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1. INTRODUCTION

In this paper, we study the existence and nonexistence of global solu-
tions of the problem

(lul""'u), = ((|th|2 + e)(p_l)/zux) , 0<x<1, t>0,

uxlx:(J = 07 ux|x:1 = ua|x:1’ t> O, (1)
u(x,0) =uy(x)>6>0, 0<x<l1,
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where a > 0, m, p > 0 are all constants; € and & are any given positive
constants.

Throughout the paper we assume that u,(x) € C**#([0,1]) for some
0<up<1, ux) >8>0 on [0,1] and satisfies the compatibility condi-
tions

ug(0) =0, ug (1) = ug(1).
Our main result reads as follows:

THEOREM. Al positive solutions of (1) exist globally if and only if

m m+1
a< min{ —, } (2)
p p+l

In recent years questions like blow-up and global solvability for semilin-
ear parabolic equation or systems with nonlinear boundary conditions have
been intensively studied; see [2—6, 8—11, 14-18] and references therein.
The Dirichlet or Cauchy problem for doubly nonlinear parabolic equation
has also been studied in that extent; see [1, 7, 13, 19] and references
therein.

Filo and Kacur [11] considered the local existence of a more general
version of (1) and gave some sufficient conditions on the global existence
of weak solutions under some assumptions of general nonlinear terms.
Chipot and Filo [5] considered the interesting model problem

u, = (a(u,)),, 0<x<1, >0,
Uldi—o=0, a(u)ly=1=ul=y, >0, (3)

u(x,0) =uy(x), 0O0=<x<l,

where a(&) € C*(R) satisfies a(&) = €177 % if [€]>n> 0, d(£) >0,
and |a(&)| < €177 for all £€ R; 0 < n <1 is any given positive con-
stant. They show that the solutions of (3) exist globally if and only if «
< 22 for1 < p < 2while a < 1 for p > 2 by using the methods of [10]

and also derive some blow-up rate estimates near blow-up time.

In this paper we will consider the global-existence and global-nonex-
istence of solutions to (1). Our main purpose is to show that how the
diffusion coefficient, nonlinearly depending on the solution and the gradi-
ent of a solution, affects the value of the critical exponent for global
solvability. Necessary and sufficient conditions on the global existence of
all positive (classical) solutions are obtained by using upper and lower
solutions method, which is different from that of [5, 6, 10].

From a physical point of view, the differential equations in (1) have been
suggested as some models; see [1-3, 6-11, 13-16] and the references
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therein. For example, the gas flow equation through a porous medium falls
in the class of equations we consider. The nonlinear boundary conditions
in (1) can be physically interpreted as a nonlinear radiation law, which
here is actually an absorption law; see [3, 10, 15, 16].

By the results of [12], we know that there exists a maximal time
T:0<T < 4+ such that (1) has a unique solution u(x,t) satisfying
u>36>0 on [0,1] X [0, T). Furthermore, if T < +o, then
lim, , ,_ max,_,_, u(x,t) = +o. It is also obvious that the classical
comparison principle holds for (1).

2. PROOF OF THE THEOREM

We will construct various upper and lower solutions and compare them
with the solutions of (1).
We will divide the proof of the theorem into two lemmas.

LEMMA 1.  Assume that (2) holds. Then the solution u(x,t) of (1) exists
globally.

Proof.
Case 1. m <p and p > 1. Take
w(x,t) = [a(x2 +1) + el(’“)]”/(‘”m) = yp/(p=m),

where a = 23 and [ = max{log2a), S2(1 + 22 )(20)* + )P~ V2,
2= log(max uy(x))}.

By the direct computations we have, for (x, ) € (0,1) X [0, + ),

I+ 1
1<y<2eU*h)

pml . 2ap
(Wm)t = ypm/(p*m)fle (t+1)’ w, = ym/(p—m)x’
p—m p—m
2ap m/(p—m) Zam m/(p—m)—1,.2
Wi = y + y X7
p—m p—m

(w2 + )",

)(p—l)/2—1( )(p—l)/ZW

=(wxz+e -

2ap 2
=p(( ) p2m/=my? 4

pw. + €)w,, <p(w; + €

(p—1/2

p—m
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X 2ap ym/(P—m)+ Zam ym/(P—m)—le
p—m p—m
2 (p—1/2
< 2ap e 2ap yrosoem(p 2am
p—m p—m p—m
(p—1
( 2ap )2 ) pmb2 2ap ( 2am )
<2p + € 1+
p—m p—m p—m

X ymp/(p—m)— lel(t+1)

mpl
p—m

ypm/(pfm)f Lolt+1) — (wm)

IA

te

Obviously

Wx|x:0=0, t>0.

By using (2) and the choice of a we have

I+ 1))’"/(1’—'")

Welio1 = (2as + e

p—m
=w*-1(2a + el(fﬂ))(’"—ap)/(p—m)

Zwa|x:17 t>0

and

|

w(x,0) = (a(x* + 1) + el)p/(pfm) > e/P/P™m > max uy(x) = uy(x).

O<x<1

These show that w is an upper solution of (1). By the comparison principle

we have u < w. It is obvious that w exists globally, and hence u
globally.

Case 2. m <p < 1. Take

w(x,t) = [a(x”l/l’ +1) + el(’“)]p/(p_m) = yp/(p=m),

exists
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where
-m
a= P and
p+1
20p—m) [a(p+ 1))’ am(p + 1
I = max{log(2a), (p > ) [alp ) (1 + L
mp p—m p—m
-m
log(max uo(x))} .

By the direct computations we have, for (x, ) € (0,1) X [0, + ),

Ii+1
1 <y<2eU*h

I(t+1)
b

pml
(Wm)t = ypm/(pfm)fle
p—m
W — Mym/@fm)xw,
X p - m
a(p +1) am(p + 1)

WX}C

= = L ym/pmmpt/p=t g
p(p —m)

(0w + )" w),

p—m

= w2+ &) (pwl + €)w,
< (wl+ e)(p_l)/zwxx
2 (p—1Dy/2
= —a(p * 1) yZm/(p—rn)XZ/p + e —a(p + 1)
p—m p(p—m)
s ym/p=m x1/p-1 4 My—lxz/p
p—m
p
- l a(p +1) prosr-ml 1 am(p + 1)
p\ p—m p—m
p
< E —a(p * 1) ymp/(p*m)*l 1+ —am(p + 1) PG
p\ p—m p—m
pml

<
p—m

ypm/(pfm)flel(tJrl) — (wm)

te

m/(p=—m)=1,2/p ,
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Obviously

Wx|x=0=07 t> 0.
By using (2) and the choice of a we have

a(p+1 B
Wx|x=1 = (fm)(za + el(t+1))m/(p m)

=w,-1(2a + el(Hl))(miap)/(pﬂn)
>w*x =1, t>0
and
w(x,0) = (a(x"*/7 + 1) + e’)p/(p_M) > P/t > max ug(x)
O<x<1
> ug(x).
These show that w is an upper solution of (1). By the comparison principle

we have u < w. It is obvious that w exists globally, and hence u exists
globally.

Case 3. m =p > 1. Take w(x,t) = (x> + e’ D, As in Case 1, it is
easy to verify that there exists / > 0 such that w is an upper solution of (1).
Hence u exists globally.

Case 4. m = p < 1. Take w(x,t) = (x!7/7 + 1)e'"*D_ As in Case 2,
it is easy to verify that there exists / > 0 such that w is an upper solution
of (1). Hence u exists globally.

Case 5. m > p = 1. It suffices to prove that for any T > 0 there exists
C(T) > 0 such that

u(x,t) <C(T) < +o,  (x,t) €[0,1] X [0,T]. (4)
To this aim, denote

P P
A

m-—p’

)(p—l)/Z.

4a9+1 226+1k2 0+ 3
k=max{1,—}, M= ( )p((4"k0)2+ €

It is obvious that for any given 7T:0 < T < + there exists a natural
number N = N(T) such that Y082 > 7 > (¥=Dlos2
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For any fixed i, set € = a(3), i = 1,..., N, where
1/7
. i i -1/6
a =m1n{4,4(5) ,4(max uy(x)) }

Take
+1y —0
wi(x,t) _ {ei[e—M(th,,l) _ %(1 _ d)(x))k/e, ]} _ eifey—e,
where T, =0, T, = 22 i = 1,..., N, ¢(x) = 2(1 — x?).
It is also obvious that for any given i = 1,..., N, y(x,t) is well defined
on Q; =[0,1] X [T,_;,T1 N [0,1] x [0,T] and ;<y < 1.
By the direct calculations we have for (x,¢) € Q;
Mom
(wim)t — MameifmoyfmeflefM(th[,l) > 5 6; ,

ko L
w. = _Ei_(o+7)y_9_1(1 _ ¢(x))k/éi lx’

X 4
k6 "
Wiee = Teﬁ“ﬂ{y-@-l(l = d(x)"
k —6-1 k/ef~2 2
o oy (= e() x
k(6+1 .
D o1 o]
€.

L

k k(o+1
< k0406i(9”){1 + =+ (—T)},
€ €

i i

((Wizx + 6)(p_ 1)/2Wix)x

< p(wlzx + E)(p_l)/zwixx
(p-1/2
< 4%K%0p((4k0)" + €) e OO (g + 0+ 2)

(p—1/2
< 4'%%9p((4°k0)" + €) " T e T I(g 4 3)

€

(p—-1y/2
= 4°K%0(0 + 3)p((4k0)" +¢) e

MOm
2

" < (w™),.
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Obviously
W lxe0 =0, t>0.

By (2) and the choice of k we have

_ —(0+ —-6-1
Wix|x=1 = €; ( T)Ty |x=1

1 (a—1)0—-1
7

—(0+7)+ 9k0 ~M(@—T;_y)
:Wia|x=1€i( R T e MU-Ti) —

ko (1\*
> w_oz|x=1€_—(9+7)+ afd | __
L L 4 4

ko 1\
= _01| _ €P[(P+l)ﬂ—(m‘*'])]/(m—P)(P‘*'])_ —
Wi lx=1 4 4

ko (1\*
> Wi eor — =) = w1, t>0
4 \4

and

wi(x,0) = {el[l — %(1 _ d))k/e;}}e s e o (%)o
<1

max,_ . Up(x) > uy(x), 0<x

%

Fori=2,..., N, we have

) = (e 0 - ]y

s(ei_l%)_‘g:ef"SWi(x,Ti_l), 0<x<l.
These show that w; is an upper solution of (1) on Q. By the comparison
principle we have u < w; on Q;,7 = 1,..., N. It is obvious that there exists
C(T):0 < C(T) < +9 such that (4) holds. Hence the solutions of (1) exist
globally.

Case 6. m >p and p < 1. As in Case 5, it suffices to prove that for
any 7 > 0 there exists C(T) > 0 such that (4) holds. To this aim, denote
1= 47, 0= 5t5, k=max{1,4°" ! /(p + D), M =07 krQ2r +

p(0+2) /8PP \m, N = N(T), T, as above. Take

L

Wi, ) = {a[e 0 31— () ) = oy,
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where ¢(x) = 1(1 —x'*1/?), ¢, =a(3),i=1,...,N, and a is a constant
to be determined later. As in Case 5, it is easy to prove that, for any fixed
i, there exists @ > 0 such that w; is an upper solution of (1) on Q,. By the
comparison principle we have u <w; on Q;, i =1,..., N. It is obvious
that there exists C(T):0 < C(T) < 4+ such that (4) holds. Hence the
solutions of (1) exist globally.

This completes the proof of Lemma 1.

m m+1
p>p+1

LEMMA 2. If o > min{ }, then the solution u of (1) blows up in a

finite time.

Proof. First, denote O©(z) = z(P~De=m+1(1 + ¢z*1); then it is easy to
verify that there exists z; > 0 such that ©(z) is monotone for z > z,.
Choose z, such that 0 < z, < min{z,, 8} < u,(x); then there exist positive
constants C; and C, such that C, < 0(z) < C, for z, <z < z,. Let z(s)
be a solution of the following problem:

Z(s) =2z%(s),  2(0) =z (5)

Denote the maximal existence time of solution of (5) by s,. Evidently,
S, < +o, z(s) > © as s = s, and there exists 0 < A < 1 such that z, <
z(A) < 6 < uy(x) and A <s,. Denote

A p+1 AZ

. _2a\(P—D/2
mln{(z) ,T(1+6202 )P }’

.{C1C3 C;0(z;) C3}
min _, —}, and

&

o

2

b
mC, mC, m

. { CC; GG G }
Cs = min

mC,  mO(z,)" m |’
If O(z) is nondecreasing for z > z,, then let 6(¢) be a solution of

0'(t) =C,0(z(0(t))), t>0, 6(0)=0. (6)
If O(z) is nonincreasing for z > z,, then let 6(¢) be a solution of

0'(t) =CsO(z(0(t) +A)), >0, 6(0)=0.

m m+1
p’>p+1

+ dZ + o dZ
f 2°0(z) f zPetlmm(] 4 qz* )

Since « > min{ }, the direct calculations yield

< +oo,
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Therefore, there exists T, : 0 < T, < + such that

lim z(0(t)) =  or lim z(0(t) + A) = +.
t->Ty t->Ty

0

Set w(x,t) = z(6(t) + n(x)), where n(x) = 4(x + 1)?; then there exists
T,:0<T, <T, <o such that w(x,t) is well defined on [0,1] X [0, T})
and lim, _, ,_[lw(:, DIl = +oe.

Now we show that w(x, t) is a lower solution of (1).

By the direct calculations we have for 0 <x <1land 0 <t < T,

A
= —(x+1)z*= —z7%,
W, 2(x )z 52
A a)? , A
w,=—=z"+ —z2" Y x+1)" > —z*(1 + az*™ ).
2 4 4

\

In the following we verify that

%

X

((sz + 6)(p—1)/zw )x

(W) (7)

First we show that

((wx2 + e)(p_l)/zwx)x > Cyz" 1 0(2). (8)

In fact, for p > 1, we have

(e R R (T R R I

AP
>wl'w =(—) 7P| — 4 —z°

o 2 2 4

A a? 1)

pt1
) z(1 + az*™ ")

p+1
) z"1e0(z) = C3zm 1T Y0(2).
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For p < 1, we have
(0w + )" w),

= w2+ )" w2 + €)w,
2

_ A _
> p(w] + e)(p D72y, P ((/\z“)2 + e)(p !

2
/ z9(1 + az*™ )

xXx Z 1
4
2% (p-1),2
> sz“(Az + €z;°%) (14 az*™)
pX

= (R ez )P0 (2) 2 0z 0 (2).

This shows that (8) holds.
Next, we consider the following two cases respectively.

Case 1. 0O(z) is nondecreasing for z > z,.
If z =2z(6(¢) + n(x)) € [z, z,], then z(6(¢)) € [z, z,]. Hence we have

O(2(6(1))).0(2(6(1) + (x))) € [C,.C]. (9)
By (6), (8), (9), and the choice of C, we have
(W), = mz"120'(1) = mzn 1 2C,0(2(6(1))
<mz" " 1TeC,Cy < 2" C,Cy < G2 0(2)
< ((sz N 6)(1)_1)/2%))(-
If z=2(6(¢) + n(x)) =z, > z(6(¢)), then we have
0(z(0(1))) <Gy, O(z(6(1) + m(x))) = 0(z,).  (10)
By (6), (8), (10), and the choice of C, we have
(W), = me"=120'(1) = mz"~1+2C,0(2(6(1))
<mz" 1 eC,C, <z CL0(z))
< Gz 1e(z) < ((sz + e)(p_l)/zwx)x.
If z=2z(0(t) + n(x)) > z(6(¢)) > z,, then we have
(W), = me"120'(1) = mz" 1+ 2C,0(2(6(1))

<zm1teC,0(z) < ((WXZ + e)(p_l)/zwx)x.
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Case 2. O(z) is nonincreasing for z > z,.
The verification of (7) is similar to that of Case 1.
Obviously

Wx|x=020, t>0.

Wx|x=1 = /\Zﬂ|x=1 SZu|)c=1 = Wu|x=19 t>0.

w(x,0) = 2(n(x) <2(N) <8 <uy(x), xe[0.1].

(11)
(12)
(13)

From (7), (11)—-(13) we see that w is a lower solution of (1). By the
comparison principle we have w < u. Obviously, w blows up in a finite

time. And hence u blows up in a finite time.
The proof of Lemma 2 is completed.

By Lemmas 1 and 2 we get our theorem.

Remark. The results of the paper may be extended to the N-dimen-

sional form of problem (1),

(Iulm_lu),=A u, x € Q cRV, t>0,

p.€

au
an

u(x,0) =uy(x) =6>0, x € Q,

=u“, x € 9Q, t>0,

where

>
=

I
Amz

2 (p—1y2
(qu_l + e) u, or
1 L xl

N
A= X (0wl + 0w
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