Dgðh1þ 3giÞ hxi ¼
x when x P 0
0 when x < 0

�
ð2Þ
2.1.3. Coalescence of voids
Coalescence of voids is the final stage of ductile fracture. Mech-

anisms of coalescence are then correlated with the macroscopic
fracture surface. As shown in Fig. 1, two coalescence mechanisms
were reported using model materials (Weck and Wilkinson,
2008): the necking of the ligaments between voids caused by the
highest principal stress; shear-linking up of voids along the direc-
tion of the maximal shear stress. These two mechanisms were also
observed from the SEM fractographies of upsetting tests, shear
tests, tensile tests of smooth and notched round bars (Bao and
Wierzbicki, 2004; Li et al., 2011). The necking of the ligaments be-
tween voids is referred as dimple-dominant fracture while the
linking up of voids is named as shear fracture (Li et al., 2011).
The dimple-dominant fracture, however, was not found in sheet
metals (Ghosh, 1976). Therefore shear fracture is assumed for
sheet metals. A number of models were proposed to describe shear
fracture (McClintock et al., 1966; Ghosh, 1976; Bressan and
Williams, 1983; Xue, 2008; Bai and Wierzbicki, 2010; Li et al.,
2010). Since shear fracture is caused by the maximal shear stress,
the void coalescence is modeled by the maximal shear stress
normalized by the equivalent stress in a form of

Dc ¼ Dc
smax

�r

� �
ð3Þ
2.2. A new ductile fracture criterion

Based on the microscopic analysis of ductile fracture, a new
ductile fracture criterion is proposed with the selected models to
describe mechanisms of nucleation, growth and coalescence of
voids as mentioned above in a form of

2smax

�r

� �C1 h1þ 3gi
2

� �C2

�ef ¼ C3 hxi ¼
x when x P 0
0 when x < 0

�
ð4Þ

which is simply multiplication of the three damage accumulating
models for nucleation, growth and shear coalescence of voids with
the exponents C1 and C2. In this new ductile fracture criterion, the
void nucleation is assumed to be proportional to the equivalent
plastic strain �e, the void growth is represented by a function of
the stress triaxiality as 1 + 3g, and the coalescence of voids is de-
Fig. 1. Two kinds of mechanisms for coalescence of voids: (a) necking of inter-
scribed by the normalized maximal shear stress denoted as
smax=�r. Two exponents C1 and C2 are introduced to both the normal-
ized maximal shear stress term and the stress triaxiality term to
modulate the different effect of nucleation, growth and coalescence
of voids on ductile fracture.

The material constant C3 is equal to the equivalent plastic strain
to fracture �et0 in the uniaxial tension since a proper constant of 2 in
the denominator is selected for the terms of smax=�r and 1 + 3g in
the new model of Eq. (4). This constant could be replaced by 3
for the term of the stress triaxiality as (1 + 3g)/3 such that the
material constant of C3 is equal to the equivalent plastic strain to
fracture �eb0 in the balanced biaxial tension. This was recommended
by Dr. H. Aretz through personal communication. The huge benefit
of the constant of 3 over that of 2 is that the fracture strain can be
readily used from the bulge-test. It is more convenient for the cal-
ibration of material constants due to the fact that necking is less
severe in the balanced biaxial tension than in the uniaxial tension.
Sometimes, fracture in the balanced biaxial tension is observed
even without preceding necking. Tremendous efforts are saved
due to omission of complicated inverse, digital image correlation
(DIC) and hybrid experimental-numerical methods (Bao and
Wierzbicki, 2004; Dunand and Mohr, 2010) to determine the
equivalent plastic strain to fracture in the uniaxial tension.

When the loading path and plastic deformation are not propor-
tional, but localized non-linear, it is better to modify the proposed
model into an integral form like other criteria as below:

1
C3

Z �ef

0

2smax

�r

� �C1 h1þ 3gi
2

� �C2

d�e ¼ Dð�eÞ

hxi ¼
x when x P 0
0 when x < 0

�
ð5Þ

Fracture initiates when the accumulated damage Dð�eÞ reaches to
unity. The integral form above can be easily implemented into
numerical analysis to describe ductile fracture in complex strain
paths. It may be justified that the material constants C1 and C2

should be varied with deformation and should not be constant dur-
ing deformation. However, it might be acceptable to assume that
the material constants are unchangeable for simplicity of evaluation
like other ductile fracture criteria in Appendix.

2.3. Parametric study

Material constants in the new ductile fracture criterion modu-
late the effect of nucleation, growth and shear coalescence of voids
on the plastic strain to fracture. Their effect on FFLDs will be
void ligaments; (b) shear-linking up of voids. [After Weck and Wilkinson.]
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investigated to provide a deep understanding of the new ductile
fracture criterion.

2.3.1. Effect of the material constant C1

The material constant C1 modulates effect of the normalized
maximal shear stress on shear coalescence of voids during plastic
deformation. As C1 becomes large, influence of the maximal shear
stress on ductile fracture increases and the fracture strain is re-
duced. Effects of C1 are presented in the space of the major and
minor strain (e2, e1) in Fig. 2. The material constant C1 simulta-
neously adjusts the ratio of the equivalent plastic strain to fracture
in the uniaxial tension to that both in the pure shear and plane
strain. This ratio increases with the material constant C1. This
makes sense since the normalized maximal shear stress increases
from 1/2 in the uniaxial compression to a maximum in the pure
shear, then decreases to 1/2 in the uniaxial tension, rises again un-
til it reaches another maximum in the plane strain and then return
to 1/2 again in the balanced biaxial tension, as presented in Fig. 3.

2.3.2. Effect of the material constant C2

The material constant C2 modulates effect of the stress triaxial-
ity on growth of voids. As presented in Fig. 3, the normalized max-
imal shear stress is symmetric with respect to b = �0.5 in the
uniaxial tension while the stress triaxiality monotonically in-
creases from �1/3 in the uniaxial compression to 2/3 in the bal-
anced biaxial tension. Without the effect of the stress triaxiality,
the equivalent plastic strain to fracture will be identical for the
same normalized maximal shear stress both in plane strain and
pure shear, as proved in Eq. (4) when C2 = 0. As analyzed in Section
2.1.2, high mean stress accelerates void growth while negative
mean stress suppresses void growth, thereby delaying fracture.
The equivalent plastic strain to fracture is lower at higher stress tri-
axiality than that at the low stress triaxiality even though the nor-
malized maximal shear stress is equal in both plane strain and pure
shear. This effect of the stress triaxiality is correctly modeled by
the new ductile fracture criterion as presented in Fig. 4.

2.3.3. Effect of the material constant C3

The role of the material constant C3 is quite simple compared
with roles of C1 and C2. It just varies the magnitude of FFLDs with
no influence on the shape as presented in Fig. 5. As explained in
Section 2.2, the new ductile fracture criterion is carefully modeled
by adding proper constant values to simplify the form of the new
ductile fracture criterion in the uniaxial tension. The material con-
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stant C3 is endowed a special meaning in the new ductile fracture
criterion: the equivalent plastic strain to fracture in the uniaxial
tension. This special meaning is useful in calculation of material
constants as presented in Eq. (6) in Section 2.4.

2.4. Calculation of material constants

There are three material constants in the new ductile fracture
criterion: C1, C2 and C3. These material constants should be calcu-
lated by at least three experimental data points. The simple tests
to be carried out for sheet metals include the uniaxial tensile test,
the plane strain test, the pure shear test and the hydraulic bulge
test (balanced biaxial tensile test). The new ductile fracture crite-
rion is reduced to a simple equation in each condition. For the uni-
axial tension with smax=�r ¼ 1=2 and g = 1/3, the material constant
C3 is easily obtained as:

C3 ¼ �et0 ð6Þ

In the plane strain condition with smax=�r ¼ g ¼ 1=
ffiffiffi
3
p

, Eq. (4) is re-
duced to a form of

2ffiffiffi
3
p
� �C1 1þ

ffiffiffi
3
p

2

 !C2

�ep0 ¼ C3 ð7Þ
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criterion on the formability prediction in the space of (e2, e1).
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Table 1
Mechanical properties obtained from experiments.

K [MPa] e0 n �et0 �ep0 �eb0

1429 0.002 0.179 0.28 0.21 0.84
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In the balanced biaxial tension with smax=�r ¼ 1=2 and g = 2/3, the
new ductile fracture criterion has a form of

3
2

� �C2

�eb0 ¼ C3 ð8Þ

In the pure shear condition with smax=�r ¼ 1=
ffiffiffi
3
p

and g = 0, the new
ductile fracture criterion has a form of

2ffiffiffi
3
p
� �C1 1

2

� �C2

�es0 ¼ C3 ð9Þ

Any three equations of Eqs. (6)–(9) are sufficient to calculate the
material constants C1, C2 and C3 in the new ductile fracture crite-
rion. These conditions, however, are ideal cases which cannot be
achieved in practical experiments due to necking and other factors.
Moreover, more experimental data points are preferred to construct
a fracture locus with high accuracy. Therefore, an optimization
method is suggested to calculate these material constants.

For the material constant C2, it should be a positive value. That
is because the material constant C2is calculated from Eqs. (7) and
(9) as below:
C2 ¼
logð�es0Þ � logð�ep0Þ

logð1þ
ffiffiffi
3
p
Þ

ð10Þ

From the equation above, a positive value of C2 is guaranteed if
�es0 > �ep0 which is true since the normalized maximal shear stress
is 1=

ffiffiffi
3
p

for both pure shear and plane strain but the lower triaxial-
ity in pure shear raises the equivalent plastic strain to fracture than
that in plane strain tension. The material constant C3 is equal to the
equivalent plastic strain to fracture as presented in Eq. (6).

3. Application to the FFLD prediction of DP780

3.1. Experiments

The material used is an advanced high strength steel sheet of
DP780 whose thickness is 1.0 mm. DP780 is observed to fail with



-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

M
aj

or
 s

tr
ai

n

Using CGA method
 Fracture
 Safe

 Reverse engineering methods

Minor strain

Fig. 7. Comparison of FFLDs from the CGA method with the one from the reverse
engineering method.

3610 Y. Lou et al. / International Journal of Solids and Structures 49 (2012) 3605–3615
unnoticeable necking whose region is narrow compared to lower
strength steels from the SEM image of the fracture surface. Uniaxial
tensile tests were conducted to obtain the true stress–true strain
curve of DP780. Then true stress–true strain relation is interpolated
following the Swift strain hardening curve of �r ¼ Kðe0 þ �eÞn. The
material constants in the Swift model are summarized in Table 1.
Punch-stretch tests were conducted to construct the FFLD experi-
mentally. Circle grids with a diameter of 5 mm were used to calcu-
late the limit strain from the deformation of the circles after tests.
Different sample geometries and lubrication conditions were
employed to generate all possible states of stress and strain
(Kim et al., 2011; Huh et al., 1998) from the uniaxial tension to
the balanced biaxial tension. Strain paths from the uniaxial tension
to the plane strain tension are obtained using arc-shaped speci-
mens, which are specially designed to prevent failure from occur-
ring at the blank holder region and to induce the failure near the
center region. Teflon and Plasticine were used as lubricants for this
set of specimens. Another set of specimens are square plates with
200 mm � 200 mm. Various strain paths are attained using differ-
ent lubrication conditions such as dry (D), Teflon (T), Teflon + Vas-
eline (T + V) and Teflon + Plasticine (T + P). The punch-stretch test
was performed with a universal testing machine (UTM) equipped
with a blank holder frame. The punch forming speed was 20 mm/
min. The specimens of DP780 tested are shown in Fig. 6. It is noted
from the figure that the fracture takes place in the shear direction
through the thickness especially in the biaxial tension states. The
fracture strains are approximated using the CGA method by com-
paring the dimensions of grids etched on specimens before and
after deformation (Kim et al., 2011) as presented in Fig. 7.
3.2. FFLD from the reverse engineering method

The reverse engineering method is normally utilized to measure
fracture strains (Bao and Wierzbicki, 2004; Wierzbicki et al., 2005).
Here this method is also adopted to construct the FFLD of DP780.
The limit dome heights (LDH) are measured from fractured speci-
mens in Fig. 6 and summarized in Table 2. Simulations are carried
out to numerically obtain the evolution of major and minor strains
with respect to the deformation for nine tests. The equivalent
coefficients of friction in numerical analysis are correlated with
experiments using the square-shaped specimens based on the
assumption that the strain states at the fracture initiation point in
simulation are similar to those from experiments as presented in
Fig. 8. Using the correlated coefficients of friction, the evolution of
major and minor strains are obtained from numerical analysis as
Fig. 6. Deformed shapes of specimens of DP
presented in Fig. 9 for the square-shaped specimens lubricated by
T + V. The major and minor strains at fracture are then easily ob-
tained at the fracture stroke or the LDH. With this method, nine
pairs of fracture strains are measured and compared to those using
the CGA method in Fig. 7. Both methods generate close results. This
is because DP780 fails with negligible necking, which can be proved
by the SEM image of the fracture surface for the uniaxial tensile test
specimen as illustrated in Fig. 10. This observation is quite useful
because the fracture strain of this metal can be measured directly
using the technique of CGA since the deformation in a circle grid
is almost homogeneous. Moreover, slant fracture surfaces are ob-
served, which implies that shear fracture takes place. Therefore,
the shear controlled ductile fracture model of Eq. (4) is quite suit-
able to describe the fracture behavior of DP780. From the distribu-
tion of fractured microscopic voids in the center and near the sheet
surface in Fig. 10, the coalescence of voids is closely related with the
direction of the maximum shear stress. This microscopic observa-
tion also validates the applicability of the new model to this
material.

3.3. Comparison of predicted FFLDs to experimental results

Since FFLDs measured show a good coincidence between the re-
sults from CGA and reverse engineering methods, the FFLD from
780 obtained from punch-stretch tests.



Table 2
LDHs measured from fractured specimens of DP780 [unit: mm].

20(TP) 40(TP) 60(TP) 80(TP) 100(TP) 200(D) 200(T) 200(TV) 200(TP)

18.84 25.05 26.85 28.37 27.55 28.28 33.79 35.88 36.60
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the CGA method is utilized for the evaluation of the new criterion.
From the experimental FFLD, the fracture major and minor strains
are approximated in the uniaxial tension, plane strain and bal-
anced biaxial tension conditions. The corresponding von Mises
equivalent plastic strains to fracture are calculated and summa-
rized in Table 1. Material constants C1, C2 and C3 in the new ductile
fracture criterion are calculated with Eqs. (6)–(8) after careful
experiments of the uniaxial, the plane strain and the balanced
biaxial tensile tests as mentioned above. These material constants
are utilized to predict FFLDs with the new ductile fracture crite-
rion. Predicted FFLDs are compared with experimental results in
Fig. 11 for DP780. The comparison clearly demonstrates that FFLDs
constructed by the new criterion are close to the experimental data
points from the uniaxial tension to the balanced biaxial tension.

4. Application to predict the fracture locus of Al 2024-T351

4.1. Experimental results

Bao (2003) carried out fifteen different tests on Al 2024-T351
covering a wide range of the stress triaxiality from �0.3 to 1.0
which provide a schematic clue to the effect of the stress triaxiality
on the equivalent plastic strain to fracture. The equivalent plastic
strains to fracture of these tests were presented with the corre-
sponding stress triaxiality g and the Lode angle parameter �h by
Wierzbicki et al. (2005) and Bai and Wierzbicki (2010) with slight
difference. The stress triaxiality and the Lode angle parameter were
given as the average values predicted by numerical analysis of
experiments since these two parameters were not constant during
the entire deformation. The Lode angle h is calculated by to the def-
inition of the Lode angle parameter as below:

h ¼ p
6
ð1� �hÞ ð11Þ

The principal stresses can be expresses in terms of ðg; h; �rÞ as
follows:

r1 ¼ rm þ s1 ¼ rm þ
2
3

�r cos h ¼ gþ 2
3

cos h

� �
�r ð12Þ

r2 ¼ rm þ s2 ¼ rm þ
2
3

�r cos
2
3
p� h

� �

¼ gþ 2
3

cos
2
3
p� h

� �� �
�r ð13Þ

r3 ¼ rm þ s3 ¼ rm þ
2
3

�r cos
4
3
p� h

� �

¼ gþ 2
3

cos
4
3
p� h

� �� �
�r ð14Þ

Readers are recommended to refer to Bai and Wierzbicki (2010) for
the detailed deriving processes of Eqs. (12)–(14). The normalized
maximal shear stress is obtained in terms of h as below:

smax

�r
¼ r1 � r3

2�r
¼ 1

3
cos h� cos

4
3
p� h

� �� �
ð15Þ

The Lode angle h and the normalized maximal shear stress smax=�r
are then calculated from �h of Bai and Wierzbicki (2010) with Eqs.
(11) and (15) and presented with the corresponding �ef and g in Ta-
ble 3.

4.2. Comparison of predicted fracture loci to experimental results

Material constants in the new ductile fracture criterion are cal-
culated by the optimization method using all experimental data
points in Table 3. The new ductile fracture criterion is applied to
construct the fracture locus of Al 2024-T351 as presented in
Fig. 12 in the space of the stress triaxiality and the equivalent plas-
tic strain to fracture. A constant cut-off value of the stress



Fig. 10. SEM images of fractured surfaces.
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(C1 = 7.95, C2 = �2.71, C3 = 0.28).
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triaxiality is observed at g = �1/3 which is intentionally endowed
in the new criterion as explained in Section 2.1.2. The importance
Table 3
Experimental data points of Bao (2003) for Al 2024-T351. (After Bai and Wierzbicki, 2010

Test # Specimens �ef

1 Smooth round bar, tension 0.4687
2 Round large notched bar, tension 0.2830
3 Round small notched bar, tension 0.1665
4 Flat-grooved, tension 0.2100
5 Cylinder (d0/h0 = 0.5), compression 0.4505
6 Cylinder (d0/h0 = 0.8), compression 0.3800
7 Cylinder (d0/h0 = 1.0), compression 0.3563
8 Cylinder (d0/h0 = 1.5), compression 0.3410
9 Round notched, compression 0.6217
10 Pure shear 0.2107
11 Shear tension 0.2613
12 Plate with a circular hole, tension 0.3099
13 Dog-bone specimen, tension 0.4798
14 Pipe, tension 0.3255
15 Solid square bar, tension 0.3551
of a cut-off value has been confirmed in high velocity impact sim-
ulation (Teng and Wierzbicki, 2006). There are two separate
branches on the fracture locus. One branch is represented by
r3 = 0 which constructs the equivalent plastic strain to fracture
in the intermediate stress triaxiality 1=3 6 g 6 2=3 from the uniax-
ial tension to the balanced biaxial tension. The other one is denoted
as r2 = 0 which expresses the equivalent plastic strain to fracture
in the low and negative stress triaxiality �1=3 < g 6 1=3 from
the uniaxial compression to the uniaxial tension. One additional
branch of plane stress, r1 = 0, is not presented in Fig. 12 since the
stress triaxiality is less than �1/3 below which fracture will never
occur as postulated in the new ductile fracture criterion. The equiv-
alent plastic strain to fracture in the uniaxial tension is higher than
that in the balanced biaxial tension. It is also true that the equiva-
lent plastic strain to fracture in the pure shear is greater than that
in the plane strain tension. This condition is satisfactory to ensure a
positive value of the material constant C2 = 0.22.

Compared with experimental results, the fracture locus con-
structed by the new criterion is close to the experimental data
points except the two experimental points with the test number
of 2 and 3 in Table 3. This is due to coalescence of voids in the uni-
axial tension of notched round bars in the high stress triaxility is
caused by the necking of ligaments between voids which generates
.)

g h �h smax=�r

0.4014 4.1888E�4 0.9992 0.5001
0.6264 4.1888E�4 0.9992 0.5001
0.9274 8.3776E�4 0.9984 0.5002
0.6030 0.4841 0.0754 0.5769
�0.2780 0.9537 �0.8215 0.5248
�0.2339 0.8801 �0.6809 0.5411
�0.2326 0.8793 �0.6794 0.5412
�0.2235 0.8650 �0.6521 0.5440
�0.2476 0.8975 �0.7141 0.5375
0.0124 0.5050 0.0355 0.5773
0.1173 0.3466 0.3381 0.5683
0.3431 0.0178 0.9661 0.5051
0.3570 0.0428 0.9182 0.5119
0.3557 0.0374 0.9286 0.5104
0.3687 4.1888E�4 0.9992 0.5001
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dimple-dominated fracture surfaces rather than shear-linking up
of voids as assumed in the new ductile fracture criterion of Eq.
(4). The development of the new ductile fracture criterion, how-
ever, is based on the assumption of the shear-linking up of voids
as presented in Section 2.1.3. Consequently, the application of
the new ductile fracture is limited to the region where ductile frac-
ture is caused by the shear-linking up of voids. Even though the
boundary between dimple-dominated fracture and shear-linking
up of voids is still not clear, the new ductile fracture criterion
can be successfully applied to predict ductile fracture of sheet met-
als since shear-linking up of voids is the dominant mechanism of
void coalescence in ductile fracture of sheet metals due to the rel-
atively low triaxiality achieved in plane stress conditions.

For the purpose of comparison, material constants of another
eight criteria in Appendix are calibrated using the same optimiza-
tion method with all experimental data points. Fracture loci con-
structed by these ductile fracture criteria are compared to that
predicted by the new criterion as illustrated in Fig. 13. All other cri-
teria except the MMC3 criterion cannot predict the equivalent
plastic strain to fracture in a wide stress state from the uniaxial
compression (g = �1/3) to the balanced biaxial tension (g = 2/3).
For the MMC3 criterion, a similar fracture locus is constructed
compared to the new criterion when the stress triaxiality ranges
between �1/3 to 2/3. The essential difference between the
MMC3 and the new criteria is that the new criterion assumes that
fracture will never take place from the balanced biaxial compres-
sion (g = �2/3) to the uniaxial compression (g = �1/3) while frac-
ture is possible for the MMC3 model in these stress states.

5. Conclusions

A ductile fracture criterion is newly proposed for prediction of
FFLDs with efficient procedure to obtain the material constants
in the criterion. The criterion is constructed with consideration of
damage accumulation induced by nucleation, growth and shear
coalescence of voids. These three processes are described as func-
tions of the equivalent plastic strain, the stress triaxiality, and the
normalized maximal shear stress to be multiplied to represent a
fracture model. The model endows a cut-off value of �1/3 for the
stress triaxiality for appropriate application to ductile materials.
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The new ductile fracture is successfully applied to predict the FFLD
of DP780 with high accuracy from the uniaxial tension to the bal-
anced biaxial tension. The equivalent plastic strain to fracture in
the low and negative triaxiality can also be properly estimated as
validated by the constructed fracture locus of Al 2024-T351 in
the space of ðg; �eÞ. Comparison of the predicted fracture locus to
those constructed by other fracture criteria also demonstrates
the high accuracy of the new ductile fracture criterion. Ductile frac-
ture of sheet metals can be correctly predicted by the new ductile
fracture criterion based on the mechanism of shear-linking up of
voids in a wide stress triaxiality ranging from �1/3 to 2/3.

Appendix A

Forms of ductile fracture criteria used in this study are summa-
rized as follows:

Cockcroft–Latham criterion (Cockcroft and Latham, 1968):Z �ef

0
r1d�e ¼ C4 ðA:1Þ

Rice–Tracey criterion (Rice and Tracey, 1969):Z �ef

0
0:283 exp

3rm

2�r

� �
d�e ¼ C5 ðA:2Þ

Brozzo criterion (Brozzo et al., 1972):Z �ef

0

2r1

3ðr1 � rmÞ
d�e ¼ C6 ðA:3Þ

Oh criterion (Oh et al., 1979):Z �ef

0

r1

�r
d�e ¼ C7 ðA:4Þ

Oyane–Sato criterion (Oyane et al., 1980):Z �ef

0

rm

�r
þ C8

� �
d�e ¼ C9 ðA:5Þ

Clift criterion (Clift et al., 1990):Z �ef

0

�rd�e ¼ C10 ðA:6Þ

Ko–Huh criterion (Ko et al., 2007):Z �ef

0

r1

�r 1þ 3rm

�r

� 	
d�e ¼ C11 hxi ¼

x when x P 0
0 when x < 0

�
ðA:7Þ

Three parameter modified Mohr–Coulomb criterion (MMC3) (Bai
and Wierzbicki, 2010):

�ef ¼
K

C13
C14 þ

ffiffiffi
3
p

2�
ffiffiffi
3
p ð1� C14Þ sec

p�h
6

� �
� 1

� �" #(

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

12

3

s
cos
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6

� �
þ C12 gþ 1

3
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6
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4

3
5
9=
;
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ðA:8Þ
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