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A subset S of a group G is called an Engel set if, for all x, y ∈ S ,
there is a non-negative integer n = n(x, y) such that [x,n y] = 1.
In this paper we are interested in finding conditions for a group
generated by a finite Engel set to be nilpotent. In particular, we
focus our investigation on groups generated by an Engel set of size
two.
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1. Introduction

A subset S of a group G is called an Engel set if, for all x, y ∈ S , there is a non-negative integer
n = n(x, y) such that [x, n y] = 1. It is known that, for a group G satisfying Max-ab, a normal subset
S ⊆ G is an Engel set if and only if it is contained in the Fitting subgroup of G (see [7, Theorem 7.23];
see also [1]) and so, in this case, 〈S〉 is nilpotent whenever S is finite. However, a group generated
by a finite Engel set is not necessarily nilpotent: Golod’s examples show that there exist infinite
non-nilpotent groups generated by an Engel set with three or more elements (see [5]). Furthermore,
if S is an Engel set of size three, then an easier example of a non-nilpotent group generated by
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S is the wreath product of the alternating group of degree 5 with the cyclic group of order 3: it
has a presentation of type (r, s, t) (see [3]), i.e. S = {a,b, c} where 〈a,b〉 is nilpotent of class r, 〈a, c〉 is
nilpotent of class s and 〈b, c〉 is nilpotent of class t . All these groups are not soluble, but the nilpotency
does not hold even in the soluble case. In [3] it was shown that every group with a presentation of
type (1,2,2) is soluble of length at most 3 and that there are non-nilpotent groups of this type.

In this paper, we first get that any nilpotent-by-abelian group generated by a finite Engel set is
nilpotent and then we focus on groups generated by an Engel set of size two. In particular, we prove
that such a group is nilpotent whenever it is abelian-by-(nilpotent of class 2). This is the best possible
result in the soluble case. In fact, we construct by GAP (see [4]) a non-nilpotent counterexample
which is abelian-by-(nilpotent of class 3). On the other hand, some of the counterexamples in [3],
mentioned above, are abelian-by-(nilpotent of class 2) and generated by an Engel set of size three.

2. Groups that are nilpotent-by-abelian

We start with a result that is certainly already known. It generalizes, for metabelian groups, two
basic properties of commutators.

Lemma 2.1. Let G be a metabelian group and x, y, z be elements of G. For all positive integers n, we have

(i) [x−1,n y] = [x, n y]−x−1
;

(ii) [xy, nz] = [x, nz][x, nz, y][y, nz].

Proof. Since G is metabelian, every g in G induces on G ′ an endomorphism −1 + g that maps u to
u−1ug , and any two of these endomorphisms commute. We thus have

[
x−1,n y

] = ([x, y]−x−1)(−1+y)n−1 = [x, y]−(−1+y)n−1x−1 = [x,n y]−x−1
.

The proof of (ii) is similar. �
As a consequence of Lemma 2.1, we get:

Lemma 2.2. If G is a metabelian group generated by an Engel set S, then any x ∈ S is a left Engel element. In
particular, G is locally nilpotent.

Proof. Take a finite subset of S , say T = {x1, . . . , xr}, and suppose [xi,nx j] = 1 for all 1 � i, j � r. By
the previous lemma, every xi is a left n-Engel element in G . Then (−1 + xi)

n = 0. It follows that any
product in the endomorphisms −1 + xi of weight (n − 1)r + 1 is trivial. Hence 〈T 〉 is nilpotent of class
at most (n − 1)r + 2. This proves that G is locally nilpotent. �

For a finite Engel set, we then obtain the following:

Theorem 2.3. Let G be a nilpotent-by-abelian group generated by a finite Engel set. Then G is nilpotent.

Proof. If N is a normal nilpotent subgroup of G such that G/N is abelian, then G/N ′ is nilpotent by
Lemma 2.2 and so G is nilpotent by a well-known result of P. Hall. �
3. Engel sets of size two

Let G = 〈x, y〉 be a group and assume that {x, y} is an Engel set. Then [x, n y] = 1 and [y,mx] = 1
for some positive integers n, m. We also say that the elements x and y are mutually Engel and, when-
ever n � m, that they are mutually n-Engel. If n = m = 2, then G is obviously nilpotent of class at
most 2 and the nilpotency still holds for n = 2 and m = 3.
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Proposition 3.1. Let G = 〈x, y〉 be an arbitrary group such that [x, y, y] = 1 and [y, x, x, x] = 1. Then G is
nilpotent of class at most 3.

Proof. By the Hall–Witt identity we have

[[y, x], x−1, y
]x[

x, y−1, [y, x]]y[
y, [y, x]−1, x

][y,x] = 1,

from which it follows

[
y, x, x−1, y

] = 1

since [x, y−1] = [x, y]−1 and [y, [y, x]−1] = [x, y, y]−1 = 1. Then [y, x, x, y] = 1 and hence [y, x, x] ∈
Z(G). Now [x, y, y] = [y, x, x] = 1 modulo Z(G), so G/Z(G) is nilpotent of class � 2 and G is nilpotent
of class � 3. �

However, as we will see in the next section, this is not true in general, even in the soluble case.
We are therefore led to consider extra conditions for a group generated by an Engel set of size two
to be nilpotent. In the sequel, we will turn our attention to groups which are abelian-by-(nilpotent of
class 2).

Let G be any abelian-by-(nilpotent of class 2) group generated by two mutually Engel elements x
and y. By assumption [x, n y] = 1 and [y, nx] = 1 for some n. Suppose, by way of contradiction, that
G is not nilpotent. Then G has a non-nilpotent finite image by Theorem 10.51 of [7] and so we may
assume that G is finite.

Using induction on the order of the group, we may assume that G is a minimal counterexample.
It follows that G contains a unique minimal normal subgroup A such that G/A is nilpotent. As G is
not nilpotent there is a maximal subgroup H that is not normal. On the other hand G/A is nilpotent,
therefore A � H (otherwise H/A � G/A implies that H � G). Thus G = AH . The group A ∩ H is normal
in G and A ∩ H < A. The minimality of A then forces A ∩ H = 1.

Clearly, A is an elementary abelian p-group for some prime p and H is nilpotent. Let P be the
Sylow p-subgroup of H . Then A P/A � G/A and so A P is the Sylow p-subgroup of G . Since A P is
nilpotent, we have that [A, A P ] < A and by the minimality of A, the normal subgroup [A, A P ] must
be trivial. Thus [A, P ] = 1 and P G = P AH = P H = P , that is P � G . But A � P , hence P = 1 and H is
a Hall p′-subgroup of G .

Lemma 3.2. Every nontrivial element of Z(H) acts fixed point freely on A by conjugation.

Proof. For all z ∈ Z(H) and h ∈ H , C A(z)h = C A(z) and thus C A(z) � G . As 〈z〉 cannot be normal in G ,
we get C A(z) = 1 by minimality of A. �

The next lemma shows that H is nilpotent of class 2 and that we can restrict our attention to
n = 3.

Lemma 3.3. Let G = AH = 〈x, y〉 be a minimal counterexample that is abelian-by-(nilpotent of class 2). Then
A = γ3(G), [x, y, y, y] = 1 and [y, x, x, x] = 1.

Proof. Of course, A ⊆ γ3(G) by minimality of A. Let q 	= p be a prime. Then any q-subgroup of γ3(G)

is necessarily trivial. But G/A is a p′-group, therefore A = γ3(G) and H is nilpotent of class 2.
Assuming now [x, n−1 y] 	= 1, we will prove that n � 3. Let y = ah where a ∈ A, h ∈ H , and suppose

n > 3. We have [x, y, y] ∈ A and n − 2 � 2, so that [x, n−2 y] and [x, n−2 y, y] lie in A. It follows that

[
x,n−2 y, yp] = [x,n−2 y, y]p = 1.
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Notice that yp = a1hp with a1 ∈ A and h = hαp for some integer α. Thus

1 = [
x,n−2 y, yp] = [

x,n−2 y,a1hp] = [
x,n−2 y,hp]

and

1 = [
x,n−2 y,hαp] = [x,n−2 y,h].

But then

1 = [x,n−2 y,ah] = [x,n−2 y, y],
that is a contradiction. �

We need one more preliminary lemma before proving our main result.

Lemma 3.4. Let x = ah, y = bk where a,b ∈ A and h,k ∈ H. If [x, y] = [h,k], then

[
a,k−1] = [

b,h−1], [a,h] = 1 and [b,k] = 1,

with a 	= 1 and b 	= 1.

Proof. We have

[h,k] = [x, y] = [ah,bk] = [a,k]h[h,k][h,b]k.

This implies [a,k]h[h,b]h−1kh = 1 and then [a,k]k−1 = [b,h]h−1
, or equivalently [a,k−1] = [b,h−1].

As G 	= H we must have that one of a, b is nontrivial. Without loss of generality, we may assume
a 	= 1. Clearly, [y, x, x] ∈ A and 1 	= [y, x] ∈ Z(H). Then 1 = [y, x, x, x] = [y, x, x,h] and

[x,h][y,x] = [
x[y,x],h

] = [[y, x, x]−1x,h
] = [x,h].

Thus 1 = [x,h, [y, x]] = [[a,h]h, [y, x]] = [a,h, [y, x]]h , so [a,h] is fixed by [y, x]. By Lemma 3.2 it
follows that [a,h] = 1. As a consequence b 	= 1, otherwise [a,k] = 1 and [a, [h,k]] = 1. Arguing as
for a, we then conclude that [b,k] = 1. �
Theorem 3.5. Let G be any abelian-by-(nilpotent of class 2) group generated by two mutually Engel elements
x and y. Then G is nilpotent.

Proof. Put x = ah, y = bk where a,b ∈ A and h,k ∈ H . Then [x, y] = [h,k]c with [h,k] ∈ Z(H) and for
some c ∈ A. By Lemma 3.3 we know that

[x, y, y], [y, x, x] ∈ A and [x, y, y, y] = [y, x, x, x] = 1.

This gives

[
x, y, yp] = 1 and

[
x, y, xp] = 1.

If 〈xp, yp〉∩ A 	= 1, the commutator [x, y] commutes with a nontrivial element of A. Thus [h,k] = 1 by
Lemma 3.2, and [x, y] ∈ A. Indeed G ′ � A and G is nilpotent by Lemma 2.2. Therefore A ∩〈xp, yp〉 = 1
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and we may assume H = 〈xp, yp〉, since 〈h,k〉 
 〈h,k〉A/A = 〈xp, yp〉A/A 
 〈xp, yp〉. It follows that c
must be trivial. Then 1 	= [x, y] = [h,k] and, by Lemma 3.4, we have

[
a,k−1] = [

b,h−1] and [a,h] = 1,

with a 	= 1.
Now, the Hall–Witt identity

[
a,k−1,h

]k[
k,h−1,a

]h[
h,a−1,k

]a = 1

implies

[
a,k−1,h

]k = [
k,h−1,a

]−h
.

But [k,h−1,a] commutes with h, so [[a,k−1],h] = [[b,h−1],h] commutes with hk−1
. Then [b,h,h]h−1 =

[b,h−1,h]−1 commutes with hk−1
, in particular [b,h,h] commutes with hk−1h = hk−1

. Hence [b,h,h] ∈
C A(hk−1

).
Let B = C A(hk−1

) and K = 〈h,hk−1 〉A. Then B � K because [h−1,k] ∈ Z(H). If q is the order of h,
we also have B = [b,hq]B = [b,h]q B . However, the order of [b,h] is coprime with q, thus [b,h] ∈ B
and [a,k−1] = [b,h−1] ∈ B . So [a,k−1,hk−1 ] = 1 and [k,a,h] = 1. Finally, from

[a,k,h]k−1[
k−1,h−1,a

]h[
h,a−1,k−1]a = 1,

it follows [k,h,a] = 1 which contradicts Lemma 3.2. �
When x and y are mutually 3-Engel elements, we get thanks to GAP that the group G in The-

orem 3.5 is nilpotent of class at most 8. In fact, using the ANU Nilpotent Quotient package of
W. Nickel (see [6]), we can construct the largest nilpotent quotient of G which is isomorphic to G .

Also notice that the theorem above can be extended to a group generated by more than two
mutually Engel elements, provided that none of the generators has order divisible by 2 or 3.

Corollary 3.6. Let S be a finite Engel set and assume that G = 〈S〉 is abelian-by-(nilpotent of class 2). If every
element in S has order that is not divisible by 2 or 3, then G is nilpotent.

Proof. For all x, y ∈ S , the subgroup 〈x, y〉 is nilpotent by Theorem 3.5. Thus the claim follows by
Proposition 1 of [3]. �

Using Theorem 3.5, we now present a criterion for nilpotency of a finite soluble group depending
on information on its Sylow subgroups.

Corollary 3.7. Let G = 〈x, y〉 be a finite soluble group with x and y mutually Engel elements. If all Sylow
subgroups of G are nilpotent of class � 2, then G is nilpotent.

Proof. Let G be a counterexample of least possible order and let N be a minimal normal subgroup
of G . Then G/N is nilpotent by minimality. Moreover, all Sylow subgroups of G/N are nilpotent of
class � 2, so that G/N is nilpotent of class � 2. On the other hand N is abelian, because G is soluble.
Hence G is abelian-by-(nilpotent of class 2) and thus nilpotent by Theorem 3.5: a contradiction. �
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4. Examples

Our first example shows that, for any positive integer n, there exists a group generated by two
mutually n-Engel elements which are not (n − 1)-Engel. This is the dihedral group of order 2n+1.

Example 4.1. Let us consider G = 〈x, y | x2 = y2 = 1, (xy)2n = 1〉. If z = xy, then [x, y] = z2 and
zx = zy = z−1. For any k � 1, we get by induction [x, k y] = z−(−2)k

and [y, kx] = z(−2)k
. Therefore

[x,n−1 y], [y, n−1x] 	= 1 whereas [x, n y] = [y, nx] = 1. Thus x and y are mutually n-Engel elements.
Furthermore, we have G = 〈y, z〉 and [y, 2z] = [z, n y] = 1, so even y and z are mutually n-Engel
elements.

The following is an example obtained by GAP of a non-nilpotent group G generated by two mu-
tually 3-Engel elements, for which γ4(G) is abelian.

Example 4.2. Let W = S3 wr Z4 be the wreath product of the symmetric group of degree 3 with the
cyclic group of order 4. Thus, |W | = 2634. We have W = Q � N , where N is an elementary abelian
group of order 34 and Q 
 Z2 wr Z4. Moreover, Q is nilpotent of class 4. With the notation of GAP,
let ele := Elements(W ), x := ele[4] and y := ele[228]. Then o(x) = o(y) = 4 and [x, 3 y] = [y, 3x] = 1.
As o(xy−1) = 6, the subgroup G = 〈x, y〉 of W is not nilpotent. Finally, one can check that G = S � N
where S is a group of order 25 which is nilpotent of class 3.

For completeness reasons, we point out that W = 〈x, y′〉 with y′ := ele[509] of order 6 and
[x, 3 y′] = [y′, 4x] = 1. Hence, W is a generated by two mutually 4-Engel elements and is not nilpotent.

Notice that some more non-nilpotent groups generated by two mutually n-Engel elements can be
found in the literature. For instance, Corollary 0.2 of [2] says that, for n � 26, the group G(n) = 〈x, y |
[x,n y] = [y, nx] = 1〉 is not nilpotent. We can improve upon this. In fact, we show below that G(4) is
not soluble, because it has a quotient isomorphic to the symmetric group S8.

Example 4.3. Let S8 be the symmetric group of degree 8, and let x = (1,2,3,4)(5,6)(7,8) and y =
(1,3)(2,5)(4,7,6,8). Put xn = [x,n y] and yn = [y,nx], for any n � 0 (so x0 = x, y0 = y). We then
have

x1 = (1,6)(2,7)(3,8)(4,5), y1 = (1,6)(2,7)(3,8)(4,5),

x2 = (1,5)(4,6), y2 = (2,4)(5,7),

x3 = (1,5)(2,3)(4,6)(7,8), y3 = (1,3)(2,4)(5,7)(6,8),

x4 = (1), y4 = (1).

In particular, [x, 4 y] = [y, 4x] = 1. However x and y are of order 4, but xy = (1,5,8,6,2)(3,7,4) is of
order 15. The subgroup G = 〈x, y〉 is thus non-nilpotent. Using GAP, it is easy to see that |G| = 8!, so
G = S8.

We now discuss the situation of Example 4.3. Clearly, if the pair (x, y) ∈ G × G satisfies the condi-
tion

[x, 4 y] = [y, 4x] = 1, (∗)

then all conjugates (xg, yg), for all g ∈ G , satisfy the analogous property. Therefore it is sensible to
consider classes under conjugation.

It turns out by GAP that the only pairs (x, y) ∈ G × G satisfying (∗), that generate a non-nilpotent
subgroup of G , have both x and y with cycle structure of type (4)(2)(2) and, in addition, x, y necessar-
ily generate the whole group G . Without loss of generality, we may assume x = (1,2,3,4)(5,6)(7,8).
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For this x, we calculated all solutions y ∈ G of (∗). We ended up with precisely 64 solutions. Of
course, the group CG (x) of order 32 acts on the pairs of solutions. The stabilizer of this action is
CG(x) ∩ CG (y) = Z(G) = 1, so that we obtain two essentially distinct solutions.

Other examples? Suppose that in some finite group we can find Sylow p-subgroups P , Q and el-
ements x ∈ P , y ∈ Q such that [x, y] ∈ P ∩ Q . Let c be the nilpotency class of P . Thus, [x, c+1 y] =
[y, c+1x] = 1. If xy is not a p-element, then 〈x, y〉 is non-nilpotent. The groups in Examples 4.2 and
4.3 are of this form for p = 2. It would be very interesting to find analogous examples for all odd
primes p.
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