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Abstract

We propose a method of constructing orthogonal polynomials Pn(x) (Krall’s polynomials) that are eigenfunctions of
higher-order di�erential operators. Using this method we show that recurrence coe�cients of Krall’s polynomials Pn(x)
are rational functions of n. Let P(a; b;M)n (x) be polynomials obtained from the Jacobi polynomials P(a; b)n (x) by the following
procedure. We add an arbitrary concentrated mass M at the endpoint of the orthogonality interval with respect to the
weight function of the ordinary Jacobi polynomials. We �nd necessary conditions for the parameters a; b in order for the
polynomials P(a; b;M)n (x) to obey a higher-order di�erential equation. The main result of the paper is the following. Let a
be a positive integer and b¿− 1=2 an arbitrary real parameter. Then the polynomials P(a; b;M)n (x) are Krall’s polynomials
satisfying a di�erential equation of order 2a+ 4. c© 1999 Elsevier Science B.V. All rights reserved.

MSC: primary 33C45
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1. Introduction

Formal orthogonal polynomials OP are de�ned through the three-term recurrence relation [1]

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x); P0 = 1; P1 = x − b0: (1.1)

The so-called Favard theorem [1] states that if un 6= 0, then there exists a linear functional L such
that

L{Pn(x)Pm(x)}= hn �nm; (1.2)

where hn = u1u2 : : : un are normalization constants.
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The problem formulated �rst by Krall [9], is to �nd all formal OP satisfying the eigenvalue
problem

LPn(x) = �n Pn(x) (1.3)

for the N th-order di�erential operator L de�ned by

L=
N∑

k=0

ak(x)@k
x ; (1.4)

where ak(x) are polynomials such that deg(ak(x))6k.
It is easily seen that necessarily N is even and �n is a polynomial in n of degree 6N .
The OP satisfying Eq. (1.3) for N =2 are well known as classical OP: Jacobi (and their special-

izations, like Gegenbauer ones), Laguerre and Hermite polynomials.
Krall found all possible OP satisfying 4th order di�erential equation (i.e. N =4). However already

for N = 6 a full list of all OP is unknown (apart from several explicit examples).
In all known explicit examples it appears that ‘non-classical’ OP satisfying Eq. (1.3) di�er from

classical ones (i.e. satisfying Eq. (1.3) with N=2) only by inserting one or two concentrated masses
at the endpoints of the orthogonality interval.
For example, in [5,6] di�erential equations of arbitrary order were constructed for the generalized

Laguerre and ultraspherical polynomials.

2. Representation coe�cients of the operator L

Without loss of generality we can put

a0 = 0: (2.1)

Indeed, a0 is a constant which can be incorporated into the de�nition of �n as is seen from Eq. (1.3).
In what follows we will assume that condition (2.1) is ful�lled. Note that this means in particular
that

�0 = 0: (2.2)

It is useful to present the polynomials an(x) in the form

an(x) =
n∑

s=0

�nsxs; n= 0; 1; : : : ; N; (2.3)

where �ns are some coe�cients. In general degrees of the polynomials an(x) can be less than n.
This means that �nn = 0 for some n. However there exists at least one polynomial an(x) such that
deg(an(x)) = n. Indeed, otherwise the operator L acting to the polynomial Pn(x) yields a polynomial
of a lesser degree which is impossible due to Eq. (1.3).
Consider the action of the operator L on the monomials xn. Using Eq. (1.4) we get

L{xn}=
n∑

k=0

Ankxk ; (2.4)

where Ank are some coe�cients.
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Proposition 2.1. The coe�cients Ank have the following properties:
(i) Ank = 0 for k = 0; 1; : : : ; n− N − 1;
(ii) Ank are polynomials in n of degrees not exceeding N (at least one of these polynomials has

the exact degree N );
(iii) The polynomial An;n−s has zeroes at n= 0; 1; : : : ; s− 1.

Proof. The property (i) follows from the fact that N is the maximal order of all derivative operators
in L. The properties (ii) and (iii) follow from the explicit formula

Ank =
N−n+k∑

j=0

�j+n−k; jn(n− 1) : : : (1 + k − j): (2.5)

This allows one to rewrite An;n−s as

An;n−s = n(n− 1)(n− 2) : : : (n− s+ 1)�N−s(n); (2.6)

where

�N−s(n) = �s0 +
N−s∑
j=1

�s+j; j(n− s)(n− s− 1) : : : (n− s− j + 1) (2.7)

is a polynomial in n of degree not exceeding N − s.
We will call Ank the representation coe�cients of the operator L.
The inversion statement is important

Proposition 2.2. Assume that Ank are arbitrary coe�cients possessing properties (i)–(iii). Then
there exists a unique di�erential operator L having Ank as representation coe�cients. The order of
this operator is the maximal degree of all coe�cients Ank considered as polynomials in n.

Proof. Assume that the coe�cients An;n−s have the expression (2.6) with some known (arbitrary)
polynomials �N−s(n). Then the coe�cients �sm are determined uniquely by means of the Newton
interpolating formula

�s+k;k =
�k�N−s(n)

k!

∣∣∣∣∣
n=s

; (2.8)

where the di�erence operator � is de�ned as �F(n)=F(n+1)−F(n). Hence the di�erential operator
L is restored by Eqs. (1.4) and (2.3).

3. Basic relations

Let Bnk be the expansion coe�cients of the polynomial Pn(x)

Pn(x) =
n∑

k=0

Bnkxk : (3.1)
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Substituting Eqs. (3.1) and (2.4) into Eq. (1.3) and taking into account property (i) we get the
relation between the coe�cients

n∑
s=k

BnsAsk = �nBnk ; k = n− N; n− N + 1; : : : ; n: (3.2)

We thus have N + 1 equations (3.2) for the coe�cients Bnk in terms of the known coe�cients Ank .
Obviously, the coe�cient Bnn is arbitrary. Without loss of generality, we can put Bnn = 1. Then

we have

Proposition 3.1. All the coe�cients Bn;n−1; Bn;n−2; : : : ; Bn0 and the spectral parameter �n are uniquely
determined in terms of the representation coe�cients Ank provided Ann 6=Ajj; j = 1; 2; : : : ; n − 1.
Moreover; all Bnk are rational functions of the argument n.

Proof. For k = n the equations (3.2) are reduced to

�n = Ann: (3.3)

Hence �n is a polynomial of an order not exceeding N .
For k = n− 1 we get from Eq. (3.2)

Bn;n−1An−1; n−1 + An;n−1 = �nBn;n−1: (3.4)

Taking into account Eq. (3.3) one obtains the expression for Bn;n−1

Bn;n−1 =
An;n−1

�n − �n−1
: (3.5)

Hence Bn;n−1 is determined uniquely provided �n 6= �n−1 (or, equivalently, Ann 6= An−1; n−1).
For k = n− 2 we get

Bn;n−2(Ann − An−2; n−2) = Bn;n−1An−1; n−2 + An;n−2: (3.6)

As Bn;n−1 is already known, Bn;n−2 is uniquely determined provided Ann 6= An−2; n−2:

Bn;n−2 =
An;n−1An−1; n−2 + An;n−2(Ann − An−1; n−1)
(Ann − An−1; n−1)(Ann − An−2; n−2)

: (3.7)

For k = n− s we have

Bn;n−sAn−s; n−s + Bn;n−s+1An−s+1; n−s + · · ·+ An;n−s = �nBn;n−s: (3.8)

Assuming that all the coe�cients Bn;n−1; Bn;n−2; : : : ; Bn;n−s+1 are already determined we determine
Bn;n−s from Eq. (3.8) provided that Ann 6=An−s; n−s. Moreover, it is seen from Eqs. (3.5) and (3.7)
that Bn;n−1 and Bn;n−2 are rational functions of n. By induction it is proved that all Bn;n−s are rational
functions of n.
Thus for the given operator L there is a unique polynomial solution Pn(x) of the eigenvalue

problem (1.3) provided that �n 6= �k for n 6= k.
So far, the polynomials Pn(x) need not be orthogonal. Now we consider the case of formal

orthogonal polynomials satisfying three-term recurrence relation (1.1). In terms of the expansion
coe�cients Bnk recurrence relation (1.1) means

Bn+1; k + unBn−1; k + bnBnk − Bn;k−1 = 0; k = 0; 1; : : : ; n: (3.9)
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Remark. It is assumed in Eq. (3.9) that Bn−1; n = Bn−1; n+1 = Bn;−1 = 0.

From Eq. (3.9) we obtain an important result:

Proposition 3.2. If the formal orthogonal polynomials Pn(x) are solutions of eigenvalue problem
(1:3); then their recurrence coe�cients are rational functions of n.

Proof. From Eq. (3.9) at k = n and k = n− 1 we get the expression of the recurrence coe�cients
in terms of the expansion ones

bn = Bn;n−1 − Bn+1; n; (3.10)

un = Bn;n−2 − Bn+1; n−1 − Bn;n−1(Bn;n−1 − Bn+1; n): (3.11)

The coe�cients Bns are rational functions of n, hence bn; un are rational functions as well.

4. Inverse problem

In this section we consider an inverse problem: assume that the polynomials Pn(z) are given.
Then the coe�cients Bnk are known explicitly. Assume also that the polynomials Pn(z) satisfy the
eigenvalue equation (1.3) but with some unknown operator L. We would like to reconstruct the
coe�cients Ank . For simplicity it is convenient to change the notation:

Bn;n−s = B(s)n ; An;n−s = A(s)n ; s= 0; 1; 2; : : : : (4.1)

We start from relation Eq. (3.8), which can be rewritten in the form
s∑

i=0

B(s−i)
n A(i)n−s+i = �n B(s)n ; s= 0; 1; 2; : : : : (4.2)

For s= 0 we get the relation A(0)n = �n, which is not a restriction but rather a de�nition of �n.
For s= 1 we have from Eq. (4.2)

A(1)n = (�n − �n−1) B(1)n = 
n B(1)n ; (4.3)

where


n = �n − �n−1: (4.4)

Relation (4.3) imposes some restrictions for �n. Indeed, both �n and A(1)n should be polynomials in
n, while B(1)n is a rational function:

B(1)n =
Q(1)(n)
R(1)(n)

; (4.5)

where Q(1)(n) and R(1)(n) are some polynomials in n having no common zeroes.
Hence we get the necessary condition for 
n:


n = r(n)R(1)(n); (4.6)



6 A. Zhedanov / Journal of Computational and Applied Mathematics 107 (1999) 1–20

where r(n) is a polynomial in n. Assume that 
n is already known:


n =
M∑
k=0

!knk ; (4.7)

where !k are some coe�cients. Then from Eq. (4.4) we can retain explicit expression of �n

�n =
M∑
k=0

!kSk(n); (4.8)

where

Sk(n) =
n∑

j=1

j k : (4.9)

From Eqs. (4.6) and (4.8) we get

deg(�n) = deg(r(n)) + deg(R(1)(n)) + 16N; (4.10)

where N is order of the di�erential operator L.
For A(1)n we have from Eqs. (4.3) and (4.5)

A(1)n = r(n) Q(1)(n): (4.11)

For s= 2 we get

A(2)n = (
n + 
n−1) B(2)n − 
n−1B(1)n B(1)n−1: (4.12)

This process can be repeated: if A(1)n ; : : : ; A(s−1)n are already found, then from Eq. (4.2) we �nd
A(s)n uniquely. However, in order for the polynomials Pn(x) to obey eigenvalue equation (1.3) the
coe�cients A(s)n should have expression (2.6) or, in another form

A(s)n = n(n− 1)(n− 2) : : : (n− s+ 1)�N−s(n); s= 0; 1; : : : ; N; (4.13)

where �k(n) is a polynomial of degree not exceeding k. Moreover, necessarily

A(s)n ≡ 0; for s¿N: (4.14)

Proposition 4.1. Assume that the coe�cients A(s)n are constructed via algorithm (4:11); (4:12); : : :
Then conditions (4:13) and (4:14) are necessary and su�cient for the polynomials Pn(z) to obey
eigenvalue equation (1:3).

The proof of this proposition is a direct consequence of the Propositions 1 and 2.
Note that the coe�cients �ik of the di�erential operator L are then restored via Eq. (2.8).
Assume now that some orthogonal polynomials Pn(z) are given with the coe�cients B(s)n being

rational functions of n. We would like to recognize whether or not the polynomials Pn(z) satisfy
di�erential equation (1.3). To that end let us choose an arbitrary polynomial r(n) and construct

n via (4.4) (hence �n is also known via Eq. (4.8)). Then all the coe�cients A(s)n ; s = 1; 2; : : : are
constructed uniquely by Eqs. (4.11), (4.12), : : : : Hence the di�erential operator L exists if and only
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if there exists a polynomial r(n) such that the properties (4.13) and (4.14) take place. A simple
criterion for veri�cation of the condition (4.14) provides the following.

Proposition 4.2. Assume that A(s)n 6= 0 for s=1; 2; : : : ; s0− 1 and A(s0)n =0. In order for A(s)n =0 for
all s= s0 + 1; s0 + 2; : : : it is necessary and su�cient that the relation

s0−1∑
m=1

B(s−m)
n A(m)n−s+m = (�n − �n−s) B(s)n (4.15)

holds for all s= s0 + 1; s0 + 2; : : : :

The proof of this proposition is an elementary consequence of formula (4.2). Criterion (4.15) is
a convenient tool in practice if s0 is not much greater than 1.

5. The simplest example: Jacobi polynomials

Consider how our algorithm works for the simplest example of the ordinary Jacobi polynomials.
The monic Jacobi polynomials are de�ned by the formula

P(a;b)n (x) =
(−1)n(a+ 1)n
(a+ b+ n+ 1)n

2F1


−n; n+ a+ b+ 1

; x
a+ 1


 : (5.1)

In what follows we will assume that a¿− 1=2; b¿− 1=2. The polynomials P(a;b)n (x) are orthogonal
on (0; 1)∫ 1

0
P(a;b)n (x)P(a;b)m (x)w(x) dx = hn �nm (5.2)

with the normalized weight function

w(x) =
�(a+ b+ 2)

�(a+ 1)�(b+ 1)
xa(1− x)b (5.3)

(we de�ne the Jacobi polynomials on the shifted orthogonality interval with respect to the standard
one [7]). From Eq. (5.3) we have the explicit expression for the moments

cn =
∫ 1

0
w(x)xndx =

(a+ 1)n
(a+ b+ 2)n

: (5.4)

We need also the values

P(a;b)n (0) =
(−1)n(a+ 1)n
(a+ b+ n+ 1)n

; (5.5)

Q(a;b)
n (0) = (−1)n+1 (a+ b+ 1)(b+ 1)nn!

a(a+ b+ 1)2n
; (5.6)
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where Q(a;b)
n (z) are the second-kind functions corresponding to the polynomials P(a;b)n (x) and de�ned

by the formula [13]

Q(a;b)
n (z) =

∫ 1

0

P(a;b)n (x)w(x)dx
z − x

: (5.7)

From Eq. (5.1) we �nd the coe�cients B(s)n :

B(s)n =
(−n)s(−a− n)s
s!(−a− b− 2n)s : (5.8)

The relation (4.3) is written as

A(1)n =−
n
n(a+ n)

a+ b+ 2n
: (5.9)

Obviously, the simplest choice for 
n is the denominator of B(1)n , i.e.


n = a+ b+ 2n: (5.10)

Then from Eqs. (4.4) and (2.2)

�n = n(n+ a+ b+ 1): (5.11)

From Eq. (5.9) we �nd A(1)n :

A(1)n =−n(a+ n): (5.12)

From Eq. (4.12) we then �nd that A(2)n =0. It is easily veri�ed that A(s)n =0 for s=2; 3; : : : . Indeed,
the criterion (4.15) is rewritten in our case as

B(s−1)n A(1)n−s+1 = (�n − �n−s)B(s)n : (5.13)

Substituting Eqs. (5.11), (5.8) and (5.12) we easily �nd that Eq. (5.13) is ful�lled identically for all
s=2; 3; : : : . Thus the Jacobi polynomials indeed satisfy second-order di�erential equation (1.3). The
coe�cients �ik of the operator L are restored via formulas (2.8), where, in our case �2(x)=x(x+a+
b+1) and �1(x)=−x−a. The only non-zero coe�cients are: �22=−�21=1; �11=a+b+2; �10=−a−1.
We thus have the di�erential operator

L= x(1− x)@2x + ((a+ b+ 2)x − a− 1)@x: (5.14)

Operator (5.14) indeed has Jacobi polynomials as eigenfunctions (see, e.g. [7]).

6. Geronimus transforms

In all known examples of ‘non-classical’ Krall’s polynomials their orthogonality measure di�ers
from that for the classical OP by inserting one or two arbitrary concentrated masses at endpoints
of the orthogonality interval. Such procedure is connected with the so-called Geronimus transform
[3,4].
In this section we consider basic properties of the Geronimus transform (see also [11,12,14]).
Recall that the Geronimus transform is

P̃n(x) = Pn(x)− CnPn−1(x); (6.1)
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where

Cn =
�n

�n−1
(6.2)

and �n is an arbitrary solution of the recurrence relation (1.1), that is

�n+1 + bn�n + un�n−1 = ��n; (6.3)

where � is an arbitrary parameter (not belonging to the interior of the spectral interval).
According to general theory, �n can be presented as a linear combination of two linear independent

solutions of recurrence equation (6.3). There are several possibilities to choose such solutions. For
example, one can choose the OP Pn(x) themselves and the associated polynomials Rn(x), which
satisfy the recurrence relation

Rn+1 + un+1Rn−1 + bn+1Rn = xRn(x); R0 = 1; R1(x) = x − b1: (6.4)

Then

�n = �1Rn−1(�) + �2Pn(�); (6.5)

where �1; �2 are two arbitrary constants.
For our purposes another choice is more convenient:

�n = Qn(�) + �Pn(�); (6.6)

where Qn(�) are the functions of the second kind [1,13]

Qn(z) =L

{
Pn(x)
z − x

}
(6.7)

(the linear functional L acts on the x variable). Of course, expression (6.6) is valid only if the
value Qn(�) exists. It is so if � lies outside the spectral interval. For the endpoints of the spectral
interval the situation is more complicated. However for the Jacobi polynomials the values Qn(0) and
Qn(1) do exist (if, say a¿− 1=2; b¿− 1=2). We will use expression (6.6) in the sequel.
If w(x) is the weight function of the polynomials Pn(x) then

w̃(x) =
w(x)
x − �

− ��(x − �) (6.8)

is the weight function of the polynomials P̃n(x) (see, e.g. [14]).
Consider 2 succeeded GT with the parameters �1; �1 and �2; �2. There are two ways to perform

these transformations. One can �rst perform GT with the parameters �1; �1 obtaining the polynomials
P̃n(x), and then perform the second GT

P(2)n (x) = P̃n(x)−  n

 n−1
P̃n−1(x); (6.9)

where

 n = Q̃n(�2) + �̃P̃n(�2): (6.10)

For Q̃n(z) we have

Q̃n(z) =
∫

P̃n(x)w̃(x)dx
z − x

=
Qn(z)− �n=�n−1Qn−1(z)

z − �
; (6.11)
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where we used expression (6.8) for the weight function and (6.1) for P̃n(x). Using Eq. (6.11) we
present  n in the form

 n =
�n − �n=�n−1�n−1

�2 − �1
; (6.12)

where

�n = Qn(�2) + �̃(�2 − �1)Pn(�2): (6.13)

On the other hand, we can start from the functions �n(�1)=Qn(�1)+�1Pn(�1) and �n(�2)=Qn(�2)+
�2Pn(�2) to get the expression

P(2)n (x) = �−1
n

∣∣∣∣∣∣
Pn(x) Pn−1(x) Pn−2(x)
�n(�1) �n−1(�1) �n−2(�1)
�n(�2) �n−1(�2) �n−2(�2)

∣∣∣∣∣∣ ; (6.14)

where �n = �n−1(�1)�n−2(�2)− �n−1(�2)�n−2(�1).
Comparing Eqs. (6.14) and (6.9) we get the relation between the parameters

�̃ =
�2

�2 − �1
: (6.15)

Thus for the given parameters �1; �2 we get the expression for the transformed weight function under
two GT

w(2)(x) =
w̃(x)
x − �2

− �̃�(x − �2)

=
w(x)

(x − �1)(x − �2)
− �1

�1 − �2
�(x − �1)− �2

�2 − �1
�(x − �2): (6.16)

In what follows we use the notation P̃n(x) = G(�; �){Pn(x)} for the Geronimus transformation at
the point � with the parameter �.

7. Necessary conditions for Koornwinder’s polynomials to be Krall’s polynomials

In this section we derive necessary conditions for Koornwinder’s generalized Jacobi polynomials
P(a;b;M1 ;M2)
n (x) to satisfy di�erential equation (1.3).
Recall that the polynomials P(a;b;M1 ;M2)

n (x) were introduced by Koornwinder [8] and obtained from
the ordinary Jacobi polynomials P(a;b)n (x) by inserting of an arbitrary mass M1 at the endpoint x=0
and an arbitrary mass M2 at the endpoint x = 1. Koornwinder raised a problem: whether or not the
polynomials P(a;b;M1 ;M2)

n (x) satisfy a di�erential equation of type (1.3). Some special cases do satisfy
this requirement:

(i) Legendre-type polynomials with a = b = 0; M1 = M2. These polynomials satisfy 4th order
di�erential equation [10].
(ii) Jacobi-type polynomials with a= 0, b arbitrary, M2 = 0. These polynomials also satisfy 4th

order di�erential equation [10].
(iii) The polynomials with a=b=0 and M1 and M2 arbitrary. These polynomials satisfy 6th order

di�erential equation [10].
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(iv) The polynomials with a = b = j where j = 0; 1; 2; : : : and M1 = M2. These polynomials are
generalization of the ultraspherical polynomials and satisfy an equation of order 2j + 4 [6].
(v) The polynomials with b=±1=2; a= j = 0; 1; 2 : : : and M2 = 0. These polynomials satisfy an

equation of order 2j + 4 [6].
In the next section we show that the polynomials with an arbitrary parameter b¿− 1=2, M2 = 0

and a= j = 0; 1; 2 : : : satisfy the equation of the order 2j + 4.
As we know the necessary condition for polynomials to satisfy equation Eq. (1.3) is the following:

the coe�cients B(s)n are rational functions of the argument n. So we would like to recognize whether
or not the expansion coe�cients B(s)n for Koornwinder’s polynomials are rational functions of n.
The crucial observation is:

Proposition 7.1. Koornwinder’s polynomials P(a;b;M1 ;0)
n (x) coincide with the polynomials G(0; �)

{P(a+1;b)n (x)} which are obtained from the Jacobi polynomials P(a+1;b)n (x) by application of the
Geronimus transform at the endpoint x = 0 with the parameter � =−M1(a+ b+ 2)=(a+ 1).

Proof. For Koornwinder’s polynomials P(a;b;M1 ;0)
n (x) the weight function is (up to a normalization

constant)

w(x; a; b;M1; 0) = w(x; a; b) +M1�(x): (7.1)

From Eq. (6.8) we have

w̃(x; a+ 1; b) = w(x; a+ 1; b)=x − ��(x): (7.2)

On the other hand, from Eq. (5.3) we see that

w(x; a+ 1; b)=x =
a+ b+ 2
a+ 1

w(x; a; b): (7.3)

Hence

w̃(x; a+ 1; b) =
(
a+ b+ 2
a+ 1

)(
w(x; a; b)− �(a+ 1)

a+ b+ 2
�(x)

)
: (7.4)

Comparing Eqs. (7.1) and (7.4) we arrive at the statement of the proposition.

Quite similarly we get

Proposition 7.2. Koornwinder’s polynomials P(a;b;0;M2)
n (x) coincide with the polynomials G(1; �)

{P(a;b+1)n (x)} which are obtained from the Jacobi polynomials P(a;b+1)n (x) by application of the
Geronimus transform at the endpoint x = 1 with the parameter � =−M2(a+ b+ 2)=(b+ 1).

Combining these two statements we obtain

Proposition 7.3. Koornwinder’s polynomials P(a;b;M1 ;M2)
n (x) coincide with the polynomials G(0; �1)

G(1; �2){P(a+1;b+1)n (x)}.

Hence it is su�cient to study the Geronimus transform of the coe�cients B(s)n of the Jacobi
polynomials.
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Consider the coe�cients B̃
(s)
n for the polynomials P̃n(x) = G(0; �){P(a;b)n (x)}. Using Eq. (6.1) we

have

B̃
(0)
n = 1; B̃

(s)
n = B(s)n − �n=�n−1 B(s−1)n−1 ; s= 1; 2; : : : ; n; (7.5)

where B(s)n are expansion coe�cients (5.8) for the ordinary Jacobi polynomials, and

�n = Q(a;b)
n (0) + �P(a;b)n (0): (7.6)

From explicit formulas (5.5) and (5.6) we have

�n =
(−1)n(a+ 1)n
(a+ b+ n+ 1)n

(
� +

a+ b+ 1
a

gn

)
; (7.7)

where

gn =
n!(b+ 1)n

(a+ 1)n(a+ b+ 1)n
: (7.8)

We would like to �nd conditions under which the coe�cients B̃
(s)
n are rational functions of the

argument n, since B(s)n are rational functions of n (see Eq. (5.8)), it follows that necessarily �n=�n−1
should be a rational function of n. In turn, as the parameter � is arbitrary, gn should be a rational
function of n. Let us assume that

a¿− 1=2; b¿− 1=2: (7.9)

Then we can rewrite Eq. (7.8) in the form

gn =
�(a+ b+ 1)�(a+ 1)

�(b+ 1)
�(n+ 1)�(b+ n+ 1)

�(a+ n+ 1)�(a+ b+ n+ 1)
: (7.10)

If gn is a rational function of n then the number of its zeroes and poles is �nite. On the other hand,
the number of poles of the function �(n + a + 1) is in�nite: these poles are located at the points
n + a + 1 = 0;−1;−2; : : : . Hence, some poles coming from the numerator of Eq. (7.10) should
coincide with some poles coming from the denominator. It is clear from Eq. (7.10) that there are 2
possibilities of such coincidence:
(i) a= j = 0; 1; 2; : : : , b is arbitrary;
(ii) a+ b= j1; a− b= j2, where j1;2 are arbitrary integers. Because of restriction (7.9) we have

in the case (ii) that both a and b are simultaneously non-negative integers or half-integers. In fact,
it is su�cient to consider the case of half-integer numbers: a = m1 + 1=2; b = m2 + 1=2, where
m1; m2 = 0; 1; 2; : : : , because the case of integer a; b is a special case of (i).
It is easily veri�ed that indeed gn is a rational function under the conditions (i) and (ii).
Taking into account Proposition 7.1 we have the following

Proposition 7.4. Koornwinder’s polynomials P(a;b;M1 ;0)
n (x) with arbitrary M1 and under conditions

(7:9) have rational coe�cients B(s)n (and hence rational recurrence coe�cients un; bn) only in the
two cases:
(i) a takes the values 0; 1; 2; : : : whereas b is arbitrary;
(ii) both a and b take independently half-integer values 1=2; 3=2; 5=2; : : : .
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Obviously the same statement is valid for the case of the polynomials P(a;b;0;M2)
n (x) with the

replacement a ↔ b. Combining we arrive at the following:

Proposition 7.5. Koornwinder’s polynomials P(a;b;M1 ;M2)
n (x) with arbitrary M1; M2 and under the

conditions a; b¿ − 1=2 have rational expansion coe�cients B(s)n (and hence rational recurrence
coe�cients un; bn) only in the two cases:
(i) both a and b take independently non-negative integer values 0; 1; 2; : : : ;
(ii) both a and b take independently half-integer values 1=2; 3=2; 5=2; : : : .

Proof. As M1 and M2 are arbitrary, we can put M2 = 0. Then we see that the parameter a should
be either integer (and then b is arbitrary) or half-integer (and then b is half-integer
as well). Similarly, the case M1 = 0 means that the parameter b should be either integer (and
then a is arbitrary) or half-integer (and then a is half-integer as well). Overlapping of these two
conditions yields the statement of the proposition.
Thus if the parameters a; b do not belong to the classes (i) and (ii) then corresponding

Koornwinder’s polynomials do not satisfy Eq. (1.3). It is interesting to note that in all known
examples (i)–(v) listed above we deal only with the case (i) of Propositions 7.4 and 7:5. No ex-
amples with half-integers parameters a; b are known to satisfy Eq. (1.3) (excepting the trivial case
M1 = M2 = 0, when we deal with the second-order di�erential equation for the ordinary Jacobi
polynomials with arbitrary parameters a; b).

8. Analysis of the case of the polynomials P( j;b;M)n (x)

Assume that the parameter a of the Jacobi polynomials is a positive integer: a=j=1; 2; : : : whereas
the parameter b¿− 1=2 is arbitrary. In this section we show that the polynomials G(0; �){P( j;b)n (x)}
satisfy a di�erential equation of order 2j + 2.
First of all note that

�n = Qn(0) + �Pn(0) =
(−1)nn!Yj(n)

j!(b+ n+ 1)n+j
; (8.1)

where

Yj(n) = �(n+ 1)j(b+ n+ 1)j − (j − 1)!(b+ 1)j+1 (8.2)

is a polynomial in n of degree 2j. Thus

Cn =
�n

�n−1
=− n(b+ n)

(j + b+ 2n)(j + b+ 2n− 1)
Yj(n)

Yj(n− 1) : (8.3)

For the transformed polynomials one has

G(0; �){P( j;b)n (x)}= P( j;b)n (x)− CnP
( j;b)
n−1 (x): (8.4)

The normalized weight function for these polynomials is

w(x) = (1 +M1)−1
(
(b+ 1)j
(j − 1)!x

j−1(1− x)b +M1�(x)
)
; (8.5)
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where

M1 =−�
j

j + b+ 1
(8.6)

is the value of concentrated mass added at the point x = 0. The corresponding moments are

cn = (1 +M1)−1
(

(j)n
(j + b+ 1)n

+M1�n0

)
: (8.7)

Using Eqs. (8.4) and (8.3) we can write down explicitly the coe�cients B(s)n in the expansion
G(0; �){P( j;b)n (x)}=∑n

s=0 B
(s)
n xn−s. We have

B(s)n =
(−n)s(−n− j)s
s!(−j − b− 2n)s
×
(
1− s(b+ n)

(j + n)(j + b+ 2n− s)
Yj(n)

Yj(n− 1)

)
: (8.8)

Now we �nd the coe�cients A(s)n of the operator L. Consider the formula

B(1)n =
A(1)n


n
; (8.9)

where

B(1)n =
n(−�(n− 1)(n+ 1)j(b+ n)j + (j − 1)!(j + n− 1)(b+ 1)j+1)

(j + b+ 2n− 1)Yj(n− 1) : (8.10)

It is natural to choose 
n as the denominator of B(1)n , i.e.


n = (j + b+ 2n− 1)Yj(n− 1): (8.11)

Then from Eq. (8.9) we �nd that

A(1)n = n(−�(n− 1)(n+ 1)j(b+ n)j + (j − 1)!(j + n− 1)(b+ 1)j+1): (8.12)

We see that A(1)n satis�es condition (2.6) for s= 1 with N = 2j + 2.
The coe�cient A(0)n = �n can be found from the relation


n = �n − �n−1 (8.13)

with the additional condition �0 = 0. It is easily veri�ed that

�n = A(0)n = n(b+ n+ j)
(
�(b+ n)j(n+ 1)j

j + 1
− (j − 1)!(b+ 1)j+1

)
: (8.14)

We thus found the �rst coe�cients A(0)n and A(1)n . Other coe�cients A(s)n ; s = 2; 3; : : : can be found
(step-by-step) from basic relations (3.2).
We have the following

Proposition 8.1. The coe�cients A(s)n have the explicit expression

A(s)n =−�
(−j)s−1(n− s)s+j+1(b+ n)j−s+1

s!
+�n�s1 + �n�s0; s= 0; 1; 2; : : : ; (8.15)
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where

�n = (j − 1)!n(j + n− 1)(b+ 1)j+1; �n =−n(b+ n+ j)(j − 1)!(b+ 1)j+1:

Proof. It is su�cient to prove the relation
s∑

i=0

B(s−i)
n A(i)n−s+i = A(0)n B(s)n ; (8.16)

where B(s)n are given by Eq. (8.8) and A(s)n by Eq. (8.15).
We have after simple transformations

s∑
i=0

B(s−i)
n A(i)n−s+i = �n−sB(s)n + �n−s+1B(s−1)n +

(
S1 +

(b+ n)Yj(n)
(j + n)Yj(n− 1)S2

)
�ns; (8.17)

where

�ns = �
(−n)s(−j − n)s(n− s)j+1(b+ n− s)j+1

s!(−j − b− 2n)s(j + 1)
and S1; S2 are the sums

S1 =
s∑

i=0

(−s)i(−1− j)i(1 + j + b+ 2n− s)i
i!(1 + n− s)i(b+ n− s)i

;

S2 =
s∑

i=0

(−s)i(−1− j)i(1 + j + b+ 2n− s)i(i − s)
i!(1 + n− s)i(b+ n− s)i(j + b+ 2n− s+ i)

:

These sums are calculated using Pfa�–Saalsch�utz identity [2]

3F2

( −s; a; b
c; 1 + a+ b− c − s

∣∣∣∣ 1
)
=
(c − a)s(c − b)s
(c)s(c − a− b)s

; s= 0; 1; 2; : : : : (8.18)

We thus have

S1 =
(−1− j − n)s(−n− j − b)s

(−n)s(1− n− b)s
; (8.19)

S2 =− s
j + b+ 2n− s

(−n− j)s−1(−n− j − b+ 1)s−1
(1− n)s−1(2− n− b)s−1

: (8.20)

Substituting Eqs. (8.19) and (8.20) into Eq. (8.17) we arrive at relation (8.16).

Proposition 8.2. The polynomials G(0; �){P( j;b)n (x)} with j = 1; 2; : : : and b¿− 1=2 satisfy di�er-
ential equation (1:3) of order N = 2j + 2.

Proof. Note that the coe�cients A(s)n given by Eqs. (8.14), (8.12), (8.15) satisfy the properties:
(i) A(s)n = n(n− 1) : : : (n− s+ 1)�N−s(n), where �N−s(n) are polynomials of order 2j + 2− s;
(ii) A(s)n = 0; s¿j + 2.
Thus all the characteristic properties of the coe�cients A(s)n are ful�lled. From property (i) it

follows that degree of the polynomials A(s)n is 2j + 2. Hence the polynomials G(0; �){P( j;b)n (x)}
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indeed satisfy a di�erential equation of order 2j+ 2. The coe�cients �ik are calculated explicitly in
the next section.

As we know, the polynomials G(0; �){P( j;b)n (x)} coincide with the polynomials P( j−1; b;M)n (x). Hence
we have

Proposition 8.3. The polynomials P( j;b;M)n (x) with j=0; 1; 2; : : : and b¿− 1=2 satisfy a di�erential
equation of order 2j + 4.

For j = 0 we return to the so-called Jacobi-type polynomials P(0; b;M)n (x) satisfying 4th order dif-
ferential equation [10]. As far as we know, for j¿1 our result is new. Note that in [6] this result
was obtained only for the special cases b=±1=2.

9. Calculation of the coe�cients �ik of the di�erential operator L

In this section we calculate the coe�cients �ik of the di�erential operator L =
∑N

k=0

∑k
i=0 �kixi@k

x

using formula (2.8). From Eq. (8.15) we �nd

�N−s(n) =
A(s)n

n(n− 1) : : : (n− s+ 1)
= �s(n− s)(n+ 1)j(b+ n)j−s+1 + �n=n�s1 + �n�s0; (9.1)

where

�s =−�
(−j)s−1

s!
: (9.2)

We employ the well known formula (being a discrete analogue of the binomial theorem)

�k{f(n)g(n)}=
k∑

i=0

(
k
i

)
�if(n)�k−ig(n+ i): (9.3)

We need also an obvious formula

�k(n+ )m = m(m− 1) : : : (m− k + 1)(n+ + k)m−k ; k6m: (9.4)

As a consequence of Eq. (9.3) we have (for arbitrary function g(n))

�k{(n− s)g(n)} ∣∣n=s = k�k−1g(n+ 1)
∣∣
n=s : (9.5)

Using Eqs. (9.5) and (2.8) we �nd for s¿2

�s+k;k = �s
�k−1{(n+ 2)j(b+ n+ 1)j−s+1}

(k − 1)!

∣∣∣∣∣
n=s

: (9.6)

In order to calculate (9.6) we need the following
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Lemma 9.1. For any a; b and any nonnegative integers p;m the following formula:

�k{(n+ a)p(n+ b)m}= (−1)k (−m− p)k(n+ a)p(n+ b)m
(n+ b)k

×3F2

( −k;−p; a− m− b
n+ a;−p− m

∣∣∣∣ 1
)

(9.7)

takes place

Proof. It is su�cient to apply formulas (9.3) and (9.4) to get

�k{(n+ a)p(n+ b)m}=
k∑

i=0

(
k
i

)
�i(n+ a)p�k−i(n+ b+ i)m

= (−1)k (−m)k(n+ a)p(n+ b)m
(n+ b)k

k∑
i=0

(−k)i(−p)i(n+ m+ b)i
i!(n+ a)i(1 + m− k)i

: (9.8)

Then the sum in Eq. (9.8) is reduced to the hypergeometric function 3F2(1), which can be then
transformed to Eq. (9.7).
Using this lemma we calculate the coe�cients �s+k;k :

�s+k;k = �(−1)k (−j)s−1(s− 2j − 1)k−1(s+ 2)j(s+ b+ 1)j−s+1

(s+ b+ 1)k−1(k − 1)!s!
×3F2

( −j; s− j − b; 1− k
s− 2j − 1; s+ 2

∣∣∣∣ 1
)
(1− �k0)

+(b+ 1)j+1((j − 1)!�k1 + j!�k0)�s1

−(j − 1)!(b+ 1)j+1((b+ j + 1)�k1 + �k2)�s0;

s= 0; 1; : : : ; j + 1; k = 0; 1; : : : ; 2j + 2− s: (9.9)

Thus the coe�cients of the di�erential operator L can be expressed in terms of the hypergeometric
function 3F2(1).
In general, the expression for the polynomials ai(x); i=0; 1; : : : ; N is rather complicated. However

for polynomials of the maximal order i = N = 2j + 2 we have a simpli�cation. Indeed, in this case
s+ k = 2j+ 2 and the hypergeometric function 3F2(1) in Eq. (9.9) is reduced to 2F1(1), which can
be simpli�ed using Chu-Vandermonde formula [2]. After simple calculations one obtains

aN (x) =
�

j + 1
xj+1(x − 1) j+1: (9.10)

Quite analogously one gets

aN−1(x) = �xj(x − 1) j((b+ 3j + 1)x − 2j): (9.11)

10. The case of the generalized Laguerre polynomials

In this section we consider the limit b→∞ leading to Koornwinder’s generalization of the Laguerre
polynomials.
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Let us recall the scaling property of OP. De�ne new OP by

P̃n(x) = −nPn(x); (10.1)

where  6= 0 is an arbitrary parameter. Clearly, P̃n(x) are monic OP satisfying recurrence relation
(1.1) with b̃n = −1bn; ũ n = −2un. If the polynomials Pn(x) are orthogonal on the interval [a; b]∫ b

a
Pn(x)Pm(x) d�(x) = hn�nm; (10.2)

then the polynomials P̃n(x) are orthogonal on the interval [a=; b=]∫ b=

a=
P̃n(x)P̃m(x) d�(x=) = h̃n�nm: (10.3)

The expansion coe�cients B̃nk for the polynomials P̃n(x) are

B̃nk = k−nBnk ; B̃
(s)
n = −sB(s)n : (10.4)

If the polynomials Pn(x) satisfy di�erential equation (1.3), then the polynomials P̃n(x) satisfy the
equation

L̃P̃n(x) = �̃nP̃n(x); (10.5)

where the operator L̃ has the representation coe�cients

Ãnk = k−nAnk ; Ã
(s)
n = −sA(s)n : (10.6)

In particular, �̃n = �n.
Let us put = 1=b and take the limit b → ∞ in expression (5.1) for the Jacobi polynomials. We

then obtain the monic Laguerre polynomials:

L(a)n (x) = (−1)n(a+ 1)n 1F1

(−n
a+ 1 ; x

)
(10.7)

having the normalized weight function

w(x) =
e−xxa

�(a+ 1)
: (10.8)

Now we put a= j = 1; 2 : : : and perform the GT at x = 0 for the Laguerre polynomials L( j)n (x). We
then get the polynomials

G(0; �){L( j)n (x)}= L( j)n (x)−
�n

�n−1
L( j)n−1(x); (10.9)

where �n = Qn(0) + �Pn(0) = (−1)n(−n!=j + (j + 1)n).
The weight function of these polynomials is

w̃(x; j) =
e−xxj−1

j!
− ��(x) = j−1(w(x; j − 1) +M�(x)); (10.10)

where M =−�j.
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The coe�cients A(s)n for these polynomials are obtained from the coe�cients (8.15) by limiting
procedure (10.6):

A(s)n =−�
(−j)s−1(n− s)s+j+1

s!
+n(n+ j − 1)(j − 1)!�s1 − n(j − 1)!�s0; s= 0; 1; 2; : : : : (10.11)

It is clear from Eq. (10.11) that the coe�cients A(s)n satisfy all needed requirements:
(i) A(s)n = n(n− 1) : : : (n− s+ 1)�s(n), where �s(n) are polynomials of the order j + 1;
(ii) A(s)n = 0; s¿j + 2.
Note that the maximal degree of the polynomials A(s)n is equal to 2j + 2 (for s= j + 1).
Hence the generalized Laguerre polynomials G(0; �){L( j)n (x)} satisfy a di�erential equation of

order 2j + 2. From Eq. (10.10) we see that the polynomials L( j;M)n (x) satisfy a di�erential equation
of order 2j + 4. Here L( j;M)n (x) are polynomials obtained from the Laguerre polynomials L( j)n (x) by
inserting the mass M at the endpoint x = 0 of the orthogonality interval.
This result was �rstly obtained in [5] using quite a di�erent method. In our approach this result

is a consequence of the corresponding result for the generalized Jacobi polynomials P( j;b;M)n (x).
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