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Abstract

A lattice diagram is a finite list = ((p1,91), ..., (Pn, On)) of lattice cells. The corresponding
lattice diagram determinant i (X;Y) = detHxipj yiqj I. ThespaceM\ is the space spanned by all
partial derivatives ofA| (X; Y). We desribe here how a Schur function partial derivative operator
ack m lattice diagrams with distinct cells in the positive quadrant.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

We mnsider the symmetric groufy acting diagonally of)[x1, X2, ..., Xn; Y1, Y2, - - -,
Ynl, the polynomial ring in 8 variables More specifically, foroc € Sn, we @mnsiderthe
following (diagonal) action on polynomials:

GP(Xls X27 ceey Xn; yls y27 ceey yn) = P(XU]_s X(Tzv ceey X(Tn; y(T]_? y(72! ] y(Tn)'

A polynomial A = A(X1, X2, ..., Xn; Y1, Y2, - - ., Yn) IS Said to bealternatingif, for all
o € Sp, we haves A = sign(o) A. It is well known that the set of all lattice diagram
deterninants (described in the next section) forms a basis for the space of alternating
polynomials.

Given an dternating polynomialA we are interested in the spacg[A] spained by all
possible partial derivatives af. Since the diagonal action &, commutes with applying
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partial derivatives, the spac€;[A] is an Sp-module. Our goal is to give a complete
description of its (graded) character. This is a very hard problem in general and even the
simplest cass require elaborate constructiodsg][7]. The aim ofthe present work is to
develop tools that W allow us to better achieve this goal.

In previous work -4 we remark that the first step in describing the structur&€gfA]
is to determine its subspace of alternating polynomials. This subspace corresponds to the
space spanned by aymmetrigartial derivativeoperators applied td. In view of this, we
need to describe explicitly how the different bases of symmetric partial derivative operators
act on a given lattice diagram determinant. In the work cited above, we describe the action
of power sum symmetric operators and eletaey symmetric operators and homogeneous
symmetric operators in one set of variablest ¥he action of one of the most important
bases of symmetric partial derivative operators, namely the Schur symmetric operators, was
still not explicitly given. We give such a description here. Once our formula is established,
we encourage the reader tovigt the previous work on the subject. For example, some
resuts of [5] become conceptually simpler using our description and we see exactly why
the multiplicity of the sign representation in a row diagram with a hole is as given in
Section 4 of ). Our result can also be used to give a better description, in terms of partial
Schur polynomials, of the vanishing ideal for the diagrams considere8l.ifour hope is
that our contribution will help irdescribing the generators of the vanishing ideal for the
general cases, and this will be the subject of future work.

At first it seems thithe description of the Schur symmetric partial derivative operators
on A should follow directly from the expansion of Schur symmetric functions in terms of
Young tableaux, but this is not quite correct. One has to be careful with the effect of signs
when applying partial derivatives to lattice determinants. We thus need to re-derive this
expansion from the other basis, carefully keeping track of signs. This can be done in many
ways; hee we chose to use the method d€].

2. Basic definitions

The lattice cell in the + 1-st row andj + 1-st column of the positive quadrant of
the plane isdenoted by(, j). We ader the set of all lattice cells using the following
lexicographicorder:

(P1,q1) < (P2, G2) = qu<02 or [gp=0zandpy < p2]. (2.1)

For our purpose, dattice diagramis a finite listL = ((p1, q1), ..., (Pn, gn)) Of lattice

cells such that(p1,q1) < (p2,d2) < --- < (Pn,0On). Fdlowing the definitions and
conventions of 4], the coordinatesp; and g of a cell (p;, gi) indicate the row and
column positions, respectively, of the cell. Fot > p2 > --- > uk > 0, we say that

w = (1, m2, ..., uk) is apartition of nif n = pu1+- - -+ uk. We associate with a partition

u the following lattice (Ferrers) diagrafdi, j) : 0 <i <k—-21,0< | < ujy1 — D),
digtinct cells ordered withZ.1), and we use the symbal for both the partition and

its associated Ferrers diagram. For example, given the partition (4, 2, 1), its Ferrers
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diagram is

2,0
1,0 1,1
0,0 0,1(0,21]0,3

This consists of the lattice cells ((0, 0), (1, 0), (2, 0), (O, 1), (1, 1), (O, 2), (O, 3)).
Given a lattice diagranh = ((p1,91), (P2, G2), - - -, (Pn, Gn)) We defire thelattice
diagram determinant

xipj Yiqj n
ALX;Y) = det| —— :
p] ‘qJ' i,j=1
where X = X1,X2,..., Xy andY = Vy1,V¥2,..., ¥n. This deerminant clearly vanishes

if any cell has multiplicity greater than one, and we gkt(X; Y) = 0 if a coordinate
of any cell is negative. The determinad{ (X; Y) is bihomogeneous of degré@| =
p1 + -+ pnin X and degreéq| = g1 + - - - + gy in Y. The factorials will ensure that
the lattice diagram determinants bebaicely under partial derivatives.

For apolynomial P(X; Y) we denote byP (3 X; aY) the differential operator obtained
from P, subdituting for every variablex; the operatoraiXi and for every variablg; the

operatorz,i’Tj. Under the diagonal actiory | (X; Y) is clearly an alternant.

These lattice diagram determinants are crucial in the study of the so-cailed “
conjecture” of Garsia and Haimarb][ recently proven by Haiman7], and in
generalizations of this question (s&] for exanple). To be more precise the key object
is the vector space spanned by all partial derivatives of a given lattice diagram determinant
AL, which wedenote by

ML = La[ALL

Very usefll in the comprehension of the structure of thle spaces are the “shift
operators”. These operators are special symmetric derivative operators, whose action on
the lattice diagram determinants could be easily described in terms of movements of cells.

Another area of interest related to the shift operators is the hope of obtaining a
description of the vanishing ideal bf _, which isdefined as

I ={f e Q[X;Y]; f(0X;3Y)AL(X;Y) =0}

The structures o1 and ofZ are closely related and the shift operators are crucial tools
for studyingZ_ (see -3 for someapplications).

Let us recall results of] that desribe the effects of power sums and elementary and
homogeneoussymmetric differential operators on lattice diagram determinants.

For the sak®f simgicity, we limit our descriptions toX-operators; th&'-operators are
similar. Recall that

n
P(X) =) xf
i=1
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& (X) = Z Xiy Xiy -+ Xiy
1<ii<ip<--<ik<n
)= D XipXip X,

are respectively th&-th power sum and the elementary and homogeneous symmetric
polynomials.

Now, to state the next proposition, we need to introduce some notation. For a lattice
diagramL, we denote byL its complement in the positive quadrant (it is an infinite subset).
Again we ordelL = {(P;.Ty), (P2, Ta), . . .} using the lexicographic orde2 (1). Let L be
a lattice diagram with distinct céls in the positive quadrant. For any inteder 1 we
have:

Proposition 2.1 (Proposition 1.1 @], Propositions 2.4, 2.67]).

n
P@X)AL(X, Y) = +Ap:L) (X, Y), (2.2)
i=1
where R(i; L) is the dagram obtained by replacing the i-th biexponei;, gi) by
(pi — k, ). The sgn in (2.2 is the 9gn of the permutation that reorders the biexponents
obtained with respect to the lexicographic ord@rl).

&@X)ALX:Y) = D AgpicD(XY) (2.3)

1<ip<ip<--<ik=<n

where (i1, ..., ik; L) is the lattice diagram obtained fro L by replacing the biexponents
(Pigs Gig)s - - - » (Pig» Qi) With (pi; — 1, diy), - -5 (Pi — 1, Gy ):
hk@X)ALX. V)= > Angigic X Y) (2.4)

1§i1<i2<»~<ik
where h(ii,...,ik; L) is the lattice diagram with the following complement diagram.

Replace the biexponent®, , T;,), - .., (P, T, ) of the complement. with P, +1,
Gi,), ..., (B, +1,Tj,) and keep the others unchanged.

The aim of this work is to obtain a desctign similar to the previous proposition of the
effect of a partial Schur differential symmetric operator on a lattice diagram determinant.
We obtain such a rediin the next section and prove it.

3. Schur operators

Following [9], recall that for a partition. = (A1, A2, ..., Ak) the @njugate (transpose)
patition is denoted by" = (17, A5, ..., A}). With this in mind, the Schur polynomial
indexed by is

S.(X) = detliey i (X

with the understanding thady(X) = 1 andex(X) = 0 if k < 0. The Schur polynomials
also have a description in terms of column-strict Young tableaux. Giepartition ofn, a
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tableau of shapeisamaprl : A — {1, 2,...,n}. We saythatT is a mlumn-strict Young
tableau if it is weakly increasing along the rows and strictly increasing along the columns
of L. Thatis,T(i, j) < T(,j+ 1) andT(, j) < T( + 1, j) wherever it is defined. We
denote by7, the st of all column-strict Young tableaux of shapeFor any ableauT, we

defineX™ = [T, xi‘Tfl(i)‘. As sen in P], we have
S.(X) = Z xT.

TeT,

It is convenient to define the following function on lattice diagrams:

1 if L hasn distinct cells in the positive quadrant

eb)= {0 otherwise (3.1)

Let L bea lattice diagram withn distinct cells in the positive quadrant. For any partition
A of an integerk > 1 we have

Theorem 3.1.

SOX)ALX: YY) = D € (T, L) Asr)(X; Y)
TeT,

whered T (L) is the lattice diagram obtained fro L by replacing the biexponentg;, i)
with (pi — |T~1(@)[, g) for 1 < i < n. The cofficiente’(T, L) is described a fdlows. Let
T1, To, ..., Ty be thet columns of T;the@T (L) = 9T19T2---3Te(L) and

€(T,L) =e@T(L)) --- e(@Tp—108Te(L)) e(@T(L)) (3.2)
wheree is ddined in(3.1). Hercee’(T, L) isOor 1.

We shall pove ths result usingProposition 2.1and an adaptation of the involution
defined in LO]. We will see in the proof at the end of this section that the order in which
we gply the operatorsT; to the lattice diagranh in Eq. 3.2 is not arbitrary. The result
and the proof depend on that precise orderminown results covered that aspect before.

To start, we renark that theTheorem 3.JandProposition 2.1agree on their domain of
definition. This is becauss = Sk and the tableau of shap¥ torresponds to sequences
1<ii<iz2 <--- <ik <n.Now let¢ be the number of componentsidfand expand the
deterninant:

S.(X) = detlley i X0 = ) SN0)& 455, (3.3)
eSSy
Hereéy = (£ —-1,¢—-2,...,1,0) andeaj =0ifaj < 0.Ifwe havew = ag, @2, ..., o
a seuence of integers, we let, = ey, &, - - - &,. Here theorder in whichwe write this
product matters. Fat = 1, as noted befor&roposition 2.Xan be rewritten as

e ()AL Y) = > e@Tu(L) Agryy(X: Y) (3.4)
TieT1a1
whereT;« is the set ofr1-column tableaux with content i, 2, . . ., n}, stiictly increasing

in the cobmn. Heree/(Ty, L) = €(8T1(L)). Suppose now that = 2. We use 8.4 with
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ey, (0 X) and applye,, (8 X) on both side. That gives
€ (IX)AL(X; Y) = €y (0X) €0, (AX) AL(X; Y)
= ) €(@Ta(L))ew, (3X) Agry)(X: Y)

T2€71a2

= > > e@TaAL)e@T1dT2(L)) Agryarywy (X: V).
T]_E'Z?lotl T2€710(2

Now letC7, = CTyy ay,....a, DE the set of columnsT = (Tq, To, ..., Tg) whereTj € Tye;.
We can represent as a tableaww — {1,2,...,n} where as before & identify the
compositiona with the lattice diagran{(i, j) | 0 < i < aj;1 — 1,0 < j < £ -1,
with distinct cells ordered by2(1). The tablead is strictly increasing along every column
and has no restriction along rows. Note that the shajgenot necessarily a partition. We
can now simplify our computation above and write, fo£ 2,

e@X)ALX YY) = > € (T, L)Asra,) (X Y), (3.5)
TeCTy
wheredT(L) = dT10T2--- 3T, (L) is the lattice diagram obtained fromby replacing the
biexponentgp;, gi) with (pi — |T~2()|,q) for1 <i <nand
€(T,L) =€@T(L)) --- €(@Tr—18Te(L)) €(@Te(L)). (3.6)

It is clear, by induction, that this is true for &ll> 2 as wdl. We must alsaremark here
that if one of thaxj; < 0, the sum 3.5 must be st to zero.
We can now start the computation of the opera®B)using @.5):

SLOX)ALGY) =D SGN0)E, /455 (DX AL(X; Y)

oceSy

= > sgno)e (T, L) Aty (X; Y). (3.7)
ceSy TGC,Z;:(A’MZ)%/[

Now we reed to construct an involution on the set indexing the double sum such that
all terms cancel, unlessis the identity permutation anfl € 7,. Here is an gample of a

,,,,,

8
10 6
81915
T =2 713414

The only requirement is that is strictly increasing in columns.

Let us first concentrate o= 2 and let\’ = (A7, A5). We have two pssible fiapes
@ = (a1, a2), githerd’ = ld(A' +82) — 82 0r (A, — 1, 4] +1) = (L, 2) (A’ +82) — 82, where
(i, j) is the usual notation for trapositions. These two cases ampletely characterized
by @1 < a2 or a1 > ap. We now define an irslution dmilar to [10].
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With eachT e C7, we associate two wordst andwT. This mehod is orignally due
to Lasoux and Schutzenberger (c8]]. The firstwt consists of all the entrieg(i, j) of
T sorted in inceasing order. For example if

9
6
5
9

T =13

thenwt = 3 4 5 6 9 9. Now we associate witlnr its paretheses structurér. For

this, we list the entries it and associate with an entry from the first colummad left
parenthesis, and with an entry of the second column a right parenthesis. For two columns,
the same entry appears at most twicewinich case the first one that we readun is
assumed to be from the first column ®f In the exarple abovewt = 3456 9 9 and

wt =())().

There is a natural way to pair parenthesesler the usual rule of parenthesization. In
any wordwT same parentheses will be paired and others will be unpaired. In our example,
wT = () ) )(), the first two paentheses and the last two arérpd and the two parentheses
in the middle are unpaired. The subword of any consisting of unpaired parentheses must
be of the form)) -- ) (- - - ((.

We have thedllowing useful result.

Proposition 3.2 ([10], Proposition §. A tableauT = (Ty,T2,...,T)) € C7, is a
column-strict Young tableal € 7, if and only if there are no unpaired right parentheses
in wTJ.,Tj+1 forall1 < j <¢— 1andtwo columnsil Tjy10f T.

Remark hee that if o = (@1, a2,..., ) is not a partition, that isj < «j4q for
some 1< | < ¢ — 1, then necessariI@Tj,Tj+l will contain nore right parentheses than
left parentheses and some will be left unpaired and ne C7, could be a column-strict
Young tableau.

We retun to the construction of the involution froni(] for A" = (17, 15). Let

A=CT )Y CTon-1041)-

The involution is a map? : A — A defined as follows. LeT € C7; a0, C A
and considefivt. The subword of unpaired parentheses contains O unpaired right
parentheses followed By> 0 unpaired left parentheses. We have thatr = a1 — a».

o If r =0, thenT € 7, c C7,y and we definel (T) =

o If | >r > 0, thenT € C7,/\7, and we definel(T) = T’ € C71;; 1,41 theunique
tableau such thabt = wt andwy is obtained fromot replacmg the —r + 1 leftmost
unpaired left parentheses by right parentheses.

e lfr > I, thenT € C7(, 1,41 and we define?(T) = T € CT/\7;, theunique
tableau such thab = wr and w1y is obtained fromwy replacing ther — 1 — 1
rightmost unpaired right parentheses by left parentheses.
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Now in the general case, that istif> 2, let

A= CToirrsn s

oceSy

ForT € C7, C A, thecompositione completely characteres the permutation € S,
suchthata = o (A + ;) — 8. In paticular,« is a partition if and only ilc = Id. We
read the rows off from right to left, bottom to top. We find in this way the first pair
@i, j) and(, j + 1) suchthat

TGi,j))>TGa, )]+ or (,))gaand(, j+1) €a.

o If there is no such pair, then we haVes 7, c C7,, and we definel(T) =T.

e If we find such a pair, then we halfee C7, C A\7,. We define?(T) =T € C7g C
A\7; whereT’ is obtained fronT using the procedure above applied to the two columns
Tj+1, Tj+2. By construction, ife = o (X' +8¢) —8¢, theng = o (j, j +1) (' +8¢) — .

The fact that¥ is a well defined inglution is shown in several papers, for example,
in [10], Section 3. Let us give one example:

8
10 6 10 | 9| 6
8 9 |5 8 8 | 5
T - 7 3 4 we have ¥(T) = 7 3 4

The pair (1, 2) and (1, 3) is the first one wheélré¢l, 2) > T(1, 3). We thus apply the
involution to the second and third column. We have hetgt, = 3 4 5 6 8 9 and
wT, 73 = ()))) (. There are = 3 unpaired right parentheses followed lby- 1 unpaired
left parenthesis. We must change— | — 1 = 1 unpaired left parenthesis for a right one.
That is, @TZ’,Té = ()))((. That noves the entry 8 fnm the thrd column to the second
column.

Proof of Theorem 3.1. We retun tothe conputation 8.7) using thenotation that we have
developed:

SOX)ALX;Y) = > sgno)e’ (T, L) Agt(Ly(X; V).
TEC’]:T()J%»EZ)fElCA

The involution constructed above matches the term in the sum correspondingsto
CTs0r+80)—s, € A\T;, with T € Cj:r(j,j+1)(k’+54)—54 c A\7,. Clearly, we fave that
sgn(o) = —sgno (j, j + 1)) anddT(L) = aT'(L). Once ve show hat

(T, L) =€ (T, L) (3.8)

theTheorem 3. will follow from the fact that all the terms ii\ 7, will cancel out and the
remairing terms are ir;,, with the desired coefficient.
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To estdlish (3.8 we need to show that i€’ (T, L) # 0 thene/(T’, L) # 0, for they will
thenboth be equal to 1. Fron3(6)

€T, L) =€((T1, T2, ..., Te), L) = €(@T(L)) --- €(@Tg_13Te(L)) €(@To(L)).

Similarly, €’(T’, L) = €/((Ty, Ta, ...,TJ-’H, Tj’+2, .., T, L)forsomeO<i <¢—1.1If
€' (T, L) # 0, thene(@Tk---0Ty(L)) = 1forl<k < ¢ Forl<k < j+ 1we ckarly
have

€@Tic - 9Tj120Tj 2 9To(L) = €@Tic- - AT/ 40T/ 5+ Te(L)).

For j + 3 < k < ¢, the corresponding terms of(T, L) andée/(T/, L) are the same. Let
L =0Tj4+3---0Te—10T,L; theequality 3.8) will follow as soon as we show that

€(@Tj42(0) = 1ande(@Tj110Tj2(0) =1 = €@T/ (L) =1 (39)
for all L suchthate(L) = 1. )

LetB =o(j, j +1)(\ +8;) — 8¢, the shape of . Suppose that(aTj’Jrz(L)) = 0. This
implies that there is an entry £ k = T'(i, j +2) < n such that the cellgpk, ok) € L
and (pk-1, Gk-1) = (pk — L gk) € L, andk — 1 # T'(i —1, ] + 2) is not an entry of
Tj’+2. Now sincee(dTj 118 Tj4+2(L)) = 1 we must hag thatbothk andk — 1 are enties of
Tj+1, Tj4+2. This imgdies thatk— 1 is an entry ofI'J-’Jrl andk is not. This analysis shows that
k — 1 andk are entries Of‘)Tj’+1Tj’+2 with multiplicity one,k — 1 is in the columnTJfH and
k is in the cqumnTj’+2. They will be consecutive entries m’T,-’+1TJ’+2 and will be paired
in ﬁTJ’HTJ@z' This would impy that Tj;2 in ¥(T’) = T contains the entri butnotk — 1
ande(aTj+2(E)) = 0, contrary to our hypothesis. This completes our proof.]

Remark 3.3. Given a lattice diagramh. and a column-strict tableall € 7;, we have that

€'(T, L) = 1 exatly when we carslide dowrthe cells ofL by one, reading column by
column, from right to left, wihout having any cells colliding.

Coroallary 3.4. For hi(X) = sy (X) wehave
hk(@X)AL(X; Y) = Yo €Wl 0 DA e, (G Y).

This is equivalent to the description ig][ The only way to have’((j1, ..., jk), L) #0
is if the cellsjy, ..., jk that move down a noved intoholes. This can be described as
holes moving up.
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