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Abstract

A lattice diagram is a finite listL = ((p1, q1), . . . , (pn, qn)) of lattice cells. The corresponding
lattice diagram determinant is∆L (X; Y) = det‖x

pj
i y

qj
i ‖. ThespaceML is the space spanned by all

partial derivatives of∆L(X; Y). We describe here how a Schur function partial derivative operator
acts on lattice diagrams with distinct cells in the positive quadrant.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the symmetric groupSn acting diagonally onQ[x1, x2, . . . , xn; y1, y2, . . . ,

yn], the polynomial ring in 2n variables.More specifically, forσ ∈ Sn, we considerthe
following (diagonal) action on polynomials:

σ P(x1, x2, . . . , xn; y1, y2, . . . , yn) = P(xσ1, xσ2, . . . , xσn; yσ1, yσ2, . . . , yσn).

A polynomial∆ = ∆(x1, x2, . . . , xn; y1, y2, . . . , yn) is said to bealternating if, for all
σ ∈ Sn, we haveσ∆ = sign(σ )∆. It is well known that the set of all lattice diagram
determinants (described in the next section) forms a basis for the space of alternating
polynomials.

Given an alternating polynomial∆ we are interested in the spaceL∂ [∆] spanned by all
possible partial derivatives of∆. Since the diagonal action ofSn commutes with applying
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partial derivatives, the spaceL∂ [∆] is an Sn-module. Our goal is to give a complete
description of its (graded) character. This is a very hard problem in general and even the
simplest cases require elaborate constructions [4,6,7]. The aim ofthe present work is to
develop tools that will allow us to better achieve this goal.

In previous work [1–4] we remark that the first step in describing the structure ofL∂ [∆]
is to determine its subspace of alternating polynomials. This subspace corresponds to the
space spanned by allsymmetricpartial derivativeoperators applied to∆. In view of this, we
need to describe explicitly how the different bases of symmetric partial derivative operators
act on a given lattice diagram determinant. In the work cited above, we describe the action
of power sum symmetric operators and elementary symmetric operators and homogeneous
symmetric operators in one set of variables. Yet the action of one of the most important
bases of symmetric partial derivative operators, namely the Schur symmetric operators, was
still not explicitly given. We give such a description here. Once our formula is established,
we encourage the reader to revisit the previous work on the subject. For example, some
results of [5] become conceptually simpler using our description and we see exactly why
the multiplicity of the sign representation in a row diagram with a hole is as given in
Section 4 of [5]. Our result can also be used to give a better description, in terms of partial
Schur polynomials, of the vanishing ideal for the diagrams considered in [3]. Our hope is
that our contribution will help indescribing the generators of the vanishing ideal for the
general cases, and this will be the subject of future work.

At first it seems that thedescription of the Schur symmetric partial derivative operators
on∆ should follow directly from the expansion of Schur symmetric functions in terms of
Young tableaux, but this is not quite correct. One has to be careful with the effect of signs
when applying partial derivatives to lattice determinants. We thus need to re-derive this
expansion from the other basis, carefully keeping track of signs. This can be done in many
ways; here we chose to use the method of [10].

2. Basic definitions

The lattice cell in thei + 1-st row and j + 1-st column of the positive quadrant of
the plane isdenoted by(i , j ). We order the set of all lattice cells using the following
lexicographicorder:

(p1, q1) < (p2, q2) ⇐⇒ q1 < q2 or [q1 = q2 and p1 < p2]. (2.1)

For our purpose, alattice diagramis a finite list L = ((p1, q1), . . . , (pn, qn)) of lattice
cells such that(p1, q1) ≤ (p2, q2) ≤ · · · ≤ (pn, qn). Following the definitions and
conventions of [4], the coordinatespi and qi of a cell (pi , qi ) indicate the row and
column positions, respectively, of the cell. Forµ1 ≥ µ2 ≥ · · · ≥ µk > 0, we say that
µ = (µ1, µ2, . . . , µk) is apartition of n if n = µ1+· · ·+µk. We associate with a partition
µ the following lattice (Ferrers) diagram((i , j ) : 0 ≤ i ≤ k − 1, 0 ≤ j ≤ µi+1 − 1),
distinct cells ordered with (2.1), and we use the symbolµ for both the partition and
its associated Ferrers diagram. For example, given the partition (4, 2, 1), its Ferrers
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diagram is

This consists of the lattice cells ((0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2), (0, 3)).
Given a lattice diagramL = ((p1, q1), (p2, q2), . . . , (pn, qn)) we define the lattice

diagram determinant

∆L(X; Y) = det

∥∥∥∥∥x
pj
i y

qj
i

pj !qj !

∥∥∥∥∥
n

i, j =1

,

where X = x1, x2, . . . , xn and Y = y1, y2, . . . , yn. This determinant clearly vanishes
if any cell has multiplicity greater than one, and we set∆L(X; Y) = 0 if a coordinate
of any cell is negative. The determinant∆L(X; Y) is bihomogeneous of degree|p| =
p1 + · · · + pn in X and degree|q| = q1 + · · · + qn in Y. The factorials will ensure that
the lattice diagram determinants behavenicely under partial derivatives.

For a polynomialP(X; Y) we denote byP(∂ X; ∂Y) the differential operator obtained
from P, substituting for every variablexi the operator ∂

∂xi
and for every variableyj the

operator ∂
∂yj

. Under the diagonal action,∆L(X; Y) is clearly an alternant.

These lattice diagram determinants are crucial in the study of the so-called “n!
conjecture” of Garsia and Haiman [6], recently proven by Haiman [7], and in
generalizations of this question (see [2,4] for example). To be more precise the key object
is the vector space spanned by all partial derivatives of a given lattice diagram determinant
∆L , which wedenote by

ML = L∂ [∆L].
Very useful in the comprehension of the structure of theML spaces are the “shift

operators”. These operators are special symmetric derivative operators, whose action on
the lattice diagram determinants could be easily described in terms of movements of cells.

Another area of interest related to the shift operators is the hope of obtaining a
description of the vanishing ideal ofML , which isdefined as

IL = { f ∈ Q[X; Y]; f (∂ X; ∂Y)∆L(X; Y) = 0}.
The structures ofML and ofIL are closely related and the shift operators are crucial tools
for studyingIL (see [1–3] for someapplications).

Let us recall results of [2] that describe the effects of power sums and elementary and
homogeneoussymmetric differential operators on lattice diagram determinants.

For the sakeof simplicity, we limit our descriptions toX-operators; theY-operators are
similar. Recall that

Pk(X) =
n∑

i=1

xk
i
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ek(X) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik

hk(X) =
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · · xik

are respectively thek-th power sum and the elementary and homogeneous symmetric
polynomials.

Now, to state the next proposition, we need to introduce some notation. For a lattice
diagramL, we denote byL its complement in the positive quadrant (it is an infinite subset).
Again we orderL = {(p1, q1), (p2, q2), . . .} using the lexicographic order (2.1). Let L be
a lattice diagram withn distinct cells in the positive quadrant. For any integerk ≥ 1 we
have:

Proposition 2.1 (Proposition I.1 [4], Propositions 2.4, 2.6 [2] ).

Pk(∂ X)∆L(X, Y) =
n∑

i=1

±∆Pk(i ;L)(X, Y), (2.2)

where Pk(i ; L) is the diagram obtained by replacing the i -th biexponent(pi , qi ) by
(pi − k, qi ). The sign in (2.2) is the sign of the permutation that reorders the biexponents
obtained with respect to the lexicographic order(2.1).

ek(∂ X)∆L(X; Y) =
∑

1≤i1<i2<···<ik≤n

∆ek(i1,...,ik;L)(X; Y) (2.3)

where ek(i1, . . . , i k; L) is the lattice diagram obtained from L by replacing the biexponents
(pi1, qi1), . . . , (pik , qik ) with (pi1 − 1, qi1), . . . , (pik − 1, qik):

hk(∂ X)∆L(X, Y) =
∑

1≤i1<i2<···<ik

∆hk(i1,...,ik;L)(X, Y) (2.4)

where hk(i1, . . . , i k; L) is the lattice diagram with the following complement diagram.
Replace the biexponents(pi1, qi1), . . . , (pik , qik ) of the complementL with (pi1 + 1,

qi1), . . . , (pik + 1, qik ) and keep the others unchanged.

The aim of this work is to obtain a description similar to the previous proposition of the
effect of a partial Schur differential symmetric operator on a lattice diagram determinant.
We obtain such a result in the next section and prove it.

3. Schur operators

Following [9], recall that for a partitionλ = (λ1, λ2, . . . , λk) the conjugate (transpose)
partition is denoted byλ′ = (λ′

1, λ
′
2, . . . , λ

′
�). With this in mind, the Schur polynomial

indexed byλ is

Sλ(X) = det‖eλ′
j +i− j (X)‖

with the understanding thate0(X) = 1 andek(X) = 0 if k < 0. The Schur polynomials
also have a description in terms of column-strict Young tableaux. Givenλ a partition ofn, a
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tableau of shapeλ is a mapT : λ → {1, 2, . . . , n}. We saythatT is a column-strict Young
tableau if it is weakly increasing along the rows and strictly increasing along the columns
of λ. That is,T(i , j ) ≤ T(i , j + 1) andT(i , j ) < T(i + 1, j ) wherever it is defined. We
denote byTλ the set of all column-strict Young tableaux of shapeλ. For any tableauT , we

defineXT = ∏n
i=1 x|T−1(i )|

i . As seen in [9], we have

Sλ(X) =
∑

T∈Tλ

XT .

It is convenient to define the following function on lattice diagrams:

ε(L) =
{

1 if L hasn distinct cells in the positive quadrant,

0 otherwise.
(3.1)

Let L bea lattice diagram withn distinct cells in the positive quadrant. For any partition
λ of an integerk ≥ 1 we have

Theorem 3.1.

Sλ(∂ X)∆L(X; Y) =
∑

T∈Tλ

ε′(T, L)∆∂T(L)(X; Y)

where∂T(L) is the lattice diagram obtained from L by replacing the biexponents(pi , qi )

with (pi −|T−1(i )|, qi ) for 1 ≤ i ≤ n. The coefficientε′(T, L) is described as follows. Let
T1, T2, . . . , T� be the� columns of T ; then∂T(L) = ∂T1∂T2 · · · ∂T�(L) and

ε′(T, L) = ε(∂T(L)) · · · ε(∂T�−1∂T�(L)) ε(∂T�(L)) (3.2)

whereε is defined in(3.1). Henceε′(T, L) is 0 or 1.

We shall prove this result usingProposition 2.1and an adaptation of the involution
defined in [10]. We will see in the proof at the end of this section that the order in which
we apply the operators∂Tj to the lattice diagramL in Eq. (3.2) is not arbitrary. The result
and the proof depend on that precise order andno known results covered that aspect before.

To start, we remark that theTheorem 3.1andProposition 2.1agree on their domain of
definition. This is becauseek = S1k and the tableau of shape 1k corresponds to sequences
1 ≤ i1 < i2 < · · · < i k ≤ n. Now let� be the number of components ofλ′ and expand the
determinant:

Sλ(X) = det‖eλ′
j +i− j (X)‖ =

∑
σ∈S�

sgn(σ )eσ(λ′+δ�)−δ�
. (3.3)

Hereδ� = (� − 1, � − 2, . . . , 1, 0) andeα j = 0 if α j < 0. If we haveα = α1, α2, . . . , α�

a sequence of integers, we leteα = eα1eα2 · · · eα� . Here theorder in whichwe write this
product matters. For� = 1, as noted before,Proposition 2.1can be rewritten as

eα1(∂ X)∆L(X; Y) =
∑

T1∈T1α1

ε(∂T1(L))∆∂T1(L)(X; Y) (3.4)

whereT1α1 is the set ofα1-column tableaux with content in{1, 2, . . . , n}, strictly increasing
in the column. Hereε′(T1, L) = ε(∂T1(L)). Suppose now that� = 2. We use (3.4) with
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eα2(∂ X) and applyeα1(∂ X) on both side. That gives

eα(∂ X)∆L(X; Y)= eα1(∂ X)eα2(∂ X)∆L(X; Y)

=
∑

T2∈T1α2

ε(∂T2(L))eα1(∂ X)∆∂T2(L)(X; Y)

=
∑

T1∈T1α1

∑
T2∈T1α2

ε(∂T2(L))ε(∂T1∂T2(L))∆∂T1∂T2(L)(X; Y).

Now letCTα = CTα1,α2,...,α� be the set of� columnsT = (T1, T2, . . . , T�) whereTj ∈ T1α j .
We can representT as a tableauα → {1, 2, . . . , n} where as before we identify the
compositionα with the lattice diagram((i , j ) | 0 ≤ i ≤ α j +1 − 1, 0 ≤ j ≤ � − 1),
with distinct cells ordered by (2.1). The tableauT is strictly increasing along every column
and has no restriction along rows. Note that the shapeα is not necessarily a partition. We
can now simplify our computation above and write, for� = 2,

eα(∂ X)∆L(X; Y) =
∑

T∈CTα

ε′(T, L)∆∂T(L) (X; Y), (3.5)

where∂T(L) = ∂T1∂T2 · · · ∂T�(L) is the lattice diagram obtained fromL by replacing the
biexponents(pi , qi ) with (pi − |T−1(i )|, qi ) for 1 ≤ i ≤ n and

ε′(T, L) = ε(∂T(L)) · · · ε(∂T�−1∂T�(L)) ε(∂T�(L)). (3.6)

It is clear, by induction, that this is true for all� ≥ 2 as well. We must alsoremark here
that if one of theα j < 0, the sum (3.5) must be set to zero.

We can now start the computation of the operator (3.3) using (3.5):

Sλ(∂ X)∆L(X; Y)=
∑
σ∈S�

sgn(σ )eσ(λ′+δ�)−δ�
(∂ X)∆L(X; Y)

=
∑
σ∈S�

∑
T∈CTσ(λ′+δ�)−δ�

sgn(σ )ε′(T, L)∆∂T(L)(X; Y). (3.7)

Now we need to construct an involution on the set indexing the double sum such that
all terms cancel, unlessσ is the identity permutation andT ∈ Tλ. Here is an example of a
T ∈ CT(1,0,3,2,4,1):

The only requirement is thatT is strictly increasing in columns.
Let us first concentrate on� = 2 and letλ′ = (λ′

1, λ
′
2). We have two possible shapes

α = (α1, α2), eitherλ′ = Id(λ′ + δ2)− δ2 or (λ′
2 −1, λ′

1 +1) = (1, 2)(λ′ + δ2)− δ2, where
(i , j ) is the usual notation for transpositions. These two cases are completely characterized
by α1 < α2 or α1 ≥ α2. We now define an involution similar to [10].
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With eachT ∈ CTα we associate two wordswT andŵT. This method is originally due
to Lascoux and Schützenberger (cf. [8]). The firstwT consists of all the entriesT(i , j ) of
T sorted in increasing order. For example if

thenwT = 3 4 5 6 9 9. Now we associate withwT its parentheses structurêwT. For
this, we list the entries inwT and associate with an entry from the first column ofT a left
parenthesis, and with an entry of the second column a right parenthesis. For two columns,
the same entry appears at most twice, inwhich case the first one that we read inwT is
assumed to be from the first column ofT. In the example above,wT = 3 4 5 6 9 9 and
ŵT = ( )))( ).

There is a natural way to pair parenthesesunder the usual rule of parenthesization. In
any wordŵT some parentheses will be paired and others will be unpaired. In our example,
ŵT = ( )

) )
( ), the first two parentheses and the last two are paired and the two parentheses

in the middle are unpaired. The subword of anyŵT consisting of unpaired parentheses must
be of the form)) · · ·) (· · · ((.

We have the following useful result.

Proposition 3.2 ([10], Proposition 5). A tableau T = (T1, T2, . . . , T�) ∈ CTα is a
column-strict Young tableauT ∈ Tλ if and only if there are no unpaired right parentheses
in ŵTj ,Tj +1 for all 1 ≤ j ≤ � − 1 and two columns Tj , Tj +1 of T.

Remark here that if α = (α1, α2, . . . , α�) is not a partition, that isα j < α j +1 for
some 1≤ j ≤ � − 1, then necessarilŷwTj ,Tj +1 will contain more right parentheses than
left parentheses and some will be left unpaired and noT ∈ CTα could be a column-strict
Young tableau.

We return to the construction of the involution from [10] for λ′ = (λ′
1, λ

′
2). Let

A = CT(λ′
1,λ

′
2)

∪ CT(λ′
2−1,λ′

1+1).

The involution is a mapΨ : A → A defined as follows. LetT ∈ CT(α1,α2) ⊂ A
and consider̂wT. The subword of unpaired parentheses containsr ≥ 0 unpaired right
parentheses followed byl ≥ 0 unpaired left parentheses. We have thatl − r = α1 − α2.

• If r = 0, thenT ∈ Tλ ⊂ CTλ′ and we defineΨ (T) = T.
• If l ≥ r > 0, thenT ∈ CTλ′\Tλ and we defineΨ (T) = T′ ∈ CT(λ′

2−1,λ′
1+1), theunique

tableau such thatwT′ = wT andŵT′ is obtained from̂wT replacing thel −r +1 leftmost
unpaired left parentheses by right parentheses.

• If r > l , thenT ∈ CT(λ′
2−1,λ′

1+1) and we defineΨ (T) = T′ ∈ CTλ′\Tλ, the unique
tableau such thatwT′ = wT and ŵT′ is obtained fromŵT replacing ther − l − 1
rightmost unpaired right parentheses by left parentheses.
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Now in the general case, that is if� ≥ 2, let

A =
⋃

σ∈S�

CTσ(λ′+δ�)−δ�
.

For T ∈ CTα ⊂ A, thecompositionα completely characterizes the permutationσ ∈ S�

suchthatα = σ(λ′ + δ�) − δ�. In particular,α is a partition if and only ifσ = Id. We
read the rows ofT from right to left, bottom to top. We find in this way the first pair
(i , j ) and(i , j + 1) suchthat

T(i , j ) > T(i , j + 1) or (i , j ) �∈ α and(i , j + 1) ∈ α.

• If there is no such pair, then we haveT ∈ Tλ ⊂ CTλ′ and we defineΨ (T) = T.

• If we find such a pair, then we haveT ∈ CTα ⊂ A\Tλ. We defineΨ (T) = T′ ∈ CTβ ⊂
A\Tλ whereT′ isobtained fromT using the procedure above applied to the two columns
Tj +1, Tj +2. By construction, ifα = σ(λ′+δ�)−δ�, thenβ = σ( j , j +1)(λ′+δ�)−δ�.

The fact thatΨ is a well defined involution is shown in several papers, for example,
in [10], Section 3. Let us give one example:

The pair (1, 2) and (1, 3) is the first one whereT(1, 2) > T(1, 3). We thus apply the
involution to the second and third column. We have herewT2,T3 = 3 4 5 6 8 9 and
ŵT2,T3 = ( )))) (. There arer = 3 unpaired right parentheses followed byl = 1 unpaired
left parenthesis. We must changer − l − 1 = 1 unpaired left parenthesis for a right one.
That is, ŵT ′

2,T
′
3

= ( )))((. That moves the entry 8 from the third column to the second
column.

Proof of Theorem 3.1. We return tothe computation (3.7) using thenotation that we have
developed:

Sλ(∂ X)∆L(X; Y) =
∑

T∈CTσ(λ′+δ�)−δ�
⊂A

sgn(σ )ε′(T, L)∆∂T(L)(X; Y).

The involution constructed above matches the term in the sum corresponding toT ∈
CTσ(λ′+δ�)−δ�

⊂ A\Tλ with T′ ∈ CTσ( j , j +1)(λ′+δ�)−δ�
⊂ A\Tλ. Clearly, we have that

sgn(σ ) = −sgn(σ ( j , j + 1)) and∂T(L) = ∂T′(L). Once we show that

ε′(T, L) = ε′(T′, L) (3.8)

theTheorem 3.1will follow from the fact that all the terms inA\Tλ will cancel out and the
remaining terms are inTλ with the desired coefficient.
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To establish (3.8) we need to show that ifε′(T, L) �= 0 thenε′(T′, L) �= 0, for they will
thenboth be equal to 1. From (3.6)

ε′(T, L) = ε′((T1, T2, . . . , T�), L) = ε(∂T(L)) · · · ε(∂T�−1∂T�(L)) ε(∂T�(L)).

Similarly, ε′(T′, L) = ε′((T1, T2, . . . , T ′
j +1, T ′

j +2, . . . , T�), L) for some 0≤ i ≤ � − 1. If
ε′(T, L) �= 0, thenε(∂Tk · · · ∂T�(L)) = 1 for 1 ≤ k ≤ �. For 1≤ k ≤ j + 1 we clearly
have

ε(∂Tk · · · ∂Tj +1∂Tj +2 · · · ∂T�(L)) = ε(∂Tk · · · ∂T ′
j +1∂T ′

j +2 · · · ∂T�(L)).

For j + 3 ≤ k ≤ �, the corresponding terms ofε′(T, L) andε′(T′, L) are the same. Let
L̃ = ∂Tj +3 · · · ∂T�−1∂T�L; theequality (3.8) will follow as soon as we show that

ε(∂Tj +2(L̃)) = 1 andε(∂Tj +1∂Tj +2(L̃)) = 1 �⇒ ε(∂T ′
j +2(L̃)) = 1 (3.9)

for all L̃ suchthatε(L̃) = 1.
Let β = σ( j , j + 1)(λ′ + δ�)− δ�, the shape ofT. Suppose thatε(∂T ′

j +2(L̃)) = 0. This

implies that there is an entry 1≤ k = T′(i , j + 2) ≤ n such that the cells(pk, qk) ∈ L̃
and(pk−1, qk−1) = (pk − 1, qk) ∈ L̃, andk − 1 �= T′(i − 1, j + 2) is not an entry of
T ′

j +2. Now sinceε(∂Tj +1∂Tj +2(L̃)) = 1 we must have thatbothk andk − 1 are entries of
Tj +1, Tj +2. This implies thatk−1 is an entry ofT ′

j +1 andk is not. This analysis shows that
k − 1 andk are entries ofwT ′

j +1T ′
j +2

with multiplicity one,k − 1 is in the columnT ′
j +1 and

k is in the columnT ′
j +2. They will be consecutive entries inwT ′

j +1T ′
j +2

and will be paired

in ŵT ′
j +1T ′

j +2
. This would imply that Tj +2 in Ψ (T′) = T contains the entryk butnotk − 1

andε(∂Tj +2(L̃)) = 0, contrary to our hypothesis. This completes our proof.�

Remark 3.3. Given a lattice diagramL and a column-strict tableauT ∈ Tλ, we have that
ε′(T, L) = 1 exactly when we canslide downthe cells ofL by one, readingT column by
column, from right to left, without having any cells colliding.

Corollary 3.4. For hk(X) = s(k)(X) wehave

hk(∂ X)∆L(X; Y) =
∑

1≤ j1≤ j2≤···≤ jk≤n

ε′(( j1, . . . , jk), L)∆∂ j1 ...∂ jk (L)(X; Y).

This is equivalent to the description in [2]. The only way to haveε′(( j1, . . . , jk), L) �= 0
is if the cells j1, . . . , jk that move down are moved intoholes. This can be described as
holes moving up.
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