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Abstract 

Let G - ( V , E )  be a graph. In this note, 7c, ir, ~',i,/~0, F, IR denote the connected domination 
number, the irredundance number, the domination number, the independent domination number, 
the independence number, the upper domination number and the upper irredundance number, 
respectively. We prove that 7c~<3i r -  2 for a connected graph G. Thus, an open problem 
in Hedetniemi and Laskar (1984) discuss further some relations between 7c and 7,[~o,F. IR. 
respectively. 

l .  Introduction 

All graphs under consideration are finite, undirected, and loopless without multiple 

lines. 

Let G = (V,E) be a graph with vertex set V and edge set E. 

The open neighborhood o f  a vertex u, denoted by N(u), is the set of  vertices adjacent 

to u. The closed neighborhood of  a vertex u, denoted by N[u], is N(u)U{u}.  The open 

neighborhood of  a set S of  vertices, denoted by N(S),  is the set of  vertices adjacent 

to a vertex in S. The closed neighborhood of  a set S o f  vertices, denoted by N[S], is 

N(S)  U {S}. 

For a set D C V, (D) denotes the subgraph induced by D. 

A set D C_ V is a dominating set i f  every vertex in V - D is adjacent to at least one 

vertex in D. A dominating set D is independent i f  no two vertices in (D) are adjacent. 

A dominating set D is a connected dominating set if  (D) is connected. The domi- 

nation (independent domination, connected domination) number, denoted by 7 (i, Tc), 

is the minimum number of  vertices in a dominating (independent dominating, con- 

nected dominating)  set. The upper domination number, denoted by F, is the maximum 

number of  vertices in a minimal dominating set. The independence number, denoted 
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by fl0, is the maximum cardinality of  an independent set o f  vertices. A set S c V is 
an irredundant set if  for every x ES, N[x] 7~ Uy~S-{x} N[y]. The irredundance (upper 
irredundance) number, denoted by ir (IR), is the minimum (maximum) cardinality of  
a maximal irredundant set o f  vertices. 

For a set S C V, IS] denotes the cardinality of  S. We denote a set S as an ir-set if  
S is a maximal irredundant set with IS[ = ir. 

Any definitions not given here can be found in [4]. 
The inequality 7 ~< 2 i r -  1 was obtained independently in [2, 3]. Does a similar result 

hold if 7c is substituted for ~? This stands in [8] as an open problem. 
In this paper, we prove that 7c ~< 3 ir - 2  for a connected graph G and this result is 

best possible. 
The parameters ir, ~, i, fl0, F and IR are related by the following inequalities: 

Theorem 1.1 (Cockayne and Hedet [5,6]). For any 9raph G, ir<~7<~i<~flo<<.F<~IR. 

A natural question is: What relationships exist between 7c and 7,i, flo, F, IR 

respectively? We demonstrate some relationships and show that these results are best 
possible. 

2. M a i n  results 

L e m m a  2.1 (Duchet and Meyniel [7]). For any connected 9raph, 7c <<.3~ - 2. 

L e m m a  2.2 (Allan et al. [8]). I f  S & an ir-set o f  graph G, and S & independent, then 

i r = ?  = i .  

Theorem 2.3. I f  S & an ir-set o f  a connected 9raph G, and S & independent, then 

7c ~< 3 ir - 2. 

Proof .  It follows from Lemmas  2.l and 2.2. [] 

Theorem 2.4. I f  a 9raph G & connected, then 7c ~< 3 i r -  2. 

ProoL Let G be a connected graph and let S = {Vl . . . . .  v,n) be an ir-set. All compo- 
nents o f  (S) are denoted by $1 . . . . .  Sn, 1 ~< n ~< m = ir. Suppose that there are t isolated 
vertices vl, . . ., vt in (S/, 0 <~ t <~ n, where vz . . . .  , vt belong to components ,71 . . . . .  St, re- 
spectively, but each of  the other n -  t components contain atleast two vertices. Hence, 

2 ( n - t ) + t < ~ i r ,  i . e . , 2 n - t ~ < i r .  (1) 

We need to consider only two cases as follows. 
Case 1: t = n, i.e., S is independent. Then from Theorem 2.3, we have 7c ~< 3 ir - 2. 
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Case 2: t < n, Since S is an irredundant set, N[vi] ~ Uj4iN[vj] for any vi ES. Assume 

that 

Ni = N [ v i ] -  UN[vj] for i =  1 . . . . .  m. (2) 
./:fii 

Since Ni ¢ (3, we may choose one vertex ui E Ni for i = 1 . . . . .  m. Suppose that 

S '  = S U {ut+l . . . . .  urn}. It is clear that 

IS' I = i t + J r -  t = 2 i t -  t. (3) 

We claim that S t is a dominating set. 

I f  S is a dominating set o f  G, then it is clear that S t is also a dominating set. 

I f  S is not a dominating set of  G, let v be an arbitrary vertex in V - N[S]. we 

discuss the following two subcases. 

Subcase 1.1: There exists i, t < i<~m, such that Ni CN[v] .  

Subcase 1.2: Ni 7~ N[v] for any i, t < i<.m. In this subcase, we discuss: 

Subcase 2.1: When t = 0, then Ni 7~ N[v] for 1 <~i<<.m. 
Subcase 2.2: When t > 0, since vl . . . . .  vt are isolated vertices in (S), thus we obtain 

vicNi for l<~i<<.t from (2). 

Since vi ~ N[v] by the choice of  vertex v, hence Ni 7~ N[v] for 1 ~< i ~< t. 

S o ~  ~ N [ v ]  for l~<i~<m. 

Therefore, according to Subcases 2.1 and 2.2, we have that 

Ni ~ N[v] for l<~i<~m. (4) 

Since v EN[v], but v ~ N[S], therefore 

N[v] ~ 0 N[vi]. (5) 
i--I 

By (2), for any vertex viES, 

Ni C_ N[v,]. (6)  

By (4), 

there exists at least one vertex uENi -N[v].  (8) 

Hence, by (6), 

u cN[vi]. (9) 

But, from (8), 

u ~ N[v]. (1o) 
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So, by (7) and (8), 

u ~ U N[vj]. (11) 
jT~i 

Therefore, due to (9) , (10)  and (11), 

Then, according to (5) and (12), S U {v} is an irredundant set. But this contradicts 
the maximality of  S. 

So Subcase 2 cannot occur, and only Subcase 1 can occur, i.e., there exists i, t ~< i ~< m, 

such that N / _  N[v]. Then since ~/i E N/, /3 E Ui%t+l N[ui]. 
Note that v is an arbitrary vertex belonging to V -  N[S]. So S'  is a dominating set. 
Assume that all components of  (S/) are denoted by S~ . . . . .  Sq, hence 1 <~q<~n~ir. 

Let Yi = {v]vEN[s~]} ,  Gi = (Y,), i = 1 . . . . .  q. Then Gi is a connected subgraph of  G. 
Any vertex in G belongs to some  Gi. 

I f  q = 1, then (S ~) is connected: 

7c~<]S'l = 2 i r -  t (by (3))  
~ < 2 i r - t + ( i r + t - 2 )  ( s i n c e i r + t ~ > 2 n  a n d n ~ > l ) .  

So 7~ ~< 3 ir - 2. 
I f  q~>2, since G is connected, there exists one vertex yl c Gl, and Yl is adjacent 

to one vertex Zl E uq=2 Gi. Without loss of  generality, suppose that zl C G2. Similarly, 
there exists one vertex Y2 E Gl U G2, and Y2 is adjacent to one vertex z2 E U q Gi. i=3 
Without loss of  generality, suppose that z2 C G3, and so on. We will make a set 
Y = {Yl . . . . .  y s - l , z l  . . . . .  zk-1}, where s<~q<~n, k<~q<~n. It is clear that (S' tO Y) is a 
connected subgraph of  G. 

So 

7c <<. I( S ' u Y ) j < ~ 2 i r - t + s - l + k -  1 

~< 2 i r -  t + 2n - 2 ~ < 3 i r -  2 (by (1)). [] 

According to Theorem 1.1, the following corollary is obtained. 

Corollary 2.5. I f  G is connected, then 7c~<3 i -  2. 

Example  1. (a) For any positive integer n, consider the graph C3n, which is a cycle 
with 3n vertices. 7c = 3n - 2, ir = 7 = i = n. 

(b) For any positive integers s, t, consider the graph H obtained by identifying 
one vertex from each of  C3s, C3t; then the number of  vertices in H is 3(s + t) - 1, 
7 c = 3 ( s + t ) - l - 4 = 3 ( s + t ) - 5 ,  i r = ? = i = s + t - 1 .  

(c) For any positive integers s, t, k, consider the graph H obtained by identifying one 
vertex from each of  C3s, C3t, C3k; then the number of  vertices in H is 3(s + t + k) - 2, 
7c = 3(s + t  + k ) - 2 - 6 =  3(s + t  + k ) - 8 ,  i r = 7 = i = s  + t  + k - 2 .  



C Bo, B. Liu/Discrete Mathematics 159 (1996) 241 245 245 

These examples show that the results of  Theorem 2.4, Corollary 2.5 and Lemma 2.1 

are best possible. 

3. Conclusion 

The fact that 7c<~2130 - 1 is proved in [7]. From Theorem 1.1, we know that 

,,~ ~ < 2 F -  1, 7c ~<2IR - 1. 

We will show that the bounds are best possible by the following example. 

Example  2. Consider the graph C5, /~0 = F = IR = 2, 7c = 3. 

We draw a conclusion that 7 c ~ < 3 i r -  2, 7~<37 2, 7c-G<3i- 2, 7~<2fi0 - 1, 
, , c ~ < 2 F -  1, , , c ~ < 2 I R -  1 for a connected graph G and these results are best 
possible. 
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