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Abstract

In this paper, we give a characteristic of abstract convexity structures on topological spaces with selection
property. We show that if a convexity structure C defined on a topological space has the weak selection
property then C satisfies H0-condition. Moreover, in a compact convex subset of a topological space with
convexity structure, the weak selection property implies the fixed point property.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The convexity of space plays a very important role in fixed point theory and continuous se-
lection theory. For example, the question of whether Brouwer fixed point theorem and Michael
selection theorem can be generalized to non-locally-convex topological spaces is the one of the
greatest unsolved problems in these areas. The study of abstract convexity structures on topo-
logical spaces originated in works of Michael [9], van de Vel [14], Horvath [5]. There are many
works which deal with various kinds of generalized, topological, or axiomatically defined con-
vexities (see [1–8,11–16]). Most of them establish various fixed point theorems and selection
theorems in topological spaces without linear structure such as some generalizations of Brouwer
fixed point theorem, Fan–Browder fixed point theorem and Michael selection theorem.
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The aim of this paper is not to give some generalized convex structure but to analyze the
relationships among abstract convexity structures, selection property and fixed point property.
We consider whether the various convexity structures should have some common characteristic.
Around this questions, we prove that X satisfies H0-condition if X is of weak selection prop-
erty with respect to any standard simplex ΔN , and we show that a compact convex subset in a
topological space with convexity structure, the weak selection property implies the fixed point
property.

2. Preliminaries

Given a topological (or uniform) space Y , van de Vel introduces the class of “convex” sets as
a class of subsets of Y closed under intersections (see [14,15]). Horvath defines “convex hulls”
of finite subsets of Y (see [5]). Michael [9], on the other hand, considers an analogue of convex
combination functions of vector spaces.

We consider a generalized convexity structure as follows. We relax van de Vel’s conditions in
such a way that Horvath ’s and Michael’s “convex” sets are included.

Definition 2.1. A pair (Y,C), where C is a family of subsets of Y , is called a convex structure if

(1) the empty set ∅ is in C;
(2) C is stable for intersections, that is, if D ⊂ C is nonempty, then

⋂
A∈D A is in C.

Let C be a convexity structure of Y . The convex hull conv is defined as

conv(A) =
⋂

{D ∈ C: A ⊂ D}, A ⊂ Y.

A subset C of Y is said to be a convex subset if C ∈ C. It is clear that C is convex if and only
if conv(C) = C, and it is easy to check that this convexity structure includes various abstract
convexity structures mentioned above. For example, in Horvath’s H-spaces, the class of “convex”
set

C = {C ⊂ Y : ΓA ⊂ C for any finite subset A ⊂ C},
where {ΓA} is a family of contractible subsets of Y indexed by all finite subsets of Y such that
ΓA ⊂ ΓB whenever A ⊂ B (see [4] and [5]). A metric space (Y, d) with a convexity structure C
is called an l.c. space if {y ∈ Y : d(y,E) < ε} ∈ C for any ε > 0 and any E ∈ C.

A topological space X (with a convexity structure C) is said to be of selection property with
respect to S if every multivalued mapping F :S �→ 2X admits a singlevalued continuous selection
whenever F is lower semicontinuous and nonempty closed convex valued. (X,C) is said to be
of weak selection property with respect to S if F :S �→ 2X admits a singlevalued continuous
selection whenever F is a multivalued mapping with nonempty convex images and preimages
relatively open in X (i.e., F(x) is convex for each x ∈ S and F−1(y) is open in S). X is said to
be of fixed point property if every continuous selfmap T on X has a fixed point in X.

Let N = {0,1,2, . . . , n}, ΔN = e0e1 · · · en be the standard simplex of dimension n, where
{e0, e1, . . . , en} is the canonical basis of Rn+1, and for J ⊂ N , let ΔJ = co{ej : j ∈ J } be a face
of ΔN . For each x ∈ e0e1 · · · en, there is a unique set of numbers t0, . . . , tn with

∑n
i=0 ti = 1,
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ti � 0, i ∈ N , such that x = ∑n
i=0 tie

i . The coefficients t0, . . . , tn are called the barycentric coor-
dinates of x. Let

χ(v) =
{

i: v =
n∑

i=0

tie
i , ti > 0

}
.

Definition 2.2. Let {Ti : i ∈ I } be some simplicial subdivision of standard simplex ΔN =
e0 · · · en, V denote the collection of all vertices of all subsimplexes in the subdivision. A function
λ :V → {0, . . . , n} satisfying

λ(v) ∈ χ(v), ∀v ∈ V,

is called a normal labeling of this subdivision. Moreover, Ti is called a completely labeled sub-
simplex or completely labeled lattice if Ti must have vertices with the complete set of labels:
0, . . . , n.

Sperner’s Lemma. (See [16].) Let {Ti : i ∈ I } be any simplicial subdivision of ΔN and normally
labeled by a function λ. Then there exist odd numbers of completely labeled subsimplexes or
lattices in the subdivision with respect to the labeling function λ.

Horvath proved the following result, which is the basic tool for obtaining selection theorems
and fixed point theorems in spaces with abstract convexity.

Horvath’s Lemma. (See [5,6].) Let Y be a topological space. For each J ⊂ N , let ΓJ be a
nonempty contractible subset of Y . If ∅ 	= J ⊂ J ′ ⊂ N implies ΓJ ⊂ ΓJ ′ , then there exists a
continuous mapping f :ΔN �→ Y such that f (ΔJ ) ⊂ ΓJ for each nonempty subset J ⊂ N .

3. Main results

According to Horvath’s Lemma, we call that a pair (Y,C) satisfies H0-condition if the con-
vexity structure C has the following property:

(H0) For each finite subset {y0, y1, . . . , yn} ⊂ Y , there exists a continuous mapping f :ΔN �→
conv{y0, y1, . . . , yn} such that f (ΔJ ) ⊂ conv{yj : j ∈ J } for each nonempty subset J ⊂ N .

Now, we first prove the crucial result of this section as below.

Theorem 3.1. If a pair (Y,C) is of weak selection property with respect to any standard simplex,
then (Y,C) satisfies H0-condition.

Proof. Let A = {y0, y1, . . . , yn} be any finite subset of Y , ΔN = e0e1 · · · en the standard simplex
of dimension n. For each J ⊂ N and each face ΔJ of ΔN , let

Δo
J = {

v ∈ ΔJ : χ(v) = J
}

denote the interior of ΔJ .
Define T :ΔN �→ 2Y as follows:

T (x) = conv
{
yj : j ∈ χ(x)

}
, x ∈ ΔN.
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It is routinely to check that T is with nonempty convex images and preimages relatively open
in ΔN . In fact, for each y ∈ Y and each x ∈ T −1(y), there is only one face ΔJ ,J = χ(x) such
that x ∈ Δo

J . So x /∈ ΔJ ′ for any face ΔJ ′ not containing ΔJ . For any Δ′
J 	⊃ ΔJ , there exists a

neighborhood O(x) ⊂ ΔN of x such that O(x) ∩ ΔJ ′ = ∅ as every face ΔJ ′ is closed and the
number of faces of ΔN is finite. Therefore, for any z ∈ O(x), any face ΔJ ′ contains z only if
ΔJ ⊂ ΔJ ′ . Then for each z ∈ O(x), z ∈ Δχ(z) implies Δχ(z) ⊃ ΔJ , so that χ(z) ⊃ J = χ(x).
It follows that T (z) ⊃ T (x) for all z ∈ O(x), and so y ∈ T (x) ⊂ T (z), i.e., z ∈ T −1(y) for all
z ∈ O(x). Hence T −1(y) is relatively open in ΔN .

In addition, it is obvious that T is nonempty closed and convex. Since Y is of selection
property with respect to any standard simplex, there exists a singlevalued continuous map-
ping f :ΔN �→ Y such that f (x) ∈ T (x) for all x ∈ ΔN . The definition of T implies that
f (ΔJ ) ⊂ conv{yj : j ∈ J } for each nonempty subset J ⊂ N , which complete the proof. �
Corollary 3.1. If a pair (Y,C) is of weak selection property with respect to any compact topo-
logical space, then (Y,C) satisfies H0-condition.

Proof. It is immediate from Theorem 3.1. �
Let (Y,C) be a pair, X a subset of Y . A multivalued mapping F :X �→ 2Y is called a KKM

mapping if convA ⊂ ⋃
x∈A F(x) for each finite subset A ⊂ X.

Theorem 3.2. Let X be a topological space, (Y,C) a pair satisfying H0-condition and
F :Y �→ 2X a KKM-mapping. If F is closed-valued, then the family {F(y): y ∈ Y } has the
finite intersection property.

Proof. Let {y0, y1, . . . , yn} be arbitrary finite subset of X. Since (Y,C) satisfies H0-condition,
there exists a singlevalued continuous mapping f :ΔN �→ conv{y0, y1, . . . , yn} such that
f (ΔJ ) ⊂ conv{yj : j ∈ J } for each nonempty subset J ⊂ N .

For each k ∈ {1,2, . . .} and each εk = 1/k > 0, let {T k
i : i ∈ Ik} be some simplicial subdivision

of ΔN such that the mesh of the subdivision less than 1/2k . And let Vk be the set of vertices of
all subsimplexes in this subdivision.

For each v ∈ Vk , let

λk(v) = min
{
j ∈ χ(v): f (v) ∈ F(yj )

}
.

Then λk(v) is nonempty, since v ∈ conv{ej : j ∈ χ(v)} and

f (v) ∈ f
(
conv

{
ej : j ∈ χ(v)

}) ⊂ conv
{
yj : j ∈ χ(v)

} ⊂
⋃

j∈χ(v)

F (yj )

by the hypothesis. It is easy to see that λk is a normal label function of the subdivision.
So for each k = 1,2, . . . , there must exist a subsimplex Tik with complete labels by Sperner’s

Lemma. Let zk
0, . . . , z

k
n be all vertices of subsimplex Tik , and

λ
(
zk

0

) = 0, λ
(
zk

1

) = 1, . . . , λ
(
zk
n

) = n.

By the definition of λ, we have

f
(
zk

0

) ∈ F(y0), f
(
zk

1

) ∈ F(y1), . . . , f
(
zk
n

) ∈ F(yn).
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Note that zk
0, . . . , z

k
n are some vertices of subsimplex Tik , so that d(zk

i , z
k
j ) � 1

2k , i, j ∈
{0,1, . . . , n}. Since ΔN is compact, we may assume that there is y∗ ∈ ΔN such that zk

i → y∗,
i = 0,1, . . . , n. Then f (zk

i ) → f (y∗). It follows from the closeness of each F(yi) that f (y∗) ∈
F(yi), i = 0,1, . . . , n, and

⋂
i∈N F(yi) 	= ∅. This completes the proof. �

Theorem 3.3. Let (Y,C) be a pair satisfying H0-condition, X a convex compact subset of (Y,C),
and F :X �→ 2X a multivalued mapping with nonempty convex images and preimages relatively
open in X. Then F has a fixed point.

Proof. Since X is compact and X = ⋃
x∈X F−1(x), there exists a finite subset {x0, x1, . . . , xn}

of X such that X = ⋃n
i=0 F−1(xi). Then

⋂n
i=0[X \ F−1(xi)] = ∅. Let

G(x) = [
X \ F−1(x)

]
, ∀x ∈ X.

With Theorem 3.2, we know that G is not a KKM-mapping, so that there exists a finite subset
{y0, y1, . . . , ym} such that

conv{y0, y1, . . . , ym} 	⊂
m⋃

i=0

G(yi).

Then there is some y∗ ∈ conv{y0, y1, . . . , ym} such that y∗ /∈ G(yi) for all i = 0,1, . . . ,m, that is

y∗ ∈ F−1(yi), ∀i = 0,1, . . . ,m.

Consequently

yi ∈ F(y∗), ∀i = 0,1, . . . ,m.

Therefore

y∗ ∈ conv{y0, y1, . . . , ym} ⊂ F(y∗),

which complete the proof. �
Theorem 3.4. Let X be a compact topological space, (Y,C) a pair satisfying H0-condition, and
F :X �→ 2Y a multivalued mapping with nonempty convex images and preimages relatively open
in X. Then F has a continuous selection.

Proof. Since X is compact and X = ⋃
y∈Y F−1(y), there exists a finite subset {y0, y1, . . . , yn} of

X such that X = ⋃n
i=0 F−1(yi). Now let {pi : i = 0,1, . . . , n} be a partition of unity subordinate

to the finite covering {F−1(yi): i = 0,1, . . . , n}. Define a mapping φ :X �→ ΔN by

φ(x) =
n∑

i=0

pi(x)ei, ∀x ∈ X.

On the other hand, since (Y,C) satisfies H0-condition, there exists a singlevalued continuous
mapping f :ΔN �→ conv{y0, y1, . . . , yn} such that f (ΔJ ) ⊂ conv{yj : j ∈ J } for each nonempty
subset J ⊂ N .

Now our desired mapping g is given by

g = f ◦ φ.
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In fact, it is easy to verify that φ(x) ∈ ΔJ(x) for each x ∈ X, where J (x) = {i ∈ N : pi(x) 	= 0}.
By the convexity of F(x), we do have that conv{yj : j ∈ J (x)} ⊂ F(x) and thus

g(x) = f
(
φ(x)

) ⊂ f (ΔJ(x)) ⊂ conv{yj : j ∈ J } ⊂ conv
{
yj : pj (x) 	= 0

}
⊂ conv

{
yj : yj ∈ F(x)

} ⊂ F(x).

This complete the proof. �
Combining Theorems 3.1 and 3.4, we have the following theorems.

Theorem 3.5. Let (Y,C) be a pair. Then Y has weak selection property respect to any compact
topological space if and only if (Y,C) satisfies H0-condition.

With Theorems 3.1 and 3.3, we have some relationships between the weak selection property
and the fixed point property as follows.

Theorem 3.6. Let (Y,C) be an l.c. metric space such that every single point set {x} is convex and
X a convex compact subset of (Y,C). If (Y,C) has the weak selection property, then X has the
fixed point property.

Proof. Assume f :X �→ X is arbitrary continuous mapping. Let Bε(y) = {y′ ∈ Y : d(y, y′) < ε}
and εn = 1

2n , n = 1,2, . . . . Define Fn :X �→ 2X by

Fn(x) = Bεn

(
f (x)

)
, ∀x ∈ X, n = 1,2, . . . .

It is easy to check that Fn :X �→ 2X is a multivalued mapping with nonempty convex images
and preimages relatively open in X. It follows from Theorem 3.1 and the selection property of
(Y,C) that (Y,C) satisfies H0-condition. Theorem 3.3 implies Fn has a fixed point x∗

n ∈ X, that
is x∗

n ∈ Fn(x
∗
n) = Bεn(f (x∗

n)). Since X is compact, we may assume x∗
n → x∗ ∈ X. We claim that

x∗ is a fixed point of f . �
Lemma 3.1. Let X be a compact topological space, (Y,C) be an l.c. metric space satisfying
H0-condition and F :X �→ 2Y a lower semicontinuous multivalued mapping with nonempty con-
vex images. Then for any ε > 0 there is a continuous function g :X �→ Y such that

d
(
g(x),F (x)

)
< ε, ∀x ∈ X.

Proof. Let

G(x) = {
y ∈ Y : F(x) ∩ Bε(y) 	= ∅} = {

y ∈ Y : d
(
y,F (x)

)
< ε

}
.

Since (Y,C) is l.c. space, G(x) is convex and G−1(y) is open since F is lower semicontinuous.
By Theorem 3.4, G has a continuous selection g, which is our desired mapping. �
Lemma 3.2. Let X be a compact topological space, (Y,C) be an l.c. complete metric space satis-
fying H0-condition and G :X �→ 2Y a lower semicontinuous multivalued mapping with nonempty
closed convex images. Then G has a continuous selection.

Proof. Let εn = 1
2n , n = 1,2, . . . . By induction, we construct a sequence {gn} of continuous

mapping gn :X �→ Y with the following two properties:
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d
(
gn(x),F (x)

)
< εn, n = 1,2, . . . , x ∈ X; (1)

d
(
gn(x), gn−1(x)

)
< εn−2, n = 2,3, . . . , x ∈ X. (2)

For n = 1, it follows from Lemma 3.1 by setting G = F , ε = ε1, and g1 = g. Assume we have
constructed g1, . . . , gn−1 satisfying (1) and (2). Consider the mapping

G(x) = [
Bεn−1

(
gn−1(x)

)] ∩ F(x), ∀x ∈ X.

By (1), G(x) is nonempty. Further observe that gn−1 is continuous, (Y,C) is l.c. and F is lower
semicontinuous. It follows from Theorem 7.3.10 of [10] that G :X �→ 2Y is lower semicontinu-
ous with nonempty convex images. Now Lemma 3.1 tell us that there is a continuous mapping
gn :X �→ 2Y such that

d
(
gn(x),G(x)

)
< εn, ∀x ∈ X.

By construction of G, gn satisfies (1) and (2).
Since the series

∑
εn converges, the sequence {gn} converges uniformly on X to a continuous

mapping f :X �→ Y by (2). Furthermore, this is a continuous selection of F by (1). Note that the
set F(x) is closed by hypothesis. �
Theorem 3.7. Let (Y,C) be an l.c. complete metric space. If Y has weak selection property
respect to any compact topological space, then Y has selection property respect to any compact
topological space.

It is clear from the constructions of the convexity directly that Horvath’s H-convexity struc-
ture (see [5]) and convexity structure defined on topological semilattice space (see [8]) satisfy
H0-condition. In fact, for each finite subset {yi : i ∈ N} ⊂ Y , there is a continuous mapping
f :ΔN �→ Y such that f (ΔJ ) ⊂ ΓJ ⊂ convA (respectively, f (ΔJ ) ⊂ Δ(A) ⊂ convA) for each
A = {yj : j ∈ J } and J ⊂ N (see [5,8]).

On the other hand, observe that the weak selection property has been established on various
convexity structures such as convexity structures in Michael [9], van de Vel [14], and others (see
[1–3,5–8,11–13,15,16]). Again with Theorem 3.1, We conclude the following property.

Property 3.1. Let (Y,C) be a pair. Then convexity structure C satisfies H0-condition whenever C
is one of following convexity structures:

(i) Horvath’s H-convexity structure (see [5]);
(ii) the convexity structure defined on topological semilattice space (see [8]);

(iii) G-convexity structure (see [11,12]);
(iv) van de Vel’s uniform convexity structure (see [14]);
(v) Michael’s convexity structure (see [9]);

(vi) B-convexity structure (see [3]).
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