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Abstract

The implementation of complex behavior generation for arti®cial systems can be

overcome by decomposing the global tasks into simpler, well-speci®ed behaviors which

are easier to design and can be tuned independently of each other. Robot behavior can

be implemented as a set of fuzzy rules which mimic expert knowledge in speci®c tasks in

order to model expert knowledge. These behaviors are included in the lowest level of a

hybrid deliberative±reactive architecture which is aimed at an e�cient integration of

planning and reactive control. In this work, we brie¯y present the architecture and

attention is focused on the design, coordination and fusion of the elementary behaviors.

The design is based on regulatory control using fuzzy logic control and the coordination

is de®ned by fuzzy metarules which de®ne the context of applicability for each behavior.

Regarding action fusion, two combination methods for fusing the preferences from each

behavior are used in the experiments. In order to validate the system, several measures

are also proposed, and thus the performance of the architecture and combination/ar-

bitration algorithms have been demonstrated in both the simulated and the real world.

The robot achieves every control objective and the trajectory is smooth in spite of the

interaction between several behaviors, unexpected obstacles and the presence of noisy

data. When the results of the experimentation from both methods are taken into ac-

count, the in¯uence of the combination method appears to be of prime importance

when attempting to achieve the best trade-o� among the preferences of every behav-

ior. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Paradigms of intelligent behavior generation have evolved greatly since the
®rst approaches. Focus was initially placed on known and structured envi-
ronments [18] but afterwards the emphasis shifted towards approaches which
were able to account for incomplete and uncertain knowledge and also to deal
with the inaccuracy and imprecision inherent in robot navigation tasks in real-
life situations [9]. In the ®rst models, the process of planning alternatives in
order to solve problems was based on global and explicit representations of the
robot-environment and on the relationship between them. However, there was
a need to incorporate reactive skills which would allow the robots to have
re¯exes in order to deal with real sensors and environmental inconsistencies
and to recover instantaneously from unexpected events. The mobile robots
have therefore had to incorporate reactive capabilities. A mobile robot that
carries out navigation tasks in an o�ce-like environment, navigating from one
room to another, also needs to reason out its relationship with the environment
in order to compute the best path between the current and the goal position.
Therefore, deliberative reasoning is needed to elaborate abstract plans and to
include decision-making mechanisms which permit the proposed tasks to be
optimized. Several approaches for integrating planned and reactive behaviors
have been proposed in recent years [4,16,21,27].

In this paper, we deal with a hybrid deliberative±reactive architecture for
mobile robot navigation for integrating planning and reactive control and
attention is focused on the design, coordination and fusion of the elementary
behaviors. The complex behavior is therefore generated by combining simpler
behaviors. Some approaches have been already proposed for behavior com-
bination in mobile robots, modeled either by crisp [2,14] or fuzzy algorithms,
[11,12,20,23]. Complex behavior in the robot results from the interaction be-
tween the goals, the internal states and the environment. Simple rules, which
are either fuzzy or crisp, link basic or elementary behaviors to generate more
complex observable behaviors.

In this work, elementary behaviors are built up as fuzzy knowledge bases
since fuzzy logic o�ers many advantages when dealing with the uncertainty and
vagueness of the robot sensors [26]. We present a methodology for designing
fuzzy behaviors based on regulatory control and propose several measures in
order to evaluate the robot motion. Additionally, two di�erent fuzzy methods
of combining these simpler behaviors are explained. The idea of the ®rst
combination method is to combine the preferences from each behavior before
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defuzzi®cation by means of the intersection of the outputs. Regarding the
second method, the ®nal output is obtained by a linear combination of each
defuzzi®ed fuzzy output. The study of the robot motion is based on two main
measures: the achievement of the control objective and the total bending en-
ergy (TBE) of the trajectory. The objective of the ®rst measure is to test the
quality of control when the robot has reached the control objective and also
during the whole run. The total bending energy, on the other hand, evaluates
both the smoothness and the length of the trajectory.

The architecture is demonstrated by performing navigation tasks, ®rst in
simulated environments and later in the real world in an o�ce-like envi-
ronment with a Nomad 200 mobile robot. The results of the experiments
show that the robot achieves every objective of control from every behavior
and the trajectory is a smooth trajectory in spite of the interaction between
several behaviors. As regards the combination methods, our experimentation
shows that the in¯uence of the combination method may be an important
factor because in some cases there can be signi®cant di�erences in the tra-
jectory of the robot according to the combination method used. These
measures show that the method which combines the outputs before defuzz-
i®cation has better results than the method which combines the defuzzi®ed
outputs.

This paper has been organized in the following way. First, we introduce the
architecture for mobile robot navigation and the methodology for designing
fuzzy behaviors. This section also contains a brief description of the fuzzy
behaviors used. Then, the two combination methods are explained, showing
the main di�erence between them. Section 5 describes the fuzzy metarules
which choose the context that will be activated. Afterwards, the evaluation
measures are proposed and the results of the experimentation with a Nomad
200 mobile robot are described, with emphasis on reaching the control ob-
jective and the bending energy (BE) of the trajectory. Finally, the work is
concluded with a discussion concerning combination methods and the per-
formance of the system.

2. A hybrid deliberative±reactive architecture for mobile robot navigation

Our proposal is along the lines of behavior-based robots [5] and uses a three-
level architecture [17] to integrate deliberative techniques and reactive behav-
iors. This architecture is composed of three hierarchical layers: a planning, an
executive and a control level. The highest level must search for a safe and
minimum-cost path from an initial position to a ®nal desired position across an
o�ce-like environment which is expressed by means of a map that contains
topological and geometrical information about the environment. This level
produces a high level abstraction plan since the executive level is responsible
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for achieving the abstract goals through the combination of several basic
behaviors. This plan can be seen as a linguistic description of the path from
initial to ®nal position such as ``follow left wall, cross the door, turn left and
follow the corridor, . . .'' Regarding the other levels, the executive level must
ensure the ful®llment of the plan by selecting which basic behaviors should be
activated at a given time depending on both the environment and the current
goal. Thus, this level de®nes the context of applicability of certain behaviors
using a set of metarules. Furthermore, this level constantly monitors the per-
formance of the robot so that any failure can be detected, and allows the
system to recover from any failure. The lowest level deals with the control of
the robot motion, coupling sensors to actuators. The control level is composed
of several rule-based basic behaviors which can be combined to generate a
more complex observable behavior. Regarding this architecture, we only focus
on the control level in this paper since the behaviors are included in this level.

Typical behaviors such as the following of the corridor or wall can be
considered as a control problem, which can be solved by either a classic PID or
a fuzzy controller. The fuzzy controller takes advantage of expert control
knowledge expressed as a set of linguistic expressions which are closer to those
used by human beings. Such a control o�ers a satisfactory performance of the
system and a high robustness in spite of noise and disturbances [10].

However, the design of the fuzzy knowledge base for a fuzzy controller
demands a long optimization process since this fuzzy controller must deal with
very di�erent control situations: following a wall, following a corridor,
avoiding an obstacle, etc. Rules must be designed so that they can handle many
di�erent robot-environment states and we should bear in mind that the lin-
guistic variables can be quite di�erent from each other according to the robot-
environment state and the current goal. A way of getting round this problem is
to create an initial or basic controller which can be incrementally updated and
optimized by adequately tuning both labels and rules.

Another way of solving this problem involves decomposing the global be-
havior into several control schema or motion control descriptions [3]. The
control schema can be merged by combining the corresponding actions as
derived from their control rules [27]. However, such control actions may be in
con¯ict, thus requiring an association between each control schema and its own
context of applicability which is de®ned by means of a set of metarules that are
generated by the executive level.

Within each control schema, it is possible to de®ne the most appropriate
semantics for the linguistic variables which are manipulated in the rules, and
thus each behavior can be tuned independently to be more e�ective in its own
context, and complex behaviors can be obtained based upon the composition
of former simpler behaviors. This approach is more suitable from the view-
point of the de®nition of ®tness functions for an evolutionary learning process
since the ®tness function can be adapted to each elementary behavior instead of
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a large complex one [7,19]. The next problem we face is the combination of
simpler behaviors [8]. The most popular approaches are based on combining
the outputs by means of a linear combination of the numerical outputs of each
simpler behavior weighted by a value that represents the weight of the be-
havior, depending on the current context [6,22]. In [27] however, the outputs of
both behaviors are combined before any control action is selected, and when an
action is dominated by the other one, the ®nal output will be the last one. In
[25] Sa�otti splits the problem of behavior coordination into two di�erent sub-
problems: how to decide which behaviors should be activated at each moment
and how to combine the results from di�erent behaviors into one command.
These are known as the behavior arbitration problem and the command fusion
problem, respectively. In this paper, the ®rst problem is resolved by means of
the generation of metarules and the second one by means of the combination
methods.

3. A methodology for designing fuzzy behaviors

The use of fuzzy logic in the design of navigation behaviors is nowadays
quite popular. The set of behaviors that are being implemented can include,
for example, the following of walls, corridors or the avoidance of obstacles.
There is not however an established way of designing the rule bases of these
behaviors. A lot of approaches use expert knowledge to decide on the re-
sponse of the behavior according to its objective but without de®ning that
objective explicitly. On the other hand, we think that the robot must use
several abstraction levels on the information that it has collected from the
environment which it can use to control its own motion. Our methodology
regarding the design of the rule bases for the behaviors, therefore has the
following features:
· The situation to achieve or to maintain one behavior will be de®ned explic-

itly by means of certain values of the input variables.
· The regulatory control is used to build the rule base of the behavior, de®ning

a set-point or objective of the behavior.
· The structure of the behaviors becomes very homogeneous and makes the

de®nition of the evaluation measures shown in Section 6.1 possible.
Regarding the use of several abstraction levels on the information, we are to

classify the behaviors according to the kind of input information that is used.
Thus, the input data can be:
· Input data from the robot sensors with a simple pre-processing to avoid

noisy data. There is no world modeling. Within this kind of behaviors we
distinguish between:

1. Behaviors addressed to reach and maintain an objective such as Follow
wall. We call these as Objective-oriented behaviors.
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2. Behaviors that tightly couple perception to action such as Avoid obsta-
cle. These are Purely reactive behaviors.

· Input data from a sensor-derived world modeling. There is a world represen-
tation but only the information necessary for the performance of a speci®c
behavior is represented. For example Cross door is a behavior of this kind
and we call these as Short-memory behaviors.
The behaviors deal with the control of the robot motion, coupling inputs to

actuators according to the preference of the behavior. Every behavior has been
implemented as a set of fuzzy rules by means of the proposed methodology and
the structure of this rule base will be independent of the kind of input infor-
mation that is needed to execute the behavior.

Before explaining the design of each type of behavior, we will de®ne the
conceptual framework adopted to represent the fuzzy behaviors. The output of
each fuzzy behavior in a robot-environment state is a fuzzy set Bj�x; y� (Eq. (1))
derived from the fuzzy inference. Let x be the input array that de®nes the
actual state and y the possible values in the output variable, for example the
steering velocity, which shows the possible actions, then the fuzzy set Bj is given
by

Bj�x; y� � max
16 i6 n

min�Qi�x�;Ai�y��; �1�

where Qi�x� is the truth value of the fuzzy proposition Qi in the state x. Ai is a
linguistic label of the consequent variable which represents a control action of
the rule Ri of Bj

Ri : IF Qi; THEN Ai; i � 1; . . . ; n;

where n is the number of rules of Bj. For example B1�x; y�, is the action sug-
gested by the ®rst behavior in the state x.

Our robot is a Nomad 200 mobile robot endowed with a ring of 16 sonars
and 16 infrared sensors. Infrared sensors are used to detect low height obstacles
in short-range distances. In order to compute the input variables, ®rst the sonar
and infrared measures are preprocessed to avoid any noisy input data. Then,
the sixteen measures from the ring of sensors are used as the distance in inches
to the detected objects. The information provided by the sensors or the world
model (depending on the kind of behavior) is fuzzi®ed in several input variables
that are used by the behaviors to compute their preferences among the control
actions.

The two control variables that have been considered are: steering velocity in
1
10

of degrees per second (Fig. 1) and translation velocity or speed in 1
10

of inches
per second (Fig. 2). Speed is increased in Dspeed (Fig. 3), if the robot is
reaching the objective of control and is reduced whenever it is not. Each be-
havior therefore has two rule bases: one to control the steering velocity and
another to control the translation velocity.
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3.1. Design of objective-oriented behaviors

The design of a behavior is actually the design of fuzzy rules set and the
de®nition of the shape of the linguistic variables membership functions of the
fuzzy sets collected in the rules. If the behavior belongs to the ®rst kind, i.e., it
is an Objective-oriented behavior, then the rule base can be de®ned by means of
a rule base typical of regulatory control. It is necessary to de®ne a set-point or
objective, for example if the objective is to follow the right wall to a certain
distance and the robot has to be aligned to the wall, then the input variables
will be the current distance to the right wall (right distance or RD, Fig. 4) and

Fig. 1. Steering velocity.

Fig. 2. Translation velocity or speed.

Fig. 3. Dspeed.

Fig. 4. Right or left distance.
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the angle to it (angle to right wall or AngRW, Fig. 5). Thus, the set-point will
be de®ned using a rule Robjective as follows:

To follow the right wall and to control the steering velocity

Robjective�Follow wall� � If right distance is MEDIUM and

angle to right wall is ZERO; then steering velocity is ZERO;

where MEDIUM, and ZERO are linguistic labels for each variable, respec-
tively.

The entire rule bases and the linguistic labels of the variables for Follow wall
are described here below:

(a) For the steering velocity control which depends on RD (rows) and Ang-
RW (columns), the rule base is described in Table 1.
(b) For the translation velocity (speed) control, the rules are:
If speed is {MEDIUM or LOW} and RD is MEDIUM and AngRW is

ZERO, then Dspeed is PS.
If speed is HIGH and RD is {FAR or NEAR}, then Dspeed is NS.
If speed is HIGH and AngRW is {POS or NEG}, then Dspeed is NS,where

Dspeed is the speed variation in 1
10

of inches.
Other behaviors of this kind are:

3.2. Follow corridor behavior

The objective of the control of the Follow corridor behavior is to keep the
robot close to the middle of a corridor and to keep it in line with it. In order to
do so, the input variables considered are, respectively, the di�erence between
the right distance and left distance (RDÿ LD) and the di�erence between the

Fig. 5. Angle to right or left wall.

Table 1

Rules to control the steering velocity in Follow wall behavior

NEG ZE POS

FAR RM RS ZE

MEDIUM RS ZE LS

NEAR ZE LS LM
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angle to right wall and angle to left wall (AngRWÿAngLW), thus the ®rst
variable is used to keep the robot close to the middle and the second one to
keep it in line with the corridor. For this and the following behavior only the
Robjective is described:

Robjective�Follow corridor�
� If RD ÿ LD is ZERO and AngRWÿ AngLW is ZERO;

then steering velocity is ZERO:

3.3. Face object behavior

This behavior moves the robot according to a certain orientation so that the
robot aligns itself with the corresponding object (wall, corridor or door). This
behavior is very useful for aligning the robot with a door since the Cross door
behavior implemented requires the robot to be facing the door to be crossed.
Also, if the robot is facing a wall or a corridor then it is easier to detect the
beginning of the object. This behavior uses the di�erence between the current
orientation and the goal orientation (COÿGO) as an input variable to control
the steering velocity and its Robjective is:

Robjective�Face object�
� If CO ÿ GO is ZERO; then steering velocity is ZERO:

3.4. Design of a typical purely reactive behavior: avoid obstacle

The Avoid obstacle behavior has been designed to avoid an unexpected
obstacle wherever the robot goes. It means that the robot can be, for example,
following the left wall, the right wall or in the middle of a corridor when a
frontal obstacle is detected. This behavior uses the right and left distance (RD
and LD, respectively, Fig. 4), the frontal distance (FD, Fig. 6) and the angle to
the obstacle (AngO, Fig. 7) as input variables to avoid the unexpected frontal
obstacle. The behavior to avoid obstacles should take the preference of the
other behaviors into account so that the robot can avoid the obstacle while it is,
for example, following the wall on the right, although there will be many

Fig. 6. Frontal distance.
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situations in which this trade-o� is not a possible solution. In order to allow the
best trade-o� among several preferences, the behavior Avoid obstacle is based
on two di�erent policies. During the ®rst policy, the robot avoids obstacles
according to the right distance and the left distance, moving to the more distant
side. But if the right distance and left distance are large enough then the Avoid
obstacle behavior has no preference when deciding which way to turn. At this
moment, the other behavior could choose the way to turn according to its own
preference. For example, if the other behavior is Follow wall and the robot was
approaching the right wall when the obstacle was detected then this behavior
can choose to turn to the right in order to approach the wall and avoid the
obstacle at the same time (Navigation Task 3 in Section 7 shows this example).
The second policy is activated by the reaching of a certain frontal distance to
the obstacle: for example if the robot is following a corridor, the Follow cor-
ridor behavior is attempting to keep the robot close to the middle, and if the
obstacle is in front, then the Avoid obstacle behavior has to choose which way
to turn and it will do so according to the angle to the obstacle so that the robot
will turn to the best side. The Avoid obstacle behavior will only be combined
with the other behaviors during the ®rst policy. Of course, the transition be-
tween the ®rst and the second policy is smooth because the transition depends
on the linguistic variable frontal distance. In all cases the speed is reduced to
move the robot slowly when an obstacle is detected in its vicinity.

The rule bases for avoid obstacle are described here below:
(a) The rule base for the steering velocity control which depends on RD
(rows), LD (columns) during the ®rst phase, in which DF is MEDIUM, is
shown in Table 2, where H is the convex hull of the labels RS, ZERO and
LS.

Fig. 7. Angle to obstacle.

Table 2

Rules to control the steering velocity in Avoid obstacle behavior (FD is medium)

NEAR MEDIUM FAR

NEAR H LS LS

MEDIUM RS H LS

FAR RS RS H
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In the second phase the frontal distance is NEAR. In this case, the steering
velocity control depends on the angle to obstacle (AngO). The rules are:

If FD is NEAR and AngO is POS, then SV is RM,
If FD is NEAR and AngO is NEG, then SV is LM.

(b) For the translation velocity (speed) control in both phases, the rules are:

If SPEED is HIGH and FD is {MEDIUM or NEAR}, then DSPEED is
NM
If SPEED is MEDIUM and FD is NEAR, then DSPEED is NS.

3.5. Design of short-memory behaviors

These behaviors need more information about the environment because the
sensory information can be very inaccurate, thus a partial model of the world is
constructed gathering sensor data and ®ltering the noisy data. For example, in
order to Cross a door, the free space between both sides of the door-frame is
usually very small and the sonars and infrared can provide very inaccurate
measurements. So a model of the door-frame is constructed and a trajectory
through the middle of the space between both sides is generated. The robot
must follow this trajectory instead of taking the sensor data as input infor-
mation for the behavior. If the trajectory becomes dangerous or the robot is
too near a door-frame, a new model for the door-frame is constructed using the
information from the sensors and a new trajectory is generated. With this
method for designing these kinds of behaviors, we separate the fact of gener-
ating the trajectory from the fact of following that trajectory. The following of
the trajectory is resolved by means of a rule base that considers the distance
and angle to the trajectory as state variables so that the rule base is very similar
to the rule base of an Objective-oriented behavior. This is important since it
allows us to obtain a good complex behavior when there is a transition from
another behavior to this one.

In any case, while the robot is going through a door the distances on the
right and left are very small, and it therefore has to be very careful so as not to
crash into the door-frame, thus the speed is reduced so that the robot moves
slowly.

4. Methods for behavior combination

Two methods are used to combine the basic behaviors: the ®rst is based on
the context-dependent blending proposed in [27] and the second uses a linear
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combination of the defuzzi®ed behavioral response [22]. This second method
can be shown to be equivalent to a vector summation scheme. This scheme is a
very popular approach for combining behaviors in which each command is
represented by a force vector and commands from di�erent behaviors are
combined by vector summation. Other proposals [13,24] that use fuzzy logic to
perform command fusion actually implement a trivialized form of fuzzy
command fusion which can be shown to be equivalent to a vector summation
scheme [25].

Fuzzy metarules are used to select the appropriate application context for a
particular behavior ensuring smooth transitions between states, so that the
complex observable behavior is implemented by means of the collaboration of
simpler behaviors. The activation of one of these behaviors is then determined
by the robot-environment states using the truth value of the context of ap-
plicability.

The in¯uence of the context of applicability is computed di�erently ac-
cording to the combination method used. We call the ®rst method C&D
(combine and then defuzzify) and the second method D&C (defuzzify and then
combine). In both methods, the metarules give us the activation values of the
behaviors according to the current context:

Rk : IF Ck; THEN Bk; k � 1; . . . ;m;

where Ck is a fuzzy proposition that determines the applicability of the con-
text in the state x and m is the number of behaviors that will take part in
the navigation task. In C&D the in¯uence of the context is obtained using
Eq. (2)

BC
j �x; y� � Cj�x�

� ) Bj�x; y�
	
; �2�

where ) is a fuzzy implication operator. For example, the G�odel implication
Eq. (3) can be used

a) b � 1 if a6 b;
b otherwise:

�
�3�

Therefore the fuzzy set ®nal value FV (Eq. (4)) is obtained by Eq. (4)

FV �x; y� � BC1

1 �x; y� \ BC2

2 �x; y�\; . . . ;\BCm
m �x; y�; �4�

where x is the input array that de®nes the actual state, y represents the possible
values in the output variable and m is the number of behaviors.

Finally, the fuzzy set FV �x; y� must be defuzzi®ed, for example by using the
center of gravity method.

In the second method, D&C, ®rst each Bj�x; y� is defuzzi®ed by the center of
gravity (Eq. (5)):
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Dfj�x� �
R

yBj�x; y�dyR
Bj�x; y�dy

�5�

obtaining a numerical value for each activated behavior. The composition is
computed, weighting each of these values times the degree of applicability of
Cj. Let kj � Cj�x� be the degree of applicability of Cj, a value between 0 and 1
that represents the applicability of Cj in the state x. Then the ®nal value in this
case (DFV �x�), is given by Eq. (6):

DFV �x� � k1Df1�x� � k2Df2�x� � � � � � kmDfm�x�: �6�
In many cases, both methods will give similar results but below, we consider a
typical situation, where both methods would give di�erent ®nal outputs. One
behavior needs to approach the wall, and an obstacle has been detected. Let us
suppose that the applicability of the ®rst behavior is 0.5 and the applicability of
obstacle avoidance is 0.5, then the two methods of combination would give the
following outputs: C&D gives a ®nal output for the steering velocity of 50 1

10

degrees per second while D&C gives a ®nal output of 25 1
10

degrees per second.
This is shown in Fig. 8.

This example shows di�erent ®nal outputs with the same input data. One
idea of the experiments is to ®nd out if this di�erence is important in the
complex fused behavior and to see if it can in¯uence the ®nal trajectory of the
robot. Several examples of the in¯uence of the combination method are shown
in Section 7.

Fig. 8. The ®nal output may be di�erent.
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5. Contexts description

In order to decide which behavior or behaviors should be activated at each
moment, a set of fuzzy metarules is generated by the executive level from the
plan that has been computed by the planning level. To compute the plan, the
robot needs to know and to manage some information about the environment.
This information will be represented by means of a topological map, which is
constructed by performing a previous exploratory task and discovering several
kinds of distinctive places. These places are regions in the world that have
characteristics that distinguish them from their surroundings, such as corners,
walls, corridors or doors. The topological map formally consists of a graph
G � �V ;E�, where V � fv1; . . . ; vNg is the set of N nodes, and E � feijg with
i � 1; . . . N ; j � 1; . . . ;N , where eij � �vi; vj�, is the set of M edges. The nodes
can be classi®ed in one of the following kinds of detectable landmarks: corners,
doors, hallways and a default landmark type corresponding to long irregular
boundaries. On the other hand, the arcs are the walls or corridors that connect
the nodes. Both nodes and arcs have a landmark descriptor which contains
information about the landmark type, and if necessary, a fuzzy estimate of the
landmark's length.

This topological map provides information directly gleaned from the robot's
experiences within the world, but it can additionally contain any information
obtained independently from the robotic agent itself, such as maps obtained
from ¯oorplans. This kind of information resolves, for example, the problem of
detecting the presence of a staircase. The topological map can be used by the
planner to compute a minimum-cost path from the current position to the
desired goal using the estimated length of each arc using a standard graph
search algorithm, such as Dijkstra's shortest path algorithm or A� algorithm.
The robot, by means of the activation of its reactive behaviors, will then be able
to accomplish the plan in spite of the presence of unexpected obstacles along its
path. For example, the plan computed to move the robot from a corridor to a
corner at the end of a wall (the goal), may be de®ned as the robot having to
follow the corridor CorridorX and after that following the wall WallY on the
right until the ®nal goal is reached, of course avoiding the possible obstacles.
The translation to metarules is carried out by the executive level directly,
coupling landmarks to behaviors. Thus the set of metarules will be as follows:

If obstacle then Avoid obstacle

If :obstacle ^ In�CorridorX � ^ : In�WallY �
then Follow corridor�CorridorX �

If :obstacle ^ In�WallY � ^ : In�Goal�
then Follow wall�WallY �

If :obstacle ^ In�Goal� then Stop:
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The last metarule is just to indicate the stop condition since Stop is not
actually a behavior. In this example the contexts are given either by the pres-
ence or absence of an obstacle and by the detection of the corridor CorridorX
or the wall WallY. The detection of obstacles, corridors and walls is based on
data from the sensors which are processed by several perceptual routines.
These routines infer the existence of the obstacle, wall or corridor and after-
wards this perception is matched with the topological map of the environment
so that the robot can recognize the place where it is.

In our proposal, reasoning is based on the path planning process because the
relation between the landmarks and behaviors is natural and direct. This allows
the robot to compute the best path in order to achieve the ®nal goal, although
the environment may have several paths joining the current position and the
goal. This question is an important di�erence between our system and the work
of Sa�otti [27], since it is not as easy to optimize the cost of the computed path
in the behavioral plans as it is in our proposal.

With these metarules di�erent behaviors can be activated at the same time
but each behavior only makes a contribution if its own context of applicability
is true to some degree. For example, an extreme case would be the activation of
Avoid obstacle, Follow corridor and Follow wall at the same time. The ®nal
output will be the result of combining each behavior output previously mod-
i®ed by the truth value of its context of applicability.

An important aspect of behavior fusion is that if the combination method is
based on the intersection of each behavior output then the possibility of con-
¯ict among preferences of behaviors should be taken into account. The pos-
sibility of an empty intersection between the preferences of the behaviors may
result in the selection of an undesirable control value in both combination
methods. An empty intersection can be produced when one behavior prefers to
turn to the right for steering velocity and the other prefers to turn to the left. In
this case, the ®rst method (C&D) should avoid this situation or know how to
deal with it in order to choose a value. The second method (D&C) could blend
every defuzzi®ed value but the ®nal value would instruct the robot to go
straight on and this control value is not preferred by any of the behaviors and
could lead the robot into dangerous situations. The fact that the defuzzi®cation
may result in the selection of an undesirable control value, has already been
addressed in the literature in this ®eld. In Yen and P¯uger [29] the authors
de®ne a new defuzzi®cation method to solve a similar problem, others like
Sa�otti et al. [27] place the responsibility on the behavior designer to make
sure that rules with con¯icting consequents have disjointed antecedents, and
others like Goodridge et al. [12] allow the control system to fail safely and
recover from the failure by means of a high-level processing that is responsible
for analyzing and resolving the problem. In this work this aspect is dealt with
in the following way. First, not every combination makes sense. In our case the
following of a wall could be on the right or on the left but both behaviors will

E. Aguirre, A. Gonz�alez / Internat. J. Approx. Reason. 25 (2000) 255±289 269



not be activated at the same time. The designer should decide which behaviors
can be combined at the same time and how to deal with the possible con¯icts
among behaviors. One possible solution is simply not to allow these con¯icts.
This would mean that when the environmental state is the same, the combined
behaviors will never have disjointed outputs. To do this, it would be necessary
to know the states in which several behaviors can be combined and determine
the values for the input variables from each behavior in such a state. The
designer could therefore avoid the occurrence of disjointed consequents in
the rules. This solution has, in our opinion, two main disadvantages: ®rst, the
design of the rule base of a behavior is in¯uenced by other external aspects of
this behavior and therefore some advantages such as the simplicity of the de-
sign would be lost; and second, the di�culty of determining the consequents
from each behavior in a certain environmental state because the input variables
of each behavior could be very di�erent.

Our solution is to relax the condition of consistency and to permit the ex-
istence of disjointed consequents in some cases. That is to say, the intersection
among the preferences of behaviors may be empty. In such cases, the output
from the behavior with the highest truth value in its context would be taken as
the ®nal output. If the truth values are equal, then the most recent behavior
would have priority over the older ones. The advantage of this solution is that
the generation of the metarules is simpler because they do not have to consider
any problem relative to the intersection of the consequents from every be-
havior, thus the generation of the metarules only has to consider aspects rel-
ative to the context perception and the accomplishment of the plan. Another
advantage is that there is a higher interaction among behaviors and the fact
that if there is a con¯ict it would be resolved by giving preference to one of
them but in running time instead of design time. In our implementation we
have chosen to develop this latter solution to avoid the problem of the possible
empty intersection of some consequents and this is the solution that we have
used in both combination methods.

6. Evaluation measures

The objective of the experimentation is to test the architecture performance,
the quality of the control and the smoothness and the length of the robot
trajectory. The quality of the control is related to the achievement of the
control objective in each behavior since this objective represents the set-point
of the underlying controller to the behavior. The measures related to the
achievement of the control objective are interesting because:
· These measures allow us to test the goodness of the rule base and the de®-

nition of the membership functions of the fuzzy sets collected in the rules, in
order to achieve the proposed objective of each behavior. For example, if the
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behavior Follow wall has a high value of quality of control, then this means
that the behavior is able to maintain the robot near the wall and in line with
it, then the sonar data will be very accurate since the value of the distance to
the wall is computed by means of the echo of a sonar beam perpendicular to
that wall. This sonar data could be used, for example, to build a map of the
environment.

· Moreover, the measures related to the achievement of the control objective
can be used to tune the labels of the fuzzy sets of the behaviors, using some
machine learning algorithm.
On the other hand, measuring the smoothness and the length of the robot

trajectory will give us an idea of the energy that the robot can consume during
its motion. Also, if the robot has to turn to one side, a smooth motion can
produce less odometry error than a tight turn according to our experimental
observations.

Additionally, the two combination methods have been tested in simulations
and in the real world in order to determine the in¯uence of each combination
method on the complex behavior. In this section, we will explain the evaluation
measures which are used in the experimental part. The idea is to use two kinds
of measures: one to determine the achievement of the control objective and the
other to measure the smoothness of the robot trajectory.

6.1. The achievement of the control objective

When a fuzzy controller has a unique rule base for controlling certain
variables such as the distance and angle to the wall, it is easy to test its op-
eration by computing the error from these variables. In fact, each behavior was
tested using this kind of test both in a simulation and also in a real o�ce-like
environment before they were combined. However, if we are looking for an
evaluation measure for following the wall and the corridor, then the error from
the input variables in each behavior should be computed and fused by using a
normalization method. Another means of evaluation is to take the truth value
of the rule which de®nes the control objective or set-point. These measures will
be de®ned, ®rst by taking into account only one behavior and afterwards by
taking into account several behaviors at the same time. According to the
methodology of design previously explained, every behavior, with the excep-
tion of the purely reactive behavior Avoid obstacle, has been designed to
achieve and maintain some control objective such as following a wall at a
certain distance, or following the center of a corridor, or crossing a door fol-
lowing a trajectory, or achieving a certain orientation. In these behaviors, the
rules must guide the robot towards a speci®c situation de®ned using certain
values of the input variables. However, in the case of the behavior Avoid ob-
stacle, the situation to be achieved is simply not to crash into the obstacle and
this fact can guide the robot to multiple and indeterminate situations, which
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are not actually de®ned. Therefore, the behavior Avoid obstacle has not been
considered like a behavior of this kind.

With Bj being such a behavior, there must be a rule, relative to the steering
velocity control, that de®nes the control objective. This rule, as we said above,
is called Robjective�Bj�.

These rules follow the general expression shown below:

Rl � If X1 is A1 and X2 is A2 and; . . . ; and Xn is An; then Y is Dj;

where Ai, with i � 1; . . . ; n, are linguistic labels of the n antecedent variables
Xi; i � 1; . . . ; n, respectively and Dj is a linguistic label of the consequent
variable Y. The truth value of one rule Rl in the state x, where
x � fx1; x2; . . . ; xng is the input array that de®nes the current state, is given by
Eq. (7)

TV �Rl; x� � min
16 i6 n

�lAi
�xi��; �7�

where lAi
�xi� is the membership value of xi to the linguistic label Ai.

The truth value of Robjective represents the achievement of the control ob-
jective such as following the wall or corridor. Therefore, whenever the behavior
is activated its truth value is taken into account for the evaluation of the ®nal
complex behavior. There are two evaluation measures related to the truth value
of Robjective.

(a) Global achievement

Ga�Bj� � 1

N

XN

k�1

TV �Robjective�Bj�; xk�; �8�

where N is the total number of control cycles in which the behavior Bj has been
activated, i.e., when the value of its context is greater than zero, and
TV �Robjective�Bj�; xk� is the truth value of Robjective of Bj in the state xk in which the
behavior Bj has been activated.

(b) Restricted achievement

Ra�Bj� � 1

M

XM

k�1

TV �Robjective�Bj�; xk�; �9�

where M is the number of control cycles, where the TV �Robjective�Bj�; xk� is
greater than zero, that is to say, in this case xk is only representing the states in
which the objective has been achieved.

The ®rst measure represents the level of achievement of the control objective
by taking into account the environment-robot situations from the ®rst one to
the last one while the behavior is activated. However, the second one is the level
of achievement of the control objective which only takes into account those
situations, where the objective has been achieved. It may therefore be con-
sidered as the quality of the control. The range of these measures are values
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between 0 and 1 because the maximum value will be from the achievement of
the control objective with truth value equal to 1 in every control cycle. If both
measures are equal, it means that the robot has reached the control objective at
all times, for example following the wall at the correct distance in every control
cycle. However, the robot usually loses the control objective when it avoids an
obstacle and some time is needed to reestablish the control objective. For ex-
ample, if the robot is following the wall at the indicated distance and some
obstacle is detected in front of it, the robot has to leave the wall it is following
to avoid the obstacle and hence it loses the control objective for some time.
In this case, the ®rst measure will show the in¯uence of the time needed to
reestablish the control objective, whereas the second one will not be a�ected.
Note that the ®rst measure also considers the goodness of the rest of the rules
besides the Robjective since if the set-point is achieved soon the measure will be
higher.

There are several behaviors which can be activated simultaneously. Ac-
cording to certain metarules, two behaviors can be activated at the same time,
for example Follow corridor and Follow wall can be activated at the same time
when the end of the corridor is being reached and the next wall is beginning to
be perceived. Therefore, it is necessary to de®ne the truth value of the objective
rule in this case: Let B1 and B2 be two behaviors and C1 and C2 be the truth
values of contexts of applicability, respectively, then the truth value of the
objective rule in the state xk is de®ned by the following equation:

TV �Robjective�B1;B2�; xk� � C1

C1 � C2

TV �Robjective�B1�; xk�

� C2

C1 � C2

TV �Robjective�B2�; xk�:

The term �C1=�C1 � C2�� is needed to weight the truth value of Robjective of each
behavior by the weight of its context in the current situation. This makes sense
because a behavior has been designed to achieve its objective within a partic-
ular context.

Both measures (Ga, Ra) will be used in Section 7 to show the performance of
the architecture, the quality of the control and the in¯uence of the combination
method on the achievement of the control objective. Ga measures the skill of
the system to achieve the objectives from every behavior, taking into account
the periods of transition among behaviors, while Ra shows the accuracy and the
quality of the control in the objective situation.

The bene®ts of these measures de®ned here are as follows:
· In order to compute the measurements, the only condition necessary for the

objective of every behavior is that it can be expressed by means of a rule
called Robjective. This rule is an expression that uses the input variables of
the behavior to de®ne its objective. In our architecture every behavior, ex-
cept Avoid obstacle, has its Robjective.
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· During a navigation task, several behaviors are going to be sequentially ac-
tivated until the ®nal goal is achieved. Thus, the control objective of the ro-
bot changes according to the current behavior. This objective can be to
follow the wall, the corridor, etc. The de®nition of the measures uses the
Robjective of each activated behavior and it is therefore possible to measure
the global performance of the robot.

· The fact of weighting the truth value of the Robjective of each behavior by the
weight of its context, makes it possible to take into account the activation of
more than one behavior at the same time.

6.2. The bending energy

The smoothness of the robot motion is an interesting parameter to be
considered because the robot can save energy and time while it is moving if the
trajectory is smooth. In order to evaluate the smoothness of the robot motion,
the curvature of the trajectory will be computed. In the real Euclidean plane,
curvature is de®ned as the rate of slope change as a function of the arc length.
For the curve y � f �x�, this can be expressed in terms of derivatives as

�d2y=dx2�
�1� �dy=dx�2�3=2

: �10�

However, when considered digitally, it is not clear how to de®ne an equivalent
slope measure. This problem may be overcome by using curvature approxi-
mation methods. The method used in this paper is based on curvature
approximation by means of orthogonal regression [15].

Once the curvature on every point of the robot trajectory has been com-
puted, it is possible to compute the BE. The BE [28, pp. 202±205], may be
understood as the energy necessary to bend a rod to the desired shape, and can
be computed as the sum of squares of the curvature at every point of the line
c�xi; yi� over the length of the line L. Then the BE of a robot trajectory is

BE � 1

L

XL

i�1

c2�xi; yi�; �11�

where c�xi; yi� is the curvature at every point of the robot trajectory and L is the
number of points on the robot trajectory.

The BE de®ned in Eq. (11) may be used to evaluate the smoothness of the
robot motion [1] but such a measurement is an average and it does not show
with su�cient clarity the fact that some trajectories will be larger than others.
Thus, the measurement that will be used is the TBE as de®ned by Eq. (12)

TBE �
XL

i�1

c2�xi; yi�: �12�
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The TBE is a measurement that takes the smoothness and the length of the
trajectory into account simultaneously. This measurement computes the energy
expenditure associated with a trajectory so that the trajectories with sharp
turns and long length will use a lot of energy and the value of TBE will be high.

Fig. 9 shows the relationship between the TBE and the smoothness of
some trajectories. The trajectory with low TBE is the straight line and the
energy expenditure increases according to the curvature of the following
trajectories.

7. Experimental results

In order to test the performance of the system in both simulation and the
real world we have carried out di�erent tasks. The ®rst one was to activate each
of the behaviors separately in its own context of applicability in order to tune
the linguistic variables of the rule base of each behavior. This tuning process
has been based on expert knowledge gained from the results of di�erent trials.
After that, several navigation tasks which required di�erent behaviors to be
activated were carried out in order to test the performance of the whole system.
Both combination methods have been explored with the implemented ele-
mentary behaviors, in simulation and in real o�ce-like environments obtaining
the di�erent results which are described in this section. Additionally, several
speed values have been explored by changing the support of the linguistic labels
at the speed domain and good results were achieved, although when the speed
is increased it is necessary to modify the distance used in order to activate the
Avoid obstacle behavior.

At the end of this tuning process, the robot reaches the control objective in
every case in spite of the presence of noise in the sensor data and the di�erent
surfaces of the walls. When several behaviors are activated, the transition

Fig. 9. The TBE.
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between behaviors is smooth and the robot adapts its behavior according to the
current context.

Before explaining the study of the in¯uence of each combination method, we
will detail the simulation parameters used. The sonar sensor has been simulated
taking into account the following parameters:
· Angular range of the main lobe of the sonar. A cone of 30° is used to simulate

the sound beam, and the incidence angle of the beam to the surfaces is con-
sidered.

· Maximum incidence angle. If the angular di�erence between the sonar axis
and the normal to the surface is larger that 60°, then the simulated sonar
is assumed not to have any echo back and the maximum distance will be re-
turned.

· Random error. This is an absolute random error factor. It is expressed as a
percentage of the real value. The error factor considered was 1%.
Regarding infrared sensors, the most important parameters are listed below:

· Angular range of the cone. In this case the cone has a width of 20°.
· Incidence error. This is an error factor used with the conical model of the

beam. It is expressed as a percentage of the real value which also considers
the incidence angle. The resulting distance is computed as, value� �1�
/� incidence error�; / being the angle between the sensor axis and the nor-
mal to the surface and incidence error being the value 0.05.

· Random error. This parameter has the same meaning as in the case of the
sonar sensors. The value was also 1%.
Even though other parameters are used in the simulation of the sonar and

infrared sensors, we only show the most important ones here. The remaining
parameters can be found in the user's manual for the Nomad 200 robot.

The study of the in¯uence of each combination method has ®rst been carried
out by taking into account several navigation tasks in a simulated o�ce-like
environment and then, experiments have been carried out in the real world in
order to validate the results of the simulation. The simulated environments
have the advantage of considering exactly the same environmental conditions
for each combination method so that the di�erences between the ®nal com-
plex behavior can be simply because of using one or another combination
method.

In every simulated navigation task, di�erent positions of the obstacles have
been tested. We have classi®ed three di�erent types of positions of the obstacles
in the environment according to the relative position of the obstacle with re-
spect to the walls of the environment. In the cases of Type I, the obstacle is
placed far from the wall that the robot will follow while in the cases of Type II,
the obstacle is placed near this wall. In the cases of Type III the obstacle
is placed at an intermediate distance from the wall between far and near.
Figs. 10±12 depict an environment of Type I, Type II and Type III, respec-
tively, which are used for Navigation Task 1.
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In order to test both combination methods extensively and compare the
in¯uence of the combination method in a given navigation task, we have taken
into account in each type of environment 20 di�erent runs of the same navi-
gation task in order to compute the arithmetic average of each evaluation
measure. The position of the obstacle in each run has been generated by means

Fig. 11. An environment of Type II.

Fig. 12. An environment of Type III.

Fig. 10. An environment of Type I.
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of a random method that produces a position within the range of positions
corresponding to that type of environment. Thus, the total number of runs of
one navigation task is 60 (20 in each type of environment). In this paper, two
navigation tasks in simulation are described so that the total number of ex-
periments is 120 (with each combination method). Notice that di�erent be-
haviors are activated in these experiments at the same time according to the
current context of the robot, thus the combination method plays an important
role in the ®nal complex observable behavior.

In each navigation task that we have tested, the results can be summarized
as follows. In Type I experiments, the position of the obstacle allows the robot
to maintain the control objective with both combination methods, the reason
for this being that there is enough space between the obstacle and the object of
the environment that is being followed by the robot. On the other hand, in
Type II experiments, the position of the obstacle does not allow the robot to
maintain the control objective, with either combination method, and it has to
follow the boundary of the obstacle. However, in Type III experiments the ®nal
complex behavior depends on the combination method that has been used.
This means that when the robot uses the C&D method it can maintain the
control objective and avoid the obstacle at the same time but when the robot
uses the D&C method it cannot maintain the control objective and it has to
follow the boundary of the obstacle. In so far as the values of the evaluation
measures are concerned, in Type I and Type II experiments, the values of
evaluation measures of the C&D method are only slightly better than the
values of the D&C method. However, in Type III experiments, the values of
evaluation measures of the C&D method are much better than the values of the
second one, and thus the experimentation shows that the ®rst method achieves
better values of the evaluation measures in the three types of experiments, with
higher bene®ts being obtained in the third type of experiments. Therefore, in
the next examples of navigation tasks attention will be focused on Type III
experiments, so that a particular run of one experiment of Type III of each
navigation task has been selected in order to explain some important points.
The description in the ®rst example is highly detailed but in the rest of ex-
amples the description is shorter. The proposed navigation tasks are shown
below.

7.1. Navigation Task 1

In this navigation task the robot has to reach the goal marked by Goal1
in Fig. 13 from an initial position marked by Wall1. The plan is computed
by the planning level and it is translated to a set of metarules by the execu-
tive level. The set of metarules to move the robot from the initial to ®nal
position is
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If obstacle then Avoid obstacle

If :obstacle^In�Wall1�^:Near�Door1� then Follow wall�Wall1�
If :obstacle^Near�Door1�^:In�Door1� then Face�Door1�
If :obstacle^In�Door1�^:Near�Corridor1� then Cross�Door1�
If :obstacle^Near�Corridor1�^:In�Corridor1� then Face�Corridor1�
If :obstacle^In�Corridor1�^:In�Wall2� then Follow corridor�Corridor1�
If :obstacle^In�Wall2�^:In�Goal1� then Follow wall�Wall2�
If In�Goal1� then Stop:

The metarules give us a natural description of the navigation task, dividing a
complex navigation task into a sequence of sub-goals that are achieved by
means of the basic behaviors.

Figs. 13 and 14 depict a run of a Type III experiment with C&D and D&C
combination methods, respectively, while Figs. 15 and 16 depict the activation
level of every basic behavior according to the context of the robot. The se-
quencing among behaviors emerges from the interaction of the behaviors with
the environment, thus a behavior is deactivated when its context becomes false
and the transition among them is a smooth transition since the context changes
smoothly. The change of context is marked in Figs. 13±16 by the letters `a'
to `g'.

A detailed description of a run of this navigation task in a Type III envi-
ronment is given as follows. The robot begins to execute the behaviors ac-
cording to the truth value of every metarule which depends on the current
context of the robot that is interpreted by several perceptual routines. First, the
robot follows the wall Wall1 until it senses the door Door1 (a), then it must face
it in order to cross it. Once it is facing the door (b), the robot crosses it and
after that (c) it has to face the next object which is the Corridor1. Once it is

Fig. 13. An experiment of Type III of Navigation Task 1 with C&D.
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Fig. 14. An experiment of Type III of Navigation Task 1 with D&C.

Fig. 15. Levels of activation of each activated behavior during the execution of the experiment with

C&D.

Fig. 16. Levels of activation of each activated behavior during the execution of the experiment with

D&C.
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facing the corridor (d), it follows the center of the corridor until it arrives at the
end of the corridor (e), then it has to follow the wall Wall2. At that moment, an
unexpected obstacle is detected and activation of Avoid obstacle begins, then
the Follow wall behavior prefers to approach the wall while the Avoid obstacle
behavior should avoid the obstacle. With the C&D method the combination is
dominated by the Follow wall behavior because when the robot begins to detect
the obstacle the Avoid obstacle behavior is indi�erent as to which side it should
turn to. On the other hand, when the second method is used the robot does not
turn su�ciently to the right in order to avoid the obstacle. It therefore ap-
proaches the obstacle and the avoidance policy prefers to turn to the left. Label
(f) indicates the moment in which the robot begins to get close to the wall
Wall2. Notice that with the D&C method, the robot begins to get closer to the
wall Wall2 much later than with the C&D method. Finally, the robot arrives at
the goal at the point marked by (g).

As far as the other two types of experiments are concerned, the Type I
experiments (obstacle far from the wall) produce trajectories which look like
those shown in Fig. 13 while the Type II experiments (obstacle near the wall)
produce trajectories which look like those in Fig. 14. In Type I and Type II
experiments, the trajectories are quite similar with both combination methods,
however, Type III experiments produce the ®rst kind of trajectory when the
C&D method is used and the second one when the D&C method is used. Thus,
in the Type III experiments, both trajectories are very di�erent.

The arithmetic average of evaluation measures of 20 experiments of each
type of Navigation Task 1 are shown in Table 3 and they show that the values
of the ®rst combination method are always similar to or better than the results
of the second one. The restricted achievement of the control objective is similar
in all cases. This means that when the robot has reached the control objective it
manages to maintain it very well. However, the global achievement values
show that the robot loses the control objective for less time when using the ®rst
combination than it does when the second one is used, and this is true in the
three types of experiments. Furthermore, the TBE value shows that there is a
higher energy expenditure in the trajectories of the second method because they
are not as smooth and their lengths are longer than the trajectories of the ®rst
one. The Type III experiments are situations where the ®rst method is much

Table 3

Global achievement, restricted achievement and TBE for Navigation Task 1

Type Ga Ra TBE

C&D D&C C&D D&C C&D D&C

I 0.7561 0.7502 0.8838 0.8820 46.4521 48.8083

II 0.5445 0.5371 0.8764 0.8761 84.9763 88.4451

III 0.7504 0.5280 0.8942 0.8806 52.6481 111.3685
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better than the second one and this is because with the C&D method the
preference for the Follow wall behavior can dominate the ®nal action when
detection of the obstacle begins.

7.2. Navigation Task 2

In Navigation Task 2 the robot has to reach the corner marked by Goal2 in
Fig. 17 from the initial place marked by Wall7. Figs. 17 and 18 depict a run of
an experiment of Type III of Navigation Task 2 with the C&D and D&C
combination methods, respectively.

The arithmetic average of evaluation measures of 20 experiments of each
type of Navigation Task 2 are shown in Table 4.

Fig. 17. An experiment of Type III of Navigation Task 2 with C&D.

Fig. 18. An experiment of Type III of Navigation Task 2 with D&C.
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7.3. Experimentation in the real world

In order to validate the results of simulated experiments, two navigation
tasks have been tested in a real world, o�ce-like environment. We have only
focused on Type III experiments, since this kind of experiment shows higher
di�erences between the two methods. Every navigation task has been run ®ve
times with each combination method and the results are shown below.

7.3.1. Navigation Task 3
In Navigation Task 3 the robot must reach the position marked by Goal3 in

Fig. 19 from the initial place marked by Wall5. Figs. 19 and 20 depict a run of a
Type III experiment of Navigation Task 3 with the C&D and D&C combi-
nation methods, respectively. In this case, the robot begins to follow the wall
Wall5 when an obstacle is sensed and avoided. Later, it has to approach Wall6
but a new obstacle is situated near the wall. The best action therefore would be
to follow the right wall if there is enough space to avoid the obstacle. This
trade-o� is properly resolved by the C&D method but not by the D&C method.

The arithmetic average of evaluation measures of ®ve experiments of Type
III of Navigation Task 3 are shown in Table 5.

Fig. 19. An experiment of Type III of Navigation Task 3 with C&D.

Table 4

Global achievement, restricted achievement and TBE for Navigation Task 2

Type Ga Ra TBE

C&D D&C C&D D&C C&D D&C

I 0.5801 0.5443 0.9455 0.9334 55.3207 57.2063

II 0.2592 0.2538 0.9224 0.9213 83.8149 84.1020

III 0.5622 0.2558 0.8744 0.8608 62.6916 123.4410
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7.3.2. Navigation Task 4
In Navigation Task 4 the robot has to reach the position marked by Goal4 in

Fig. 21 from the initial place marked by Co1. Figs. 21 and 22 depict a run of a
Type III experiment of Navigation Task 4 with the C&D and D&C combi-
nation methods, respectively. In this experiment, the robot is following the
corridor Co1 and when the corridor ends, it has to turn the corner and use the
behavior Face wall in order to be able to detect the left wall and follow it. Near
this wall, there is a column that should be avoided. Once again, with the ®rst
method the robot can avoid the column and begin to follow the left wall but
with the second method this is not possible and the robot must follow the
perimeter of the column.

The arithmetic average of evaluation measurements of ®ve Type III exper-
iments of Navigation Task 3 are shown in Table 6.

7.4. Discussion concerning the combination methods

Both combination methods achieve a su�ciently high control performance
once the control objective has been reached since the value of Ra is always close
to the value 1, which is the maximum. Regarding Ga, the experiments show

Fig. 20. An experiment of Type III of Navigation Task 3 with D&C.

Table 5

Global achievement, restricted achievement and TBE for Navigation Task 3

Type Ga Ra TBE

C&D D&C C&D D&C C&D D&C

III 0.4873 0.1334 0.8216 0.8156 42.8932 84.5104
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that depending on whether the environment lets the robot maintain the control
objective, then Ga will be close to the value Ra. But this does not depend only
on the environment since the ®rst method always obtains similar or better
values than the second one concerning Ga.

Fig. 21. An experiment of Type III of Navigation Task 3 with C&D.

Fig. 22. An experiment of Type III of Navigation Task 3 with D&C.

Table 6

Global achievement, restricted achievement and TBE for Navigation Task 3

Type Ga Ra TBE

C&D D&C C&D D&C C&D D&C

III 0.4116 0.1720 0.8673 0.8418 16.4082 140.1081
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Thus, Ga allows us to assess how the robot achieves the di�erent objectives
so that the trajectories which have a low Ga value can be considered worse than
those which are associated with a higher value. The di�erences are higher in the
Type III experiments because in these experiments the obstacles are placed in
critical positions that do not allow an easy trade-o� among the activated be-
haviors. This trade-o� is possible with the ®rst combination method because
the preference of a behavior, when the other behaviors are indi�erent over the
range of possible preferences, is better considered than with the second com-
bination method. This fact has an important in¯uence on the achievement of
the control objective because if the composition method can take the prefer-
ence of one behavior over the composition into account, the achievement of the
control objective will be high.

When considering the smoothness of the robot motion, the combination
method also has an important in¯uence on the TBE because if the robot loses
the control objective it has to expend more energy in order to recover it.

Regarding experimentation in the real world, both combination methods
have also been tested in an o�ce-like environment in the real world. The results
validate the simulated experiments so that the best values are related to the ®rst
combination method.

8. Conclusions

This work addresses the generation of complex behaviors by the combi-
nation of simpler behaviors as the lowest level of a hybrid deliberative±re-
active architecture for mobile robot navigation. According to the proposed
methodology for designing the elementary behaviors, these are implemented
by means of fuzzy rules which allow the linguistic descriptions of the control
strategies to be easily understood and provide robust navigation capabilities
for a mobile robot. Fuzzy logic also o�ers useful mechanisms to address the
arbitration of behaviors and the problem of combination. Arbitration is re-
solved through the use of fuzzy metarules that are generated by the executive
level according to the plan computed by the planning level. The most im-
portant features of the architecture proposed here are as follows. The
methodology for designing the behaviors, on the one hand, allows us to build
the rule base of the behaviors so that the structure of the di�erent behaviors
becomes quite homogeneous and enables us to de®ne interesting evaluation
measures. On the other hand, this methodology allows us to combine be-
haviors that use di�erent kinds of input information such as sensor data or
the data from sensor-derived world modeling. Regarding the planning algo-
rithms, our system uses minimum-cost path searching algorithms to compute
the path between the initial and ®nal position of the robot, and the trans-
lation to metarules is carried out in a straight way. If this path becomes
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unfeasible, the map of the environment is updated and a new path is
computed. With regard to the possibility of con¯ict among preferences of
behaviors, our solution is neither concerned with the design of the rule base
nor the design of the metarules and allows a higher interaction among
behaviors.

Two combination methods have been studied and tested both in simulation
and in the real-world to show their in¯uence on the ®nal complex behavior.
The evaluation of the experimentation has been based on three evaluation
measures: the global achievement Ga, the restricted achievement Ra and the
TBE. The results of our experiments show the good performance of the ar-
chitecture and the fuzzy behaviors in spite of the presence of noise and
vagueness in the sensor data and unexpected obstacles. Regarding the com-
bination methods, the in¯uence of the combination method on the ®nal
complex behavior is important because the ®nal trajectories may be quite
di�erent in those situations in which a good trade-o� among the behaviors is
possible. The ®rst combination method produces trajectories that have better
global achievement and less TBE in all cases but the bene®ts are higher when
the composition is dominated by the preference of one behavior and there is
the possibility of a good trade-o� among the behaviors. Therefore, in our
system the defuzzi®cation should be performed after combination in order to
obtain the best trade-o� among the behaviors that are activated at the same
time.

In this paper, attention has been focused on the design, coordination and
fusion of the di�erent behaviors but needless to say, there are far more issues
than we have touched on here. Further work will study learning techniques in
order to improve the fuzzy behaviors, where the measures here explained can
be very useful for evaluating the robot motion. As far as the rest of the ar-
chitecture is concerned, we are currently working on the further development
of planning algorithms under uncertainty and localization techniques to deal
with the vagueness and uncertainty of the real world.
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