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1. INTRODUCTION

In this paper, we study the existence and nonexistence of global solu-
tions of the problem

Ž .p�1 �2m�1 2� � � �u u � u � � u , 0 � x � 1, t � 0,Ž . Ž .x xt ž / x
� 1Ž .� � �u � 0, u � u , t � 0,x�0 x�1 x�1x x

u x , 0 � u x � � � 0, 0 � x � 1,Ž . Ž .0
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where � � 0, m, p � 0 are all constants; � and � are any given positive
constants.

Ž . 2��Ž� 	.Throughout the paper we assume that u x 
 C 0, 1 for some0
Ž . � 	0 � � � 1, u x � � � 0 on 0, 1 and satisfies the compatibility condi-0

tions

u 0 � 0, u 1 � u� 1 .Ž . Ž . Ž .0 x 0 x 0

Our main result reads as follows:

Ž .THEOREM. All positi�e solutions of 1 exist globally if and only if

m m � 1
� � min , . 2Ž .½ 5p p � 1

In recent years questions like blow-up and global solvability for semilin-
ear parabolic equation or systems with nonlinear boundary conditions have

� 	been intensively studied; see 2�6, 8�11, 14�18 and references therein.
The Dirichlet or Cauchy problem for doubly nonlinear parabolic equation

� 	has also been studied in that extent; see 1, 7, 13, 19 and references
therein.

� 	Filo and Kacur 11 considered the local existence of a more general
Ž .version of 1 and gave some sufficient conditions on the global existence

of weak solutions under some assumptions of general nonlinear terms.
� 	Chipot and Filo 5 considered the interesting model problem

u � a u , 0 � x � 1, t � 0,Ž .Ž .t x x
�� � �u � 0, a u � u , t � 0, 3Ž . Ž .x�0 x�1 x�1x x

u x , 0 � u x , 0 � x � 1,Ž . Ž .0

Ž . 4Ž . Ž . � � p�2 � � �Ž .where a � 
 C R satisfies a � � � � if � � � � 0, a � � 0,
� Ž . � � � p�1and a � � � for all � 
 R; 0 � � � 1 is any given positive con-

Ž .stant. They show that the solutions of 3 exist globally if and only if �
2 p � 2 � 	� for 1 � p � 2 while � � 1 for p � 2 by using the methods of 10p

and also derive some blow-up rate estimates near blow-up time.
In this paper we will consider the global-existence and global-nonex-

Ž .istence of solutions to 1 . Our main purpose is to show that how the
diffusion coefficient, nonlinearly depending on the solution and the gradi-
ent of a solution, affects the value of the critical exponent for global
solvability. Necessary and sufficient conditions on the global existence of

Ž .all positive classical solutions are obtained by using upper and lower
� 	solutions method, which is different from that of 5, 6, 10 .

Ž .From a physical point of view, the differential equations in 1 have been
� 	suggested as some models; see 1�3, 6�11, 13�16 and the references
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therein. For example, the gas flow equation through a porous medium falls
in the class of equations we consider. The nonlinear boundary conditions

Ž .in 1 can be physically interpreted as a nonlinear radiation law, which
� 	here is actually an absorption law; see 3, 10, 15, 16 .

� 	By the results of 12 , we know that there exists a maximal time
Ž . Ž .T : 0 � T � �� such that 1 has a unique solution u x, t satisfying

� 	 � .u � � � 0 on 0, 1 � 0, T . Furthermore, if T � ��, then
Ž .lim max u x, t � ��. It is also obvious that the classicalt � T� 0 � x �1

Ž .comparison principle holds for 1 .

2. PROOF OF THE THEOREM

We will construct various upper and lower solutions and compare them
Ž .with the solutions of 1 .

We will divide the proof of the theorem into two lemmas.

Ž . Ž . Ž .LEMMA 1. Assume that 2 holds. Then the solution u x, t of 1 exists
globally.

Proof.

Case 1. m � p and p � 1. Take

Ž .p� p�m2 lŽ t�1. p�Ž p�m.w x , t � a x � 1 � e � y ,Ž . Ž .

p � m 4 ap 2 am 2 ap 2 Ž p�1.�2� Ž . Ž .ŽŽ . .where a � and l � max log 2 a , 1 � � � ,2 p m p � m p � m
p � m Ž Ž ..4log max u x .0p

Ž . Ž . � .By the direct computations we have, for x, t 
 0, 1 � 0, �� ,

1 � y � 2 elŽ t�1. ,

pml 2 ap
m pm �Ž p�m.�1 lŽ t�1. m �Ž p�m.w � y e , w � y x ,Ž . t xp � m p � m

2 ap 2 am
m �Ž p�m. m �Ž p�m.�1 2w � y � y x ,x x ½ 5p � m p � m

Ž .p�1 �22w � � wŽ .ž /x x x

Ž . Ž .p�1 �2�1 p�1 �22 2 2� w � � pw � � w � p w � � wŽ . Ž . Ž .x x x x x x x

Ž .p�1 �222 ap
2 m �Ž p�m. 2� p y x � �ž /ž /p � m
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2 ap 2 am
m �Ž p�m. m �Ž p�m.�1 2� y � y x½ 5p � m p � m

Ž .p�1 �222 ap 2 ap 2 am
m p�Ž p�m.� p � � y 1 �ž / ž /ž /p � m p � m p � m

Ž .p�1 �222 ap 2 ap 2 am
� 2 p � � 1 �ž / ž /ž /p � m p � m p � m

� y m p�Ž p�m.�1elŽ t�1.

mpl
pm �Ž p�m.�1 lŽ t�1. m� y e � w .Ž . tp � m

Obviously

�w � 0, t � 0.x�0x

Ž .By using 2 and the choice of a we have

2 ap Ž .m� p�mlŽ t�1.�w � 2 as � eŽ .x�1x p � m

Ž . Ž .m�� p � p�m� lŽ t�1.�� w 2 a � eŽ .x�1

� �� w , t � 0x�1

and

Ž .p� p�m2 l l p�Ž p�m.w x , 0 � a x � 1 � e � e � max u x � u x .Ž . Ž . Ž . Ž .Ž . 0 0
0�x�1

Ž .These show that w is an upper solution of 1 . By the comparison principle
we have u � w. It is obvious that w exists globally, and hence u exists
globally.

Case 2. m � p � 1. Take

Ž .p� p�m1�1� p lŽ t�1. p�Ž p�m.w x , t � a x � 1 � e � y ,Ž . Ž .
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where
p � m

a � and
p � 1

p
2 p � m a p � 1 am p � 1Ž . Ž . Ž .

l � max log 2 a , 1 � ,Ž . 2½ ž / ž /p � m p � mmp

p � m
log max u x .Ž .Ž .0 5p

Ž . Ž . � .By the direct computations we have, for x, t 
 0, 1 � 0, �� ,

1 � y � 2 elŽ t�1. ,

pml
m pm �Ž p�m.�1 lŽ t�1.w � y e ,Ž . t p � m

a p � 1Ž .
m �Ž p�m. 1� pw � y x ,x p � m

a p � 1 am p � 1Ž . Ž .
m �Ž p�m. 1� p�1 m �Ž p�m.�1 2� pw � y x � y x ,x x ½ 5p p � m p � mŽ .

Ž .p�1 �22w � � wŽ .ž /x x x

Ž .p�1 �2�12 2� w � � pw � � wŽ . Ž .x x x x

Ž .p�1 �22� w � � wŽ .x x x

Ž .p�1 �22a p � 1 a p � 1Ž . Ž .
2 m �Ž p�m. 2� p� y x � �ž /ž /p � m p p � mŽ .

am p � 1Ž .
m �Ž p�m. 1� p�1 �1 2� p� y x � y xž /p � m

p
1 a p � 1 am p � 1Ž . Ž .

m p�Ž p�m.� y 1 �ž / ž /p p � m p � m
p

2 a p � 1 am p � 1Ž . Ž .
m p�Ž p�m.�1 lŽ t�1.� y 1 � ež / ž /p p � m p � m

pml
pm �Ž p�m.�1 lŽ t�1. m� y e � w .Ž . tp � m
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Obviously

�w � 0, t � 0.x�0x

Ž .By using 2 and the choice of a we have

a p � 1Ž . Ž .m� p�mlŽ t�1.�w � 2 a � eŽ .x�1x p � m

Ž . Ž .m�� p � p�m� lŽ t�1.�� w 2 a � eŽ .x�1

� �� w x � 1, t � 0

and

Ž .p� p�m1�1� p l l p�Ž p�m.w x , 0 � a x � 1 � e � e � max u xŽ . Ž . Ž .Ž . 0
0�x�1

� u x .Ž .0

Ž .These show that w is an upper solution of 1 . By the comparison principle
we have u � w. It is obvious that w exists globally, and hence u exists
globally.

Ž . Ž 2 . lŽ t�1.Case 3. m � p � 1. Take w x, t � x � 1 e . As in Case 1, it is
Ž .easy to verify that there exists l � 0 such that w is an upper solution of 1 .

Hence u exists globally.

Ž . Ž 1�1� p . lŽ t�1.Case 4. m � p � 1. Take w x, t � x � 1 e . As in Case 2,
it is easy to verify that there exists l � 0 such that w is an upper solution

Ž .of 1 . Hence u exists globally.

Case 5. m � p � 1. It suffices to prove that for any T � 0 there exists
Ž .C T � 0 such that

� 	 � 	u x , t � C T � ��, x , t 
 0, 1 � 0, T . 4Ž . Ž . Ž . Ž .

To this aim, denote

p p
	 � , 
 � ,

p � 1 m � p

�
�1 2
�1 2 Ž .p�1 �24 2 k 
 � 3 pŽ . 2
k � max 1, , M � 4 k
 � � .Ž .ž /½ 5
 m

It is obvious that for any given T : 0 � T � �� there exists a natural
Ž .N log 2 N � 1 log 2Ž .number N � N T such that � T � .M M
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1 iŽ .For any fixed i, set � � a , i � 1, . . . , N, wherei 4

1�	k �1�
i ia � min 4 , 4 , 4 max u x .Ž .Ž .0½ 5ž /2

Take
�
	k��1�M Ž t�T . �
 �
ii�1w x , t � � e � 1 � � x � � y ,Ž . Ž .Ž .½ 5i i i4

i log 2 1 2Ž . Ž .where T � 0, T � , i � 1, . . . , N, � x � 1 � x .0 i M 2
Ž .It is also obvious that for any given i � 1, . . . , N, y x, t is well defined

1� 	 � 	 � 	 � 	on Q � 0, 1 � T , T � 0, 1 � 0, T and � y � 1.i i�1 i 4
Ž .By the direct calculations we have for x, t 
 Qi

M
 m
m �m
 �m
�1 �M Ž t�T . �m
i�1w � M
 m� y e � � ,Ž .i i it 2

k
 	k�� �1�Ž
�	 . �
�1 iw � � y 1 � � x x ,Ž .Ž .i x i4

k
 	k�� �1�Ž
�	 . �
�1 iw � � y 1 � � xŽ .Ž .i x x i ½4

k 	k�� �2�
�1 2i� � 1 y 1 � � x xŽ .Ž .	ž /�i

k 
 � 1Ž . 	Ž .2 k�� �1�
�2 2i� y 1 � � x xŽ .Ž .	 54�i

k k 
 � 1Ž .

 �Ž
�	 .� k
4 � 1 � � ,i 	 	½ 5� �i i

Ž .p�1 �22w � � wŽ .ž /i x i x x

Ž .p�1 �22� p w � � wŽ .i x i x x

Ž .p�1 �22
 2 
 �Ž pŽ
�	 .�	 . 	� 4 k 
 p 4 k
 � � � � � 
 � 2Ž . Ž .ž / i

Ž .p�1 �22
 2 
 �Ž pŽ
�	 .�	 .� 4 k 
 p 4 k
 � � � 
 � 3Ž . Ž .ž /
Ž .p�1 �22
 2 
 �m
� 4 k 
 
 � 3 p 4 k
 � � �Ž . Ž .ž / i

M
 m
�m 
 m� � � w .Ž . ti2
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Obviously

�w � 0, t � 0.x�0i x

Ž .By 2 and the choice of k we have

k

�Ž
�	 . �
�1� �w � � yx�1 x�1i x i 4

Ž .��1 
�1k
 1
� �Ž
�	 .��
 �M Ž t�T .i�1�� w � e �x�1i i ž /4 4

�
k
 1
� �Ž
�	 .��
�� w �x�1i i ž /4 4

�
k
 1
� p�Ž p�1.��Žm�1.	�Žm�p.Ž p�1.�� w �x�1i ž /4 4

�
k
 1
� �� �� w � w , t � 0x�1 x�1i iž /4 4

and

�
 
1 a	k�� �
1w x , 0 � � 1 � 1 � � � � �Ž . Ž .1 1 1 ž /½ 54 4

� max u x � u x , 0 � x � 1.Ž . Ž .0 � x �1 0 0

For i � 2, . . . , N, we have

�
	k��1�M ŽT �T . i�1i�1 i�2w x , T � � e � 1 � �Ž . Ž .½ 5i�1 i�1 i�1 4

�
1 �
� � � � � w x , T , 0 � x � 1.Ž .Ž .i�1 i i i�14

Ž .These show that w is an upper solution of 1 on Q . By the comparisoni i
principle we have u � w on Q , i � 1, . . . , N. It is obvious that there existsi i
Ž . Ž . Ž . Ž .C T : 0 � C T � �� such that 4 holds. Hence the solutions of 1 exist

globally.

Case 6. m � p and p � 1. As in Case 5, it suffices to prove that for
Ž . Ž .any T � 0 there exists C T � 0 such that 4 holds. To this aim, denote

p p �
�1 p�1 p�1� Ž . 4 Ž	 � , 
 � , k � max 1, 4 � p � 1 
 , M � 
 k 2	 �p � 1 m � p

Ž .. p p�1 Ž .p 
 � 2 �8 	 m, N � N T , T as above. Takei

�
	k��1�M Ž t�T . �
 �
ii�1w x , t � � e � 1 � � x � � y ,Ž . Ž .Ž .½ 5i i i4
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1 11�1� p iŽ . Ž . Ž .where � x � 1 � x , � � a , i � 1, . . . , N, and a is a constanti2 4

to be determined later. As in Case 5, it is easy to prove that, for any fixed
Ž .i, there exists a � 0 such that w is an upper solution of 1 on Q . By thei i

comparison principle we have u � w on Q , i � 1, . . . , N. It is obviousi i
Ž . Ž . Ž .that there exists C T : 0 � C T � �� such that 4 holds. Hence the

Ž .solutions of 1 exist globally.
This completes the proof of Lemma 1.

m m � 1� 4 Ž .LEMMA 2. If � � min , , then the solution u of 1 blows up in ap p � 1

finite time.

Ž . Ž p�1.��m�1Ž ��1.Proof. First, denote � z � z 1 � � z ; then it is easy to
Ž .verify that there exists z � 0 such that � z is monotone for z � z .1 1

� 4 Ž .Choose z such that 0 � z � min z , � � u x ; then there exist positive0 0 1 0
Ž . Ž .constants C and C such that C � � z � C for z � z � z . Let z s1 2 1 2 0 1

be a solution of the following problem:

z� s � z � s , z 0 � z . 5Ž . Ž . Ž . Ž .0

Ž .Denote the maximal existence time of solution of 5 by s . Evidently,�

Ž .s � ��, z s � � as s � s and there exists 0 �  � 1 such that z �� � 0
Ž . Ž .z  � � � u x and  � s . Denote0 �

p�1 2  p Ž .p�1 �2�2 �C � min , 1 � � z ,Ž .3 0½ 5ž /2 4

C C C � z CŽ .1 3 3 1 3
C � min , , , and4 ½ 5mC mC m2 2

C C C C C1 3 1 3 3
C � min , , .5 ½ 5mC m� z mŽ .2 1

Ž . Ž .If � z is nondecreasing for z � z , then let 
 t be a solution of1


 � t � C � z 
 t , t � 0, 
 0 � 0. 6Ž . Ž . Ž . Ž .Ž .Ž .4

Ž . Ž .If � z is nonincreasing for z � z , then let 
 t be a solution of1


 � t � C � z 
 t �  , t � 0, 
 0 � 0.Ž . Ž . Ž .Ž .Ž .5

m m � 1� 4Since � � min , , the direct calculations yieldp p � 1

�� ��dz dz
� � ��.H H
 p��1�m ��1z � z z 1 � � zŽ . Ž .
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Therefore, there exists T : 0 � T � �� such that0 0

lim z 
 t � � or lim z 
 t �  � ��.Ž . Ž .Ž . Ž .
� �t�T t�T0 0

 2Ž . Ž Ž . Ž .. Ž . Ž .Set w x, t � z 
 t � � x , where � x � x � 1 ; then there exists4
Ž . � 	 � .T : 0 � T � T � � such that w x, t is well defined on 0, 1 � 0, T1 1 0 1

� Ž .��and lim w �, t � ��.�t � T1

Ž . Ž .Now we show that w x, t is a lower solution of 1 .
By the direct calculations we have for 0 � x � 1 and 0 � t � T1

 
� �w � x � 1 z � z ,Ž .x 2 2

 �2 2
2� 2 ��1 � ��1w � z � z x � 1 � z 1 � � z .Ž . Ž .x x 2 4 4

In the following we verify that

Ž .p�1 �22 mw � � w � w . 7Ž . Ž .Ž . tž /x x x

First we show that

Ž .p�1 �22 m�1��w � � w � C z � z . 8Ž . Ž .Ž .ž /x x 3x

In fact, for p � 1, we have

Ž . Ž .p�1 �2 p�1 �2�12 2 2w � � w � w � � pw � � wŽ . Ž . Ž .ž /x x x x x xx

p�1 2  �
p�1 � p ��1� w w � z � zx x x ž / ž /2 2 4

p�1
� p ��1� z 1 � � zŽ .ž /2

p�1
m� 1�� m�1��� z � z � C z � z .Ž . Ž .3ž /2
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For p � 1, we have

Ž .p�1 �22w � � wŽ .ž /x x x

Ž .p�1 �2�12 2� w � � pw � � wŽ . Ž .x x x x

p2
Ž .p�1 �2Ž .p�1 �2 22 � � ��1� p w � � w �  z � � z 1 � � zŽ . Ž .Ž . Ž .x x x 4

p2
Ž .p�1 �2p� 2 �2 � ��1� z  � � z 1 � � zŽ .Ž .04

p2
Ž .p�1 �22 �2 � m�1�� m�1���  � � z z � z � C z � z .Ž . Ž .Ž .0 34

Ž .This shows that 8 holds.
Next, we consider the following two cases respectively.

Ž .Case 1. � z is nondecreasing for z � z .1
Ž Ž . Ž .. � 	 Ž Ž .. � 	If z � z 
 t � � x 
 z , z , then z 
 t 
 z , z . Hence we have0 1 0 1

� 	� z 
 t , � z 
 t � � x 
 C , C . 9Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž . 1 2

Ž . Ž . Ž .By 6 , 8 , 9 , and the choice of C we have4

w m � mz m� 1z�
 � t � mz m� 1�� C � z 
 tŽ . Ž . Ž .Ž .Ž .t 4

� mz m� 1�� C C � z m� 1�� C C � C z m� 1�� � zŽ .4 2 1 3 3

Ž .p�1 �22� w � � w .Ž .ž /x x x

Ž Ž . Ž .. Ž Ž ..If z � z 
 t � � x � z � z 
 t , then we have1

� z 
 t � C , � z 
 t � � x � � z . 10Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž . Ž .2 1

Ž . Ž . Ž .By 6 , 8 , 10 , and the choice of C we have4

w m � mz m� 1z�
 � t � mz m� 1�� C � z 
 tŽ . Ž . Ž .Ž .Ž .t 4

� mz m� 1�� C C � z m� 1�� C � zŽ .4 2 3 1

Ž .p�1 �2m�1�� 2� C z � z � w � � w .Ž . Ž .ž /3 x x x

Ž Ž . Ž .. Ž Ž ..If z � z 
 t � � x � z 
 t � z , then we have1

w m � mz m� 1z�
 � t � mz m� 1�� C � z 
 tŽ . Ž . Ž .Ž .Ž .t 4

Ž .p�1 �2m�1�� 2� z C � z � w � � w .Ž . Ž .ž /3 x x x
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Ž .Case 2. � z is nonincreasing for z � z .1
Ž .The verification of 7 is similar to that of Case 1.

Obviously

�w � 0, t � 0. 11Ž .x�0x

� � � � � � �w �  z � z � w , t � 0. 12Ž .x�1 x�1 x�1 x�1x

� 	w x , 0 � z � x � z  � � � u x , x 
 0, 1 . 13Ž . Ž . Ž . Ž . Ž .Ž . 0

Ž . Ž . Ž . Ž .From 7 , 11 � 13 we see that w is a lower solution of 1 . By the
comparison principle we have w � u. Obviously, w blows up in a finite
time. And hence u blows up in a finite time.

The proof of Lemma 2 is completed.

By Lemmas 1 and 2 we get our theorem.

Remark. The results of the paper may be extended to the N-dimen-
Ž .sional form of problem 1 ,

� � m� 1 Nu u � � u , x 
 � � R , t � 0,Ž . p , �t

� u �� u , x 
 � � , t � 0,��

u x , 0 � u x � � � 0, x 
 � ,Ž . Ž .0

where

N Ž .p�1 �22� �� � u � � u orÝ ž /p , � x xž /i i x ii�1

N Ž .p�1 �22� �� � �u � � u .Ž .Ýp , � xž /i x ii�1
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