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1. Introduction

This paper is concerned with the global regularity of solutions to the 3D incompressible magneto-
hydrodynamical (MHD) equations

ut + u · ∇u = ν�u − ∇p + b · ∇b, x ∈ R3, t > 0, (1.1)

bt + u · ∇b = η�b + b · ∇u, x ∈ R3, t > 0, (1.2)

∇ · u = 0, x ∈ R3, t > 0, (1.3)

∇ · b = 0, x ∈ R3, t > 0, (1.4)
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where u is the fluid velocity, b the magnetic field, p the pressure, ν the viscosity and η the magnetic
diffusivity. Without loss of generality, we set ν = η = 1 in the rest of the paper. The MHD equations
govern the dynamics of the velocity and magnetic fields in electrically conducting fluids such as plas-
mas. (1.1) reflects the conservation of momentum, (1.2) is the induction equation and (1.3) specifies
the conservation of mass. Besides their physical applications, the MHD equations are also mathemat-
ically significant. Fundamental mathematical issues such as the global regularity of their solutions
have generated extensive research and many interesting results have been obtained (see, e.g., [2,7,11,
13,16–19,23,26–28,34–36,38–40,43,45,47–52,55]).

Attention here is focused on the global regularity of solutions to the initial-value problem (IVP)
of (1.1), (1.2), (1.3) and (1.4) with a given initial data

u(x,0) = u0(x), b(x,0) = b0(x), x ∈ R3. (1.5)

It is currently unknown whether solutions of this IVP can develop finite time singularities even if
(u0,b0) is sufficiently smooth. This work presents new regularity criteria under which the regularity
of the solution is preserved for all time. The global regularity issue has been thoroughly investigated
for the 3D Navier–Stokes equations and many important regularity criteria have been established (see,
e.g., [3–6,8–10,12,14,15,20,21,25,29–32,37,41,42,44,46,53,54]). Some of these criteria can be extended
to the 3D MHD equations by making assumptions on both u and b (see, e.g., [7,47]). Realizing the
dominant role played by the velocity field in the regularity issue, He and Xin were able to derive
criteria in terms of the velocity field u alone [27,28]. They showed that, if u satisfies

T∫
0

∥∥∇u(·, t)
∥∥β

α
dt < ∞ with

3

α
+ 2

β
= 2 and 1 < β � 2, (1.6)

then the solution (u,b) is regular on [0, T ]. This assumption was weakened in [51] with Lα-norm
replaced by norms in Besov spaces and further improved by Chen, Miao and Zhang in [17]. As pointed
out in [27], the regularity criteria in terms of the velocity field alone are consistent with the numerical
simulations in [40] and with the observations of space and laboratory plasmas in [24].

This paper presents two new regularity criteria. The first one assumes

T∫
0

∥∥uz(·, t)
∥∥β

α
dt < ∞ with α � 3 and

3

α
+ 2

β
� 1 (1.7)

and the second requires the pressure satisfy

T∫
0

∥∥pz(τ )
∥∥β

α
dτ < ∞ with α � 12

7
and

3

α
+ 2

β
� 7

4
. (1.8)

That is, any solution (u,b) of the 3D MHD equations is regular if the derivative of u in one direction,
say along the z-axis, is bounded in Lβ([0, T ]; Lα) with (α,β) satisfying (1.7) or if the derivative of p in
one direction satisfies (1.8). The proof of the first criterion is accomplished through two stages with
the first controlling the time integrals of ‖∇uz‖2 and ‖∇bz‖2 in terms of the Lβ([0, T ]; Lα)-norm
of uz and the second bounding ‖∇u‖2 and ‖∇b‖2 by the time integrals of ‖∇uz‖2 and ‖∇bz‖2. The
details are presented in the second section. The criterion in terms of pz and its proof are provided in
the third section.

We will use the following elementary inequalities:

‖φ‖γ � C‖φx‖
1
3
λ ‖φy‖

1
3
λ ‖φz‖

1
3
μ, (1.9)
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where the parameters μ, λ and γ satisfy

1 � μ,λ < ∞,
1

μ
+ 2

λ
> 1 and 1 + 3

γ
= 1

μ
+ 2

λ

and

‖φ‖r � C(r)‖φ‖
6−r
2r

2 ‖φx‖
r−2
2r

2 ‖φy‖
r−2
2r

2 ‖φz‖
r−2
2r

2 , 2 � r � 6. (1.10)

These inequalities may be found in [1,22,33]. For the convenience of the readers, the proofs of these
inequalities are provided in Appendix A. Throughout the rest of this paper the L p-norm of a function
f is denoted by ‖ f ‖p , the Hs-norm by ‖ f ‖Hs and the norm in the Sobolev space W s,p by ‖ f ‖W s,p .

2. Criterion in terms of uz

This section establishes the regularity criteria in terms of uz .

Theorem 2.1. Assume (u0,b0) ∈ H3 , ∇ · u0 = 0 and ∇ · b0 = 0. Let (u,b) be the corresponding solution of the
3D MHD equations (1.1), (1.2), (1.3) and (1.4). If u satisfies

M(T ) ≡
T∫

0

∥∥uz(·, t)
∥∥β

α
dt < ∞ with α � 3 and

3

α
+ 2

β
� 1 (2.1)

for some T > 0, then (u,b) can be extended to the time interval [0, T + ε) for some ε > 0.

The proof of this theorem is divided into two major parts. The first part establishes bounds for
‖uz‖2, ‖bz‖2 and the time integrals of ‖∇uz‖2

2 and ‖∇bz‖2
2 while the second controls ‖∇u‖2 and

‖∇b‖2 in terms of the time integrals of ‖∇uz‖2
2 and ‖∇bz‖2

2.

2.1. Bounds for ‖uz‖2 and ‖bz‖2

This subsection bounds ‖uz‖2 and ‖bz‖2 in terms of M in (2.1).

Proposition 2.2. Assume (u0,b0) ∈ H3 , ∇ · u0 = 0 and ∇ · b0 = 0. Let (u,b) be the corresponding solution of
the 3D MHD equations (1.1), (1.2), (1.3) and (1.4). Suppose (2.1) holds. Then, for any t � T ,

∥∥uz(t)
∥∥2

2 + ∥∥bz(t)
∥∥2

2

� Ce(‖u0‖2
2+‖b0‖2

2)eM(t)[(∥∥uz(0)
∥∥2

2 + ∥∥bz(0)
∥∥2

2

) 3
2α−3 + C

(‖u0‖2
2 + ‖b0‖2

2 + M(t)
)] 2α−3

3 (2.2)

and

t∫
0

(∥∥∇uz(τ )
∥∥2

2 + ∥∥∇bz(τ )
∥∥2

2

)
dτ � F

(
M(t)

)
< ∞, (2.3)

where F (M(t)) is an explicit function of M(t).
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Proof. It is easy to see that (u,b) satisfies

∥∥u(t)
∥∥2

2 + ∥∥b(t)
∥∥2

2 + 2

t∫
0

(∥∥∇u(τ )
∥∥2

2 + ∥∥∇b(τ )
∥∥2

2

)
dτ � ‖u0‖2

2 + ‖b0‖2
2. (2.4)

Adding the inner products of uz with ∂z of (1.1) and of bz with ∂z of (1.2), we obtain, after integration
by parts,

1

2

d(‖uz‖2
2 + ‖bz‖2

2)

dt
+ ‖∇uz‖2

2 + ‖∇bz‖2
2

= −
∫ [

(uz · ∇u) · uz − (bz · ∇b) · uz + (uz · ∇b) · bz − (bz · ∇u) · bz
]

dx dy dz

≡ I1 + I2 + I3 + I4.

To bound I1, we integrate by parts and apply Hölder’s inequality to obtain

|I1| =
∣∣∣∣
∫

(uz · ∇uz) · u

∣∣∣∣ � C‖∇uz‖2‖uz‖r‖u‖3α,

where we have omitted dx dy dz in the integral for notational convenience and r satisfies

2 � r � 6,
1

r
+ 1

3α
= 1

2
. (2.5)

Applying the Sobolev inequality

‖uz‖r � C‖uz‖1−3( 1
2 − 1

r )

2 ‖∇uz‖3( 1
2 − 1

r )

2

and bounding ‖u‖3α by (1.9), we find

|I1| � C‖∇uz‖1+3( 1
2 − 1

r )

2 ‖uz‖1−3( 1
2 − 1

r )

2 ‖uz‖
1
3
α‖∇u‖

2
3
2 .

By Young’s inequality,

|I1| � 1

4
‖∇uz‖2

2 + C‖uz‖2
2‖uz‖q

α‖∇u‖2q
2

with

q = 2

3 − 9( 1
2 − 1

r )
= 2

3(1 − 1
α )

. (2.6)

When α � 3, we have 2q � 2 and another application of Young’s inequality implies

|I1| � 1‖∇uz‖2
2 + C‖uz‖2

2

(‖uz‖γ
α + ‖∇u‖2

2

)
,

4



C. Cao, J. Wu / J. Differential Equations 248 (2010) 2263–2274 2267
where

γ ≡ q

1 − q
= 2

1 − 3
α

or
3

α
+ 2

γ
= 1.

We now bound I2. By Hölder’s, Sobolev’s and Young’s inequalities,

|I2| � C‖∇b‖2‖uz‖α‖bz‖ 2α
α−2

� C‖∇b‖2‖uz‖α‖bz‖1− 3
α

2 ‖∇bz‖
3
α
2

� 1

4
‖∇bz‖2

2 + C‖∇b‖
2α

2α−3
2 ‖uz‖

2α
2α−3
α ‖bz‖

2α−6
2α−3
2

� 1

4
‖∇bz‖2

2 + C
(‖∇b‖2

2 + ‖uz‖γ
α

)‖bz‖
2α−6
2α−3
2 ,

where

γ = 2α

α − 3
or

3

α
+ 2

γ
= 1.

I3 can be bounded exactly as I2. To bound I4, we integrate by parts and apply Hölder’s inequality,

I4 = −
∫ [

(bz · ∇u) · bz
] =

∫ [
(bz · ∇bz) · u

]
� ‖∇bz‖2‖bz‖r‖u‖3α,

where 1
r + 1

3α = 1
2 . Following the steps as in the bound of I1, we have

|I4| � 1

4
‖∇bz||22 + C

(‖uz‖γ
α + ‖∇u‖2

2

)‖bz‖2
2.

Combining the estimates for I1, I2, I3 and I4, we find

d(‖uz‖2
2 + ‖bz‖2

2)

dt
+ ‖∇uz‖2

2 + ‖∇bz‖2
2

� C
(‖uz‖γ

α + ‖∇u‖2
2

)(‖uz‖2
2 + ‖bz‖2

2

) + C
(‖∇b‖2

2 + ‖uz‖γ
α

)‖bz‖
2α−6
2α−3
2 . (2.7)

(2.2) and (2.3) then follow from (2.4), (2.7) and Gronwall’s inequality. �
2.2. Bounds for ‖∇u‖2 and ‖∇b‖2

This subsection establishes bounds for ‖∇u‖2 and ‖∇b‖2.

Proposition 2.3. Assume (u0,b0) ∈ H3 , ∇ · u0 = 0 and ∇ · b0 = 0. Let (u,b) be the corresponding solution of
the 3D MHD equations (1.1), (1.2), (1.3) and (1.4). Suppose (2.1) holds. Then, for any t � T ,

∥∥∇u(t)
∥∥2

2 + ∥∥∇b(t)
∥∥2

2 +
t∫

0

(∥∥�u(τ )
∥∥2

2 + ∥∥�b(τ )
∥∥2

2

)
dτ � G

(
M(t)

)
< ∞,

where G(M(t)) denotes an explicit function of M(t).
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Proof. Adding the inner products of (1.1) with �u and of (1.2) with �b and integrating by parts, we
have

1

2

d

dt

(‖∇u‖2
2 + ‖∇b‖2

2

) + ‖�u‖2
2 + ‖�b‖2

2

= −
∫

u · ∇u · �u +
∫

b · ∇b · �u −
∫

u · ∇b · �b +
∫

b · ∇u · �b.

By further integrating by parts, we obtain

−
∫

u · ∇u · �u +
∫

b · ∇b · �u −
∫

u · ∇b · �b +
∫

b · ∇u · �b � ‖∇u‖3
3 + 3‖∇u‖3‖∇b‖2

3.

By (1.10),

‖∇u‖3
3 � C

(‖∇u‖
1
2
2 ‖∇h∇u‖

1
3
2 ‖∇uz‖

1
6
2

)3
,

where ∇h ≡ (∂x, ∂y). By Young’s inequality,

‖∇u‖3
3 � 1

4
‖∇h∇u‖2

2 + C‖∇u‖3
2‖∇uz‖2 � 1

4
‖∇h∇u‖2

2 + C
(‖∇u‖2

2 + ‖∇uz‖2
2

)‖∇u‖2
2.

Similarly,

‖∇u‖3‖∇b‖2
3 � 1

4
‖∇h∇u‖2

2 + 1

2
‖∇h∇b‖2

2 + C
(‖∇u‖2

2 + ‖∇uz‖2
2 + ‖∇bz‖2

2

)‖∇b‖2
2.

Therefore,

d

dt

(‖∇u‖2
2 + ‖∇b‖2

2

) + ‖�u‖2
2 + ‖�b‖2

2 � C
(‖∇u‖2

2 + ‖∇uz‖2
2 + ‖∇bz‖2

2

)(‖∇u‖2
2 + ‖∇b‖2

2

)
.

Gronwall’s inequality coupled with Proposition 2.2 then yields the desired bounds. �
3. Criterion in terms of pz

This section presents the regularity criterion with an assumption on pz .

Theorem 3.1. Assume the initial data (u0,b0) ∈ H1 ∩ L4 , ∇ · u0 = 0 and ∇ · b0 = 0. Let (u,b) be the corre-
sponding solution of the 3D MHD equations (1.1), (1.2), (1.3) and (1.4). If the pressure p associated with the
solution satisfies

T∫
0

∥∥pz(τ )
∥∥β

α
dτ < ∞ with α � 12

7
and

3

α
+ 2

β
� 7

4
(3.1)

for some T > 0, then (u,b) remains regular on [0, T ], namely (u,b) ∈ C([0, T ]; H1 ∩ L4).

Since higher-order Sobolev norms of (u,b) can be controlled by its H1-norm (see e.g. [45]), a spe-
cial consequence of this theorem is that (3.1) yields the global regularity of classical solutions. To
prove this theorem, we establish the L4-bound of (u,b) and the desired regularity then follows from
the standard Serrin type criteria on the 3D MHD equations [48].
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Proposition 3.2. Assume the initial data (u0,b0) ∈ H1 ∩ L4 , ∇ · u0 = 0 and ∇ · b0 = 0. Let (u,b) be the
corresponding solution of the 3D MHD equations (1.1), (1.2), (1.3) and (1.4). If the pressure p satisfies (3.1),
then (u,b) obeys the bound

‖w+‖4
4 + ‖w−‖4

4 +
t∫

0

(∥∥∇|w+|2∥∥2
2 + ∥∥∇|w−|2∥∥2

2

)
dτ

+ 4

t∫
0

∫ (|w+|2|∇w+|2 + |w−|2|∇w−|2)dx dy dz dτ < ∞

for any t � T , where

w± = u ± b.

Proof. We first convert the MHD equations into a symmetric form. Adding and subtracting (1.1) and
(1.2), we find that w+ and w− satisfy

∂t w+ + w− · ∇w+ = �w+ − ∇p, (3.2)

∂t w− + w+ · ∇w− = �w− − ∇p, (3.3)

∇ · w+ = 0, ∇ · w− = 0. (3.4)

Adding the inner products of (3.2) with w+|w+|2 and of (3.3) with w−|w−|2 and integrating by
parts, we find

1

4

d

dt

(‖w+‖4
4 + ‖w−‖4

4

) + 1

2

(∥∥∇|w+|2∥∥2
2 + ∥∥∇|w−|2∥∥2

2

) +
∫ (|w+|2|∇w+|2 + |w−|2|∇w−|2)

= J1 + J2, (3.5)

where

J1 =
∫

pw+ · ∇|w+|2, J2 =
∫

pw− · ∇|w−|2.

By Hölder’s inequality,

J1 � C‖p‖4‖w+‖4
∥∥∇|w+|2∥∥2.

We choose λ such that

1

α
+ 2

λ
= 7

4
or

3λ

2 − λ(1 − 1
α )

= 4.

It then follows from (1.9) that

‖p‖4 � C‖pz‖
1
3
α‖∇p‖

2
3
λ .
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To further bound ‖∇p‖λ , we take the divergence of (3.2) to obtain

�p = −∇ · (w− · ∇w+).

By Hölder’s inequality,

‖∇p‖λ � C‖w−‖ 2λ
2−λ

‖∇w+‖2.

Furthermore, by Sobolev’s inequality,

‖w−‖ 2λ
2−λ

= ∥∥|w−|2∥∥ 1
2
λ

2−λ

� C
∥∥|w−|2∥∥ 3

λ
− 7

4
2

∥∥∇|w−|2∥∥ 9
4 − 3

λ

2 = C‖w−‖
6
λ
− 7

2
4

∥∥∇|w−|2∥∥ 9
4 − 3

λ

2 ,

where we have used the fact that 12
7 � α and thus λ � 12

7 . Therefore,

‖p‖4 � C‖pz‖
1
3
α‖∇w+‖

2
3
2 ‖w−‖

4
λ
− 7

3
4

∥∥∇|w−|2∥∥ 3
2 − 2

λ

2

and thus

J1 � C‖pz‖
1
3
α‖∇w+‖

2
3
2 ‖w−‖

4
λ
− 7

3
4

∥∥∇|w−|2∥∥ 3
2 − 2

λ

2 ‖w+‖4
∥∥∇|w+|2∥∥2.

By Young’s inequality,

J1 � 1

8

∥∥∇|w+|2∥∥2
2 + 1

8

∥∥∇|w−|2∥∥2
2 + C‖pz‖

4λ
3(4−λ)
α ‖∇w+‖

8λ
3(4−λ)

2 ‖w−‖
4(12−7λ)

3(4−λ)

4 ‖w+‖
4λ

4−λ

4 .

Further applications of Young’s inequality imply

‖pz‖
4λ

3(4−λ)
α ‖∇w+‖

8λ
3(4−λ)

2 � ‖pz‖
4λ

12−7λ
α + ‖∇w+‖2

2,

‖w−‖
4(12−7λ)

3(4−λ)

4 ‖w+‖
4λ

4−λ

4 � ‖w+‖4
4 + ‖w−‖

2(12−7λ)
3(2−λ)

4 .

Since 2(12−7λ)
3(2−λ)

< 4, we obtain without loss of generality that

J1 � 1

8

∥∥∇|w+|2∥∥2
2 + 1

8

∥∥∇|w−|2∥∥2
2 + C

(‖pz‖
4λ

12−7λ
α + ‖∇w+‖2

2

)(‖w+‖4
4 + ‖w−‖4

4

)
. (3.6)

Similarly, we have

J2 =
∫

pw− · ∇|w−|2

� 1

8

∥∥∇|w+|2∥∥2
2 + 1

8

∥∥∇|w−|2∥∥2
2 + C

(‖pz‖
4λ

12−7λ
α + ‖∇w−‖2

2

)(‖w+‖4
4 + ‖w−‖4

4

)
. (3.7)

Inserting (3.6) and (3.7) in (3.5) and applying Gronwall’s inequality, we obtain the desired result. �
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Appendix A

This appendix provides the proofs of the inequalities (1.9) and (1.10). For the convenience of future
references, we write these inequalities as lemmas.

Lemma A.1. Let μ, λ and γ be three parameters that satisfy

1 � μ,λ < ∞,
1

μ
+ 2

λ
> 1 and 1 + 3

γ
= 1

μ
+ 2

λ
.

Assume φ ∈ H1(R3), φx, φy ∈ Lλ(R3) and φz ∈ Lμ(R3). Then, there exists a constant C = C(μ,λ) such that

‖φ‖γ � C‖φx‖
1
3
λ ‖φy‖

1
3
λ ‖φz‖

1
3
μ. (A.1)

Especially, when λ = 2, there exists a constant C = C(μ) such that

‖φ‖3μ � C‖φx‖
1
3
2 ‖φy‖

1
3
2 ‖φz‖

1
3
μ, (A.2)

which holds for any φ ∈ H1(R3) and φz ∈ Lμ(R3) with 1 � μ < ∞.

Proof. Clearly,

∣∣φ(x, y, z)
∣∣1+(1− 1

λ
)γ � C

x∫
−∞

∣∣φ(t, y, z)
∣∣(1− 1

λ
)γ ∣∣∂tφ(t, y, z)

∣∣dt, (A.3)

∣∣φ(x, y, z)
∣∣1+(1− 1

λ
)γ � C

y∫
−∞

∣∣φ(x, t, z)
∣∣(1− 1

λ
)γ ∣∣∂tφ(x, t, z)

∣∣dt, (A.4)

∣∣φ(x, y, z)
∣∣1+(1− 1

μ )γ � C

z∫
−∞

∣∣φ(x, y, t)
∣∣(1− 1

μ )γ ∣∣∂tφ(x, y, t)
∣∣dt. (A.5)

Therefore,

∣∣φ(x, y, z)
∣∣γ � C

[ ∞∫
−∞

∣∣φ(x, y, z)
∣∣(1− 1

λ
)γ ∣∣∂xφ(x, y, z)

∣∣dx

] 1
2

×
[ ∞∫

−∞

∣∣φ(x, y, z)
∣∣(1− 1

λ
)γ ∣∣∂yφ(x, y, z)

∣∣dy

] 1
2

×
[ ∞∫

−∞

∣∣φ(x, y, z)
∣∣(1− 1

μ )γ ∣∣∂zφ(x, y, z)
∣∣dz

] 1
2

.

Integrating with respect to x and applying Hölder’s inequality, we have
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∞∫
−∞

∣∣φ(x, y, z)
∣∣γ dx �

[ ∞∫
−∞

∣∣φ(x, y, z)
∣∣(1− 1

λ
)γ ∣∣∂xφ(x, y, z)

∣∣dx

] 1
2

×
[ ∞∫

−∞

∞∫
−∞

∣∣φ(x, y, z)
∣∣(1− 1

λ
)γ ∣∣∂yφ(x, y, z)

∣∣dx dy

] 1
2

×
[ ∞∫

−∞

∞∫
−∞

∣∣φ(x, y, z)
∣∣(1− 1

μ )γ ∣∣∂zφ(x, y, z)
∣∣dx dz

] 1
2

.

Further integration with respect to y and z yields

∫
R3

∣∣φ(x, y, z)
∣∣γ dx dy dz �

[ ∫
R3

∣∣φ(x, y, z)
∣∣(1− 1

λ
)γ ∣∣∂xφ(x, y, z)

∣∣dx dy dz

] 1
2

×
[ ∫

R3

∣∣φ(x, y, z)
∣∣(1− 1

λ
)γ ∣∣∂yφ(x, y, z)

∣∣dx dy dz

] 1
2

×
[ ∫

R3

∣∣φ(x, y, z)
∣∣(1− 1

μ )γ ∣∣∂zφ(x, y, z)
∣∣dx dy dz

] 1
2

.

If Hölder’s inequality is applied again, we have

‖φ‖γ
γ � C‖φ‖(1− 1

λ
)
γ
2

γ ‖∂xφ‖
1
2
λ ‖φ‖(1− 1

λ
)
γ
2

γ ‖∂yφ‖
1
2
λ ‖φ‖(1− 1

μ )
γ
2

γ ‖∂zφ‖
1
2
μ,

which leads to (A.1). �
Lemma A.2. Let 2 � q � 6 and assume φ ∈ H1(R3). Then, there exists a constant C = C(q) such that

‖φ‖q � C‖φ‖
6−q
2q

2 ‖∂xφ‖
q−2
2q

2 ‖∂yφ‖
q−2
2q

2 ‖∂zφ‖
q−2
2q

2 . (A.6)

Proof. This inequality can be obtained by interpolating the trivial inequality ‖φ‖q � ‖φ‖
6−q
2q

2 ‖φ‖
3
2 − 3

q

6
and (A.2) with μ = 2, namely

‖φ‖6 � C‖φx‖
1
3
2 ‖φy‖

1
3
2 ‖φz‖

1
3
2 . �
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