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Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and new therapeutic targets are
urgently needed. One of the hallmarks of cancer is changed pH-homeostasis and potentially pH-sensors may
play an important role in cancer cell behavior. Two-pore potassium channels (K2P) are pH-regulated channels
that conduct a background K+ current, which is involved in setting the plasma membrane potential (Vm).
Some members of the K2P superfamily were reported as crucial players in driving tumor progression. The aim
of this study was to investigate pH-regulated K+ currents in PDAC cells and determine possible effects on their
pathological phenotype. Using a planar high-throughput patch-clamp system (SyncroPatch 384PE)we identified
a pH-regulated K+ current in the PDAC cell line BxPC-3. The current was inhibited by extracellular acidification
and intracellular alkalization. Exposure to a set of different K+ channel inhibitors, and the TREK-1 (K2P2.1)–spe-
cific activator BL1249, TREK-1 was identified as the main component of pH-regulated current. A voltage-sensor
dye (VF2.1.Cl) was used to monitor effects of pH and BL1249 on Vm in more physiological conditions and
TREK-1–mediated current was found as critical player in setting Vm. We assessed a possible role of TREK-1 in
PDAC progression using cell proliferation and migration assays and observed similar trends with attenuated
proliferation/migration rates in acidic (pH b 7.0) and alkaline (pH N 7.4) conditions. Notably, BL1249 inhibited
both PDAC cell proliferation and migration indicating that hyperpolarization of Vm attenuates cancer cell
behavior. TREK-1 may therefore be a promising novel target for PDAC therapy.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords:
K2P channel
K+ channel
BL1249
Pancreatic adenocarcinoma
Proliferation
Migration
1. Introduction

Pancreatic ductal adenocarcinoma (PDAC), the most common
pancreas cancer form, is one of the most fatal cancer forms with N95%
mortality and b5% survival rate in 5 years [6]. Despite intensive research
efforts, the success rate of treatment remains low. One of the reasons for
this severity is the high metastatic potential of this cancer. Ion channels
are crucial players in supporting cell migration and proliferation and
thus also metastasis formation [30,35,46]. In recent years, numerous
reports have linked expression and function of several ion channels to
disease state and progression [5,10,53,60].

One of the increasingly recognized hallmarks of cancer is its dysreg-
ulated pH homeostasis. Due to higher proliferative and glycolytic rates,
cancer cells generate increasing amounts of metabolic acid. This is
accompanied by a change in plasma membrane ion pumps and trans-
porter expression and/or activity that promote H+ efflux, thereby
resulting in high (N7.4) intracellular pH (pHi) and low (~6.7–7.1)
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extracellular pH (pHe) [20,38,57,61]. This changed concentration gradi-
ent is known to be permissive for tumor progression and since this fea-
ture is unique to tumors, pH-sensing proteins may serve as valuable
new targets in cancer therapy [61]. Albeit many proteins contain side
chains with protonation state depending on pH value, only a few can
be considered “true” pH sensors that influence cell behavior.

K+ channels play pivotal roles in cell behavior linked to tumor
progression [35,46,55], including regulation of cell cycle progression
[25], migration [29], apoptosis [28] as well as angiogenesis [39].
Two-pore domain K+ channels (K2P) are of particular interest, as they
conduct outward background K+ currents and are activated throughout
the entire range ofmembrane potentials [36]. Importantly, K2P channels
are sensitive to pH and have hence a direct effect on membrane poten-
tial, ion transport, volume regulation and Ca2+ homeostasis that are im-
portant for the physiological response of cells. In addition, K2P channels
have impact on cell survival and cell migration that is relevant in cancer
progression. For example, Alvarez-Baron and colleagues observed an
upregulation of TASK-2 (K2P5.1) in response to 17 β–estradiol in MCF-
7 and T47D breast cancer cell lines that was linked to cell proliferation
[1]. Voloshyna et al. also reported a pro-proliferative role of a K2P

channel; prostatic carcinoma tissue showed TREK-1 (K2P2.1) expression
that was devoid in adjacent healthy prostatic gland tissue. Moreover,
these workers also found that proliferationwas decreased in PC3 (pros-
tatic cancer cell line) when overexpressed with a dominant-negative
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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version of the channel [60]. Mostwork linking K2P channel to cancer cell
behavior has been done on TASK-3 (K2P9.1). High expression levels
were reported in breast, colon, lung and melanoma cells and channels
affected proliferation, apoptosis, migration and mitochondrial function
[27,29,42,43].

In the pancreas, alkaline-activated TALK-1 and 2, and TASK-2 are
expressed as shown from RNA analysis and in situ hybridization [15].
Moreover, groups of Duprat and Lesage assessed TASK-1 and TREK-2 ex-
pression, respectively, in different human tissues using Northern Blot
analysis. For both channels, most prominent expression was found in
the pancreas [16,33]. It was postulated that in the healthy pancreas,
TASK-2 (K2P5.1) could play a crucial role in setting the electrical driving
force for electrogenic HCO3

– secretion and serve as an efflux pathway for
K+ [21].Williams et al. investigated K2P channel expression in the path-
ological state of the pancreas; using a data-mining approach they
showed that in pancreatic cancer, TWIK-1 is over-expressed and
TASK-1 is under-expressed. To our best knowledge, so far there are no
functional studies investigating a possible role of K2P channels in pan-
creatic cancer progression (or in fact pancreas physiology). Therefore,
the aim of the present investigationwas to characterize the effects of al-
tered pH on K+ currents and membrane potentials, and pharmacologi-
cally characterize the underlying channel. A further aim was to
determine effects of K2P channels on behavior of PDAC cells with the
perspective to identify novel targets for pharmacological treatment.

2. Materials and methods

2.1. Cell culture

All cell lines were grown at 37 °C and 5% CO2/air. Immortalized
human pancreatic ductal epithelium (HPDE) (originally denoted H6c7
cell line) [18,45] cell line was cultured in keratinocyte serum-free
medium supplemented by epidermal growth factor and bovine
pituitary extract (Life Technologies, Inc., USA). BxPC-3 and AsPC-1
(ATCC, Germany) cells were grown in Roswell Park Memorial Institute
medium with stable glutamine (RPMI 1640/Biochrom, Germany) and
Capan-1 cells in Iscove's Modified Dulbecco's Medium (IMDM-1640/
Biochrom, Germany), all were supplemented with 10% v/v (20% for
Capan-1) Fetal Bovine Serum “Gold” (PAA Laboratories GmbH,
Germany) and 1% v/v penicillin and streptomycin. Cells were passaged
every 4–6 days by gentle trypsinization.

2.2. Electrophysiology

All whole-cell recordingswere performed on the SyncroPatch 384PE
(Nanion Technologies/Germany). Data acquisition and analysis was
performed with the proprietary software PatchControl 384 and
DataControl 384, respectively (Nanion Technologies/Germany). All
recordings were carried out using planar borosilicate glass patch
clamp chips [14] in a 384 microtiter plate format with resistances that
corresponded to those of a conventional patch-pipette with 4–6 MΩ.
For recordings, standard intracellular-like solution contained (in mM):
50 KCl, 60 KF, 10 NaCl, 20 EGTA and 10 HEPES (pH 7.2) and standard
extracellular solution contained in mM: 140 NaCl, 4 KCl, 2 CaCl2, 1
MgCl2, 5 Glucose and 10 HEPES (pH 7.4). To adjust pH-values of intra-
and extracellular solutions, buffers with different pKa were added to
the above solution and titrated to final pH values (calculated
osmolalities were comparable). These buffers were used: 5 mM 2-(N-
morpholino)ethanesulfonic acid (MES) was used for pH 6.5 and 6.7;
5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
for pH 7.2 and 7.4 and 5 mM tris(hydroxymethyl) aminomethane
(TRIS) for pH 8.5 and 9.0. For studies of pHe-dependence, 50% of the vol-
ume of each of the 384 wells was replaced by a solution of given proton
concentration that would result in the desired pH value (e.g. solution of
pH 9.0 and pH7.4 result in pH 8.5). For studies on intracellular pH (pHi),
the internal perfusion system was used to completely exchange the
intracellular solution with a solution of desired pHi value. Prior to the
electrophysiological measurements cells were harvested by a gentle
trypsinization. The cell suspensions were kept in the dedicated cell
reservoir at 18 °C and shaken at 200 rpm in 50/50 v/v culture media/
standard external solution. Each cell preparationwas used for no longer
than 3 h. For experiments, 10 μl of cell suspension was added to each
well resulting in a final concentration of 50,000–80,000 cells/ml. To fos-
ter seal formation, high Ca2+ (25 mM) solution was applied externally
and immediately washed out thoroughly. Only cells with a seal resis-
tance Rseal N 500 MΩwere considered for analysis. Current was elicited
using voltage-ramps from Vout = −120 to +60 mV with 1 s duration
and Vhold=−80mV. Data were later corrected for the calculated liquid
junction potential (VLJ).
2.3. Cell proliferation assay

To assess cell proliferation, cells were plated in triplicates on a
96-well plate and incubated overnight in 100 μl of respective culture
medium at 37 °C and 5% CO2/air. Next, cells were exposed to media of
different pH-values for 24 h. pH-value was adjusted using different
buffers MES (25 mM = pH 6.5; 20 mM = pH 6.7), HEPES (25 mM =
pH 7.0; 20 mM = pH 7.2) or TRIS (20 mM = pH 8.2; 25 mM =
pH 8.5). pH was stable during the duration of the experiment.
Additionally, cells were exposed to different concentrations of BL1249
as indicated, or to siRNA for TREK-1 (see Section 2.6 for details). BrdU
incorporation was measured using Cell Proliferation ELISA, BrdU
(chemiluminescent) (Roche Diagnostics A/S, Denmark) following the
manufacturer's instructions.
2.4. Scratch wound healing assay

BxPC-3 cells were plated in Essen Imagelock 96-well plates at
75,000 cells/well and incubated for 24 h at 37° C and 5% CO2/air. Conflu-
ent monolayers were scratched using the Woundmaker (Essen Biosci-
ence, USA), immediately washed two times with phosphate buffered
saline (PBS) and incubated with the respective culture medium. pH-
valueswere adjusted as described in “Cell Proliferation”. Wound closure
was followed for 48 h by time-lapse microscopy using the Incucyte
(Essen Bioscience, USA) imaging system. Measurements were carried
out in triplicates and data are represented as relative wound closure
(%RWD) according to the following relationship %RWD =
100 × w(t) − w(0) / c(t) − w(t). Here, w(t) represents the density of
wounded area at time t and c(t) is the density of cell region at time t.
2.5. Measurements of the membrane potential (Vm)

Cells were seeded on glass coverslips at approximately 30–50%
confluency and incubated at 37° C and 5% CO2/air for at least 12 h. Vm

was determined using voltage dye VF2.1.Cl [41], which was a kind gift
from R. Tsien. VF2.1.Cl in DMSO was added to the media to 200 nM
final concentration and cells were incubated for 20 to 50 min. BxPC-3
cells were subsequently washed with solution (containing in mM: 150
NaCl, 6 KCl, 1.5 CaCl2, 1 MgCl2, 10 HEPES and 10 Glucose) andmounted
in a perfusion chamber. Changes in Vm were measured using TIRF iMIC
microscope (TILL Photonics, Germany). VF2.1.Cl loaded cells were illu-
minated for 100 ms in 2 s intervals at λex = 470 nm using TILL Poly-
chrome monochromator. Fluorescence was collected between 515 and
565 nm on an image-intensifying, charge-coupled device (CCD) camera
(TILL Photonics, Germany) and processed by an image processing
system (TILL Photonics, Germany). LA Live Acquisition software was
used to control monochromator and CCD camera. Changes in Vm are
presented as ΔF/F0 (%), here F0 represents the average value over the
30 first images (=1 min) and ΔF = F0 − F. Data was further corrected
for fluorophore bleaching.
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Fig. 1. BxPC-3 cells exhibit pH-sensitive K+ current. Whole-cell patch clamp recordings of
BxPC-3 cells in absence of [Ca2+]i. Calculated reversal potentials for Cl− (ECl) and K+ (EK)
are indicated with arrows. A: cells insensitive to change in pHe. B: one third of cells were
sensitive to pHe. Traces were recorded after full saturation of pHe-activated current.
Percentage of cells showing pH-sensitive current was determined from each of the 7
measured 384-well chips (Student's t-test; P= 5*10−7). C: pHe-activated current present
in different concentrations of external K+ (K+

ext). Data shown aremean of n experiments
as indicated ±s.e.m.
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2.6. Western blot analysis

Protein samples, obtained from lysates of BxPC-3, Capan-1, HPDE,
and HEK293 cells, were loaded on 10% Novex NuPAGE Bis-Tris precast
polyacrylamide gels (Invitrogen). The HEK293 cells were stably
transfected with human TREK-1 and served as positive control. For
TREK-1 knockdown experiments 25 to 40 nM of the following three
predesignedMission siRNAs from Sigma-Aldrichwere used individually
or pooled: SASI_Hs02_00306750 (A), SASI_Hs01_00209726 (B),
SASI_Hs02_00345240 (C), and Mission siRNA Universal Negative Con-
trol #1. For evaluation of transfection efficiency GAPDH siRNA (Mission
siRNA SASI_Hs01_00140981) was used as positive control. Transfection
was performedwith DharmaFECT 1 Transfection Reagent (Dharmacon)
according to the manufacturer's protocol. For Western blotting, protein
was extracted from BxPC-3 cells 3 to 4 days after transfection. The pro-
tein samples were separated by electrophoresis, and subsequently blot-
ted to Invitrolon PVDF membranes (Invitrogen). The membranes were
blocked overnight at 4 °C in a 1:3 dilution of Blocking Buffer – Fish
(BioFX, SurModics) in Tris-buffered saline (TBS) containing 0.1%
Tween. Membranes were incubated with mouse monoclonal (1:200,
Santa Cruz, sc-398449, TREK-1 (F-6)) primary antibody for 1 to 2 h at
room temperature followed by washing and incubation with HRP-
conjugated secondary antibody (1:2500 DAKO P0447, goat anti-
mouse) for 1 to 2 h at room temperature. GAPDH #14C10 rabbit mono-
clonal antibody (Cell Signaling) was used as loading control. Chemilu-
minescence was detected by use of the EZ-ECL Detection Kit for HRP
(Biological Industries), and imaged on Fusion FX (Vilber Lourmat).
Band density was analyzed with Bio1D software.

2.7. Materials and statistical analysis

All inhibitors tested (except ruthenium red and
tetrahexylammonium chloride) were dissolved in dimethyl sulfoxide
(DMSO) as stock solutions and diluted appropriately to yield the final
test concentrations and DMSO was b0.2% v/v. Ruthenium red and
tetrahexylammonium chloride were dissolved in dH2O. All compounds
were obtained from Sigma-Aldrich (Germany). Results of multiple ex-
periments are presented as means ± s.e.m., and statistical analysis
was carried out by using one-way analysis of variance with Tukey's
post-test, or Student's t-test, as appropriate. P ≤ 0.05 was considered
statistically significant.

3. Results

3.1. BxPC-3 cells exhibit pHe-dependent K
+ current

We assessed the pH-dependence of currents in various PDAC cells
(BxPC-3, Capan-1, AsPC-1) and an immortalized human pancreatic duc-
tal epithelium cell line (HPDE) using a 384-well based planar patch
clamp system (SyncroPatch 384PE/Nanion). BxPC-3 cells showed pH
sensitivity as shown in Fig. 1. Other cells exhibited currents that were
not sensitive to pHe changes (Supplementary Fig. S1). Therefore, we
pursued further high-throughput patch clamp studies on BxPC-3 cells.
The tested BxPC-3 cells clustered into two distinct groups: approxi-
mately two-thirds of the measured cells were devoid of a notable K+

current and reversed at the calculated reversal potential for Cl− (ECl)
(Fig. 1A). The remaining third (32± 2%, percentage calculated from re-
sults of 7 tested chips) exhibited a more hyperpolarized membrane po-
tential (Vm) with reversal potential between ECl and EK indicating a
contribution of several current components (Fig. 1B). Change in extra-
cellular pH (pHe) from pHe 7.4 to pHe 8.5 resulted in an activation of
an outward current only in the group of hyperpolarized cells (Fig. 1B).
The following characterization concentrated only on the pH - sensitive
cells. To verify that pH-sensitive current was mediated by K+, we ex-
posed alkali-activated cells to different concentrations of extracellular
K+ (Kext) (Fig. 1C). As expected, the reversal potential (Erev) changed
to more positive values when Kext was increased, however, Erev did
not get more positive than ECl, indicating basal activity of Cl− channels.

To assess pH-dependence of current in BxPC-3 cells in more detail,
cells were exposed to different pHe-values and current change was
followed using a voltage-ramp protocol (Fig. 2). The pHe-sensitive



Fig. 2. BxPC-3 cells are sensitive to pHe. Whole-cell patch clamp measurements of BxPC-3
cells. A: pHe-dependence of K+ current. Imax represents values measured at pH 9.0. B: pHe-
dependence of reversal potential (Erev). Grey shaded area indicates pH values typical in
tumor environments [61] and dashed line shows value in healthy tissue. C: pHe-sensitive
currents. Data was calculated by subtracting IV curve of pH 6.0 from those IV curves
indicated. All sensitive currents reverse close to EK. D: representative current traces over
time. Current was elicited by a voltage-step protocol from −120 mV to +60 mV in
increments of 20 mV. Data shown are mean of n experiments as indicated ±s.e.m.
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current was fully activated at pHe 9.0 and deactivated below pHe 6.7.
The pK value of the activation was calculated to 7.6 ± 0.1 (Fig. 2A).
Fig. 2B highlights the importance of this pHe-dependent current
activation on the membrane potential; a step from a physiological
pHe 7.4 to values commonly observed in tumors, i.e. pHe 6.7–7.1 [61],
depolarized Vm by ≈5–8 mV. To rule out a possible pH-dependent
Cl− current, we analyzed pHe–sensitive portion of this current (Fig.
2C). All pHe–sensitive currents reversed close to EK, suggesting that
K+ channels were sole mediators of this pH-sensitive current.
Furthermore, pH-sensitive current showed very fast activation kinetics
(Fig. 2D). These characteristics are best described by K+ channels of
the two-pore (K2P) family [36].

Even though K2P subtypes exhibit differences in pHe-dependence,
they are best distinguished by their pHi dependence. Therefore, we ex-
posed the cells to different pHi values and recorded the current re-
sponse in the whole-cell configuration. pHi steps from 7.2 to 8.5 at
physiological pHe resulted in a complete inhibition of K+ current
(EpHi8.5 ≈ ECl) (Fig. 3A). However, a very few cells (b5% of all cells test-
ed) showed an opposite behavior (data not shown). Replacement of in-
tracellular K+ by Rb+was shown to shift the apparent pHi–dependence
of K2P channel as Rb+ stabilizes the selectivity filter gate [48]. Therefore,
internally applied Rb+ can be used to selectively activate K2P channel.
Substitution of 50 mM K+ with Rb+ evoked a large current in BxPC-3
cells (Fig. 3B), indicating the participation of K2P channels. However,
this currentwas not solely composed of K+ as the Rb+-sensitive portion
reversed far from EK. The quaternary ammonium compound,
tetrahexylammonium chloride (ThexA) is a classical open channel
blocker for voltage-gated K+ (Kv) channels and a voltage-dependent
blocker of the inward-rectifier K+ (Kir) channels [8,44]. Moreover,
ThexA was recently identified as voltage-independent inhibitor of
TRESK (K2P18.1), TASK-3 and TREK-1 [48]. ThexA, when applied intra-
cellularly, can hence be used to identify K2P channels. In our experi-
ments, 10 μM ThexA resulted in a pronounced inhibition of both
outward and inward current (Fig. 3C).

To identify the subtype of a K2P channel that mediates pH-sensitive
current, we used a set of pharmacological tools and tested them on
the pH 8.5 activated currents (Fig. 4A). The polycationic dye ruthenium
red (2 μM) (inhibitor of TASK-3) and the antiarrhythmic drug carvedilol
(5 μM) (inhibitor of TASK-1) had no effect on pH-activated current. On
the other hand, application of quinine (50 μM) (inhibits TREK-1 and also
other channels) andgenistein (150 μM)(inhibits TASK-1 and3) resulted
in amoderate but significant reduction in outward current. Intracellular
application of ThexA (10 μM) completely abolished the pH-activated
current; i.e. outward currents reached same values as those measured
at pHe 6.0. Expression of TREK-1 proteins in different pancreatic ductal
cell lines was confirmed using Western blot analysis (Fig. 4B). We
further tested the TREK-1 –specific activator BL1249 (Fig. 4C–E).
BL1249 application at pHe 7.4 elicited an outward current that shifted
Erev towards EK. We estimated the EC50 value of this activation to 2 ±
2 μM (n = 62). BL1249–sensitive current showed same current-over-
time signature as observed for pH-sensitive current (Figs. 2D and 4E).

3.2. pH-regulated current controls Vm

In addition to patch-clamp studies with controlled intracellular
compositions, we investigated the effect of pH on Vm of intact BxPC-3
cells in a more physiological set-up. Here we used bioimaging and a
voltage-sensitive reporter dye VF2.1.Cl developed by R. Tsien [41].
Cells loaded with VF2.1.Cl (Fig. 5A) were exposed to physiological-like
solution of different pH values and changes in Vm were followed using
fluorescence microscopy (Fig. 5B). A change towards acidic pH-values
increased fluorescence signal by 2.7 ± 0.2% (n= 172 cells of N = 3 in-
dependent experiments). Change of ΔF/F0 = 1% translates to ΔVm =
40–50 mV [7,41], indicating depolarization of Vm as expected for this
fluorophore [41]. Likewise, alkalization decreased fluorescence by
3.5 ± 0.1% and thus hyperpolarized Vm. These Vm changes are
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clamp recording at different pH of intracellular test solutions. A: pHi sensitivity at
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experiments as indicated ±s.e.m.

1998 D.R.P. Sauter et al. / Biochimica et Biophysica Acta 1862 (2016) 1994–2003
consistent with closing and opening of K2P channels such as TREK-1, re-
spectively. In the same set-upwe further tested BL1249 at pHe 6.7 for its
effect onVm and results are shown in Fig. 5C. In linewith observations of
patch-clamp measurements, BL1249 hyperpolarized Vm with decrease
in fluorescence of 6.7 ± 0.2% (n = 86 cells of N = 3 independent
experiments). This BL1249-induced change in fluorescence
corresponded approximately to the change in fluorescence detected
by changes in pHe from 6.7 to 8.2. Notably, albeit changes in Vm varied
between BxPC-3 cells, all tested cells exhibited sensitivity to pH and
BL1249. These Vm effects seen with the VF2.1.Cl fluorophore stand in
contrast to results of patch-clamp measures where such sensitivity
was only observed in ≈1/3 of the cells.

We also determined pH effects on Vm in HPDE and Capan-1 cells,
detected with the voltage sensor (Supplementary Fig. S2). In both cell
lines, extracellular acidification resulted in hyperpolarization of Vm

rather than depolarization as observed in BxPC-3 cells. However,
addition of BL1249 induced hyperpolarization in both cell types.

3.3. BL1249 inhibits BxPC-3 cell proliferation and migration

We investigated a possible role of pH-sensitive current in BxPC-3 cell
behavior (Fig. 6). Using BrdU incorporation we estimated cell prolifera-
tion. Cells were cultured at different pH values for 24 h before BrdU in-
corporation was measured (Fig. 6A). Highest proliferation rate was
observed at pH values between pH 7.0–7.4. Alkaline media slightly
attenuated proliferation by 20 ± 6% and 27 ± 4% at pH 8.2 and
pH 8.5, respectively. Acidic pH had a more pronounced impact with
72 ± 4% inhibition at pH 6.5 and 60 ± 20% at pH 6.7 (n = 3–4).
Additional treatment with BL1249 (20 μM) further reduced BrdU
incorporation, significantly at pH 7.0 and pH 7.4. We reasoned that the
concentration of the compound could be sub-optimal, possibly due to
binding to serum proteins. Therefore, we exposed cells to increasing
concentrations of BL1249 at pH 7.4 (10% v/v serum). The activator
inhibited cell BrdU incorporation in a dose-dependent manner with
IC50 value of 60 ± 10 μM (n = 3–4) (Fig. 6B). These data indicate that
BL1249 inhibited cell proliferation. Cells treated with siRNA against
TREK-1 showed a tendency towards higher BrdU incorporation at
pH 7.4 compared to cells treated with negative control RNA (Fig. 7A).
Knockdown of the TREK-1 protein was evaluated by Western Blot
(Fig. 7B). Densitometric analyses of the band at 45 kDa, obtained with
the TREK-1 monoclonal antibody and normalized to GAPDH, are
shown in Fig. 7C. For most siRNAs, we observed a moderate decrease
in TREK-1 protein level when compared to the level in samples from
cells treated with negative control RNA. Nevertheless, the reduction in
TREK-1 protein expression by siRNA B and C was significant (Fig. 7C).

A possible role of pH-sensitive current in cell migrationwas assessed
using scratch wound-healing assay with same conditions as described
for proliferation and data are shown in Fig. 6C and D. To rule out that
the observed effect was due to different growth rates at the different
conditions, we inhibited proliferation by addition of 5 μM aphidicolin
[58]. The results correlated with those obtained in the BrdU assay. The
fastest wound closure was detected at pH-values between pH 7.0 and
7.4. Both at alkaline (pH 8.2 and pH 8.5) and acidic (pH 6.7) values,
cells appeared to show attenuated migration, but no significance was
reached (Fig. 6C). Addition of BL1249 (20 μM) did not appear to rescue
this inhibitory trend nor did it amplify it significantly. Nevertheless, as
shown in Fig. 6D, BL1249 decreased cell migration at pH 7.4
dose-dependently with an estimated IC50 concentration of 70 ± 50 μM.

4. Discussion

In the present study, we identified a pH-sensitive K+ current in the
pancreatic cancer cell line BxPC-3 and provide strong evidence that
this current is mediated by TREK-1. This study also presents the first
functional report on the K2P channel in pancreatic cells of exocrine
origin. Below, we discuss a possible role of the channel in tumor
proliferation and migration.

4.1. TREK-1 mediates pH-sensitive K+ current in BxPC-3 cells

Change in pHe elicited a current that shifted Erev towards EK. The pH-
sensitive part of the current reversed almost exactly at EK (Figs. 1B and
2C). A number of K+ channels exhibit pH-sensitivity and could hence
account for this observation. Some inward rectifier K+ channels
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(Kir4.1 and Kir5.1) exhibit sensitivity to different H+ concentrations
[12]. Moreover, many transient receptor potential (TRP) channels are
endowed with a pH-sensing moiety [64] and a pH-induced increase in
intracellular Ca2+ [Ca2+]i could in turn activate Ca2+-activated K+

channels (KCa). However, we performed patch-clamp experiments
with 0 μM Ca2+ and 20 mM EGTA in the pipette solution, which
excludes such an indirect contribution of TRP channels and therefore
KCa channels. Furthermore, 10 mM HEPES in the pipette solution kept
pHi constant and thus excludes Kir channels as they only exhibit pHi

but not pHe–dependence. K2P channels do not depend solely on either
of the aforementioned stimuli and further they increase open probabil-
ity with substitution of intracellular K+ by Rb+ (Fig. 3B). K2P channels
are therefore the best candidates to mediate the pH–sensitive current
observed in our study.

Most of the K2P channels, except TREK-2 (K2P10.1), are activated at
alkaline and inhibited at acidic pHe-values. However, only TASK-1,
TRAAK (K2p4.1), TREK-1 and partially TASK-2 show steep activation in
the physiological pH range (pH7.0–7.8) [31]. TASK-3 is structurally sim-
ilar to TREK-1, but shows almost complete activation at pHe 7.4; at this
pHe the current in BxPC-3 cells showed not even half-maximal
activation. Out of the above mentioned group of candidates, only
TREK-1 increases channel open probability with decreasing pHi values
in a range as we recorded in BxPC-3 cells (Fig. 3A) [47,48]. Therefore,
the observed biophysical characteristics are best described by TREK-1.
The finding that TREK-1 carries themain component of pH-sensitive
current is further supported by the pharmacological profile. Ruthenium
red is an inhibitor of TASK-3 with IC50 = 0.7 μM [11], TREK-2 (IC50 =
0.2 μM) and TRAAK (IC50 = 1.7 μM), and is ineffective on TREK-1 [4].
In line with this, ruthenium red showed no inhibition of pH–sensitive
current when assessed at 2 μM (Fig. 4A). Traditionally, carvedilol is
used as a non-selective β-adrenoceptor antagonist but was recently
reported to also inhibit TASK-1 with IC50 = 0.83 μM when heterolo-
gously expressed in CHO cells [56]. Carvedilol showed no inhibition in
our recordings. Quinine was shown to inhibit TRESK (K2P18.1) with
IC50 N 100 μM [51], TREK-1 and TWIK-1 (K2P1.1) with IC50 values of
42 μMand 50–85 μM, respectively [32,65]. Application of 50 μMQuinine
resulted in about 30% inhibition of pHe-sensitive current. The tyrosine
kinase inhibitor, genistein was reported to potentiate the ΔF508-CFTR
channel activity [24] and furthermore to inhibit a multitude of channels
including the viral ion channel VPU of HIV [52], L-type Ca2+ channel [3],
TASK-1 (IC50 = 12.3 μM) and Task-3, but it was reported to be ineffec-
tive on TREK-1-mediated current at 100 μM when heterologously
expressed in Xenopus laevis oocytes [19]. Application of 150 μM
genistein attenuated pHe-sensitive current by ≈45% in BxPC-3 cells.
The unspecific nature of genistein raises the possibility of an indirect
inhibition of TREK-1 and we did not further investigate this
phenomenon. Tetrahexylammonium chloride (THexA) inhibits TRESK
(IC50 = 0.5 μM), TREK-1 (IC50 = 1 μM) and TASK-3 (IC50 = 0.2 μM)



Fig. 5. pHe and BL1249 regulate Vm. Vm was measured as change in fluorescence of the
voltage-sensitive dye VF2.1.Cl. Change of ΔF/F0 = 1% translates to ΔVm = 40–50 mV
[7,41]. Representative experiment with single cell traces shown as grey lines and
average of all cells as bold black line. Each experiment was repeated in 3 independent
preparations. A: representative image of VF2.1.Cl loaded BxPC-3 cells. B: cells were
exposed to physiological-like solution of different pH-values as indicated. C: Vm

response to application of TREK-1-specific activator BL1249 (10 μM) at pHe 6.7.
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[48], when applied intracellularly. 10 μM THexA completely inhibited
pH-activated outward current (Fig. 4A) and inward current (Fig. 3C).
Finally, BL1249 is an activator of endogenous TREK-1 (EC50 =
1.26–1.49 µM) in bladder cells [59], and it activated a K+ current
(EC50 of 2 ± 2 μM) in BxPC-3 cells and hyperpolarized Vm in time-
lapse fluorescence experiments. All characteristics together clearly
identify TREK-1 as main component of pH-regulated current in BxPC-3
cells; and the protein is expressed in PDAC cells (Fig. 4B).

4.2. BL1249 inhibits cell proliferation and migration

A relation between cancer cell proliferation and Vm was first
proposed in 1971 by Cone and was since supported by many studies
[9]. Highly proliferative tumor cells show generally a depolarized Vm,
whereas quiescent cells are hyperpolarized [9,63]. K2P channels are
key players in setting Vm and are regulated by pH, a property commonly
dysregulated in tumors [61]. Therefore, one can put forward a simple
hypothesis that a change in pHe from a physiological value of 7.4 to
pHe 6.7–7.1 in tumors deactivates K2P channels, which in turn
depolarizes Vm and thereby promotes cancer progression. We clearly
demonstrated that BxPC-3 cells exhibit pH-sensitive current that plays
a major role in setting Vm (Figs. 2B and 5). Following this hypothesis,
one would have expected a higher proliferative rate of BxPC-3 cells at
tumor-like pH values and reduced growth when exposed to activator
compound BL1249. We did not find such a clear connection (Fig. 6A).
Cells cultured at acidic pH 6.5 and 6.7 showed a significantly lower
proliferative rate when compared to the physiological control condition
(pH 7.4), though at pH 7.0, which may be expected at tumor sites,
proliferation was as high as in pH 7.4 (Fig. 6A). Results obtained at
pH 8.2 and pH 8.5 as well as in presence of BL1249 are in agreement
with the aforementioned hypothesis – both conditions result in a
hyperpolarized Vm and decreased proliferative rate (Fig. 6A and B).
Interestingly, at pHe 8.5 or in presence of BL1249 (N6 μM) TREK-1 is
constitutively opened (Figs. 2A and 4D). However, BL1249 at 100 μM
almost completely inhibited cell proliferation, whereas proliferation of
cells cultured at pH8.5was only partially impaired. Since TREK-1 activa-
tion decreases proliferation, the opposite effect may be expected when
the channel expression is inhibited. In our study, siRNA-induced
knockdown of TREK-1 lead to a slight increase in BrdU incorporation
compared to the negative control RNA (Fig. 7A) suggesting that inhibi-
tion of TREK-1 may be promotive of tumor growth (Fig. 7). However,
BxPC-3 cells were affected by the treatment with siRNA, and thus we
strived to use the lowest possible siRNA concentration. Thismay explain
why we only observe a relatively moderate reduction in the protein
level. TREK-1 shows complex gating with sensitivity to numerous stim-
uli including heat, pressure, lipids, protein kinase A (PKA) and protein
kinase C (PKC), as well as cyclic adenosine monophosphate (cAMP)
[22] and some of those gating mechanisms are synergistically linked
[37]. This could provide an explanation for the above phenomena;
pHe-activation of TREK-1 may be dominated by other gating mecha-
nism (see above). Furthermore, many proteins have characteristic pH
optimum at physiological pH values, with decreased activity in alkaline
and acid range. For example, the most important determinant of ion
fluxes through ion channels is the Na+, K+-ATPase that has characteris-
tic pH optimum at pH 7 [50].

Nevertheless, TREK-1 activation by BL1249 and presumably hyper-
polarization of Vm is detrimental to cell proliferation, while knockdown
of TREK-1 seemed to increase proliferation. In line with this suggestion
is the observation that in MG63 cells pharmacological inhibition of
TREK-1 channel using bupivacaine resulted in an elevated growth rate
[23]. Taken together, pH-regulated Vm plays some role in BxPC-3 cell
proliferation, however, a strong effect may be overlaid/attenuated by
other pH-dependent regulators of proliferation [61]. Similar behavior
was observed in MG63 human osteoblast-like cells, where proliferation
was completely inhibited at pH 6.4 [34].

We observed pH-regulated K+ current in 1/3 of themeasured BxPC-
3 cells in patch-clamp recordings. However, using the voltage-sensitive
reporter dye VF2.1.Cl we found pH-dependence of Vm in all BxPC-3 cells
tested. The same applies to BL1249-sensitive currents. This discrepancy
may be due to differences in cell conditions in the two experimental set
ups. We performed patch-clamp recordings in thewhole cell configura-
tion; this includes a complete exchange of the intracellular solution
with the pipette solution. Critical components of TREK-1 channel gating
or other cellular regulators may be washed out as discussed above. In
Vm reporter experiments, plasma cell membranes and intracellular
environment would have remained more intact.

In cell migration, K+ channel's role in setting Vm is also important as
Vm provides the electrochemical driving force for Cl− and Ca2+

transport and intracellular Ca2+ is a key signaling ion in migration,
while Cl− channels are important in cell volume regulation. Moreover,
K+ channels are also required for volume-regulation, a pivotal function
in cell migration [54]. We found no simple correlation between wound
closure in scratch assays and pH-sensitive current (Figs. 2A and 6).
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Fig. 6. BL1249 inhibits BxPC-3 cell proliferation. Cells were exposed to different pH-values and/or concentrations of BL1249 for 24 h before BrdU – incorporation was determined. Data
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Similar to cell proliferation, cell migration appeared to be attenuated
both at acidic pH 6.7 and alkaline pH 8.2 and 8.5, however, these
findingswere not significant at P b 0.05. It is known thatmanyprocesses
in the migratory cascade depend on pH (e.g. formation of actin
filaments [40], the GTPase CDC42 activity that is important for polarity
of migrating cells [17], and of course ion transport that is regulated by
pH sensitive Na+, K+-ATPase (see above). The effect of TREK-1 on mi-
gration may therefore be overshadowed by these processes. Neverthe-
less, it seems that again BL1249 attenuated cell migration at several
pHe values and there was a clear concentration-dependent inhibitory
effect of BL1249 (at pH 7.4) on cell migration (Fig. 6D).

BL1249 inhibits cell proliferation as well as migration with IC50 =
60 ± 10 and 70 ± 50 μM, respectively (Fig. 6B and D). These values
are far higher than EC50 = 2 ± 2 μM of current activation in patch
clamp recordings (Fig. 4D). A possible explanation for this could be
binding of the compound to the serum, which was only used in the
long-term cell behavior experiments but not in electrophysiology and
fluorescence microscopy experiments. To our knowledge, BL1249 has
not yet been studied in serum containing media before. The similar
IC50 of BL1249 in proliferation andmigration suggests a commonunder-
lying mechanism. As described above, Vm and also volume-regulation
are pivotal in both proliferation and migration; a constitutively
activated TREK-1 channel may impair either or both of these processes.

Many studies found expression of different K2P channels including
TALK-1 and 2 [15], TASK-1 and 2 [16] TASK-5 [2], TRESK-2 [26] TREK-
2 [33] TWIK-2 [49] in the pancreas using analysis of mRNA. So far,
only one study investigated K2P expression in pathological state of the
pancreas. Using a data-mining approach, Williams et al. found in this
study a significant downregulation of TASK-1 and upregulation of
TWIK-1 mRNA in tissues of PDAC patients when compared with unaf-
fected tissue of same origin [62]. For the first time, we identified
TREK-1 as major component in the PDAC cell line BxPC-3. However,
no pH-regulated K+ current was detected in the PDAC cell lines
Capan-1, AsPC-1 as well as HPDE cells in patch clamp experiments;
these cells have very little K+ conductance (Supplementary Fig. S1).
Yet these cells express TREK-1 channels, which may be closed but
activate-able by BL1249, as shown by the fluorescence measurements
with VF2.1.Cl on Capan-1 and HPDE cells. These experiments also
revealed that these cells exhibited different relation between
extracellular pH andVm (Supplementary Fig. S2). This behaviormatches
the biology of TREK-2, but other, for example pH sensitive Cl− channels,
cannot be excluded. Capan-1 and AsPC-1 are derived from liver
metastasis and ascites, respectively. On the other hand, BxPC-3 cells
originate from adenocarcinoma of the body of the pancreas where the
patient presented no signs of metastasis [13]. Therefore, TREK-1
expression might be related to different development stages of the
cancer. Furthermore, in other PDAC cells there is an indication that Vm

is dominated by Cl− conductance (Fig. S1) and TMEM16A is expressed
in these cells [53].

In conclusion, we found a pH-sensitive K+ current in BxPC-3 cells
that exhibits biophysical and pharmacological characteristics as
described for TREK-1. We further showed that this current plays a
crucial role in setting Vm. Moreover, we identified BL1249, activator of
TREK-1, as potential inhibitor of both pancreatic cancer cell proliferation
andmigration; it may therefore be an interesting compound for further
optimization.



Fig. 7. Effect of siRNA mediated knockdown of TREK-1 on cell proliferation. Cells were
transfected with siRNA at a final concentration of 25 nM three days prior to determination
of BrdU incorporation. A: at pH 7.4 there was a tendency towards increased BrdU
incorporation relative to negative (neg.) control RNA (P = 0.065 for siRNA A and P =
0.059 for siRNA C). Data show the mean ± s.e.m. from n = 5 experiments. B: knockdown
of TREK-1 by the different siRNAs was also assayed by Western Blot analysis 3 to 4 days
after transfection. For TREK-1 protein level analysis, the band at 45 kDa was used (upper
lane) and for GAPDH protein the band at 37 kDa was analyzed (lower lane). GAPDH
siRNA served as positive control for transfection. C: densitometric analysis of TREK-1
expression normalized to GAPDH after transfection with the different siRNAs. Data show
the mean ± s.e.m. from 5 independent transfections.* indicates P ≤ 0.05 relative to
samples from negative control RNA transfected cells.

2002 D.R.P. Sauter et al. / Biochimica et Biophysica Acta 1862 (2016) 1994–2003
Supplementary data to this article can be found online at http://dx.
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