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Abstract 

Sain, I., Temporal logics need their clocks, Theoretical Computer Science 95 (1992) 75-95. 

We investigate effective inference systems for first-order temporal logics from the point of view 

of completeness and soundness. Among others, the role of clocks in these issues will be somewhat 

clarified by our results. Some open problems from the literature of temporal logic will be solved. 

1. Introduction 

In this paper we solve some open problems raised in recent publications of the 

computer science temporal logic school represented by Manna-Pnueli [ 19,201, 

Abadi-Manna [5], Abadi [l-4]. These problems concern the proof theoretic powers 

of the following inference systems: 

l To introduced in Manna-Pnueli [ 19,201, and reformulated in [l-4] (the notation 

T, was introduced in the latter publications); 

l the resolution system R of [5] with its final form in [3]; and 

l Tr , T2 of [l-4]. (T, is equivalent with 08, while the essence of T2 is allowing 

recursive definitions :“along time” in To .) 

One of the main aims of the above quoted school is to find adequate inference 

systems for computer science temporal logics. The practical importance of this quest 

is explained in the introductions of e.g. [l-5]. An inference system is called adequate 

for a semantics iff it is both sound and complete for that semantics. To avoid 

misunderstandings, it is important to point out at this point that completeness issues 

in first-order philosophical logic, hence in particular in first-order temporal logic 

(FTL from now on) are of different character than those in classical first-order logic. 

Namely, in classical first-order logic one has an a priori fixed standard semantics, 

and all investigations are understood by definition w.r.t. that standard semantics. 
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In the FTL literature one usually investigates several different semantics. A 

semantics is usually given in the form of a class K of so called Kripke models. 

A semantics K is considered natural and useful if the definition of K is mathematic- 

ally transparent, and mathematically familiar and natural. Usually, completeness 

investigations are done by looking at mathematically transparent semantics K, , K2, 

and comparing them with “proof theoretically attractive” inference systems E, , k2. 

(One of the main aims is to obtain theorems like saying that I-, is sound and 

complete for K,.) See [13,~.94~,~, 5 11.4.1, pp. 167-169, p.290 # 11.5.3.21 for more 

on this, and also for the reasons for this difference between the methods of classical- 

and philosophical logic. 

Therefore, the quoted computer science FTL school (Abadi-Manna [5] etc.) starts 

out with two natural classes of Kripke models to be denoted below as Mod( Znd + 

Tord) and Mod(Ind + Tpa) on the semantic side’, and with the most frequently 

used inference systems To and [w on the syntactic side. T, is a Hilbert-style system 

used in Manna-Pnueli [19,20], in Kroger [17] to mention only a few sources. R is 

the machine implementation oriented “resolution” equivalent of T, (and/or of a 

slightly stronger version of To, cf. item (3) in Section 3). The above mentioned 

school discovered that To is sound and incomplete for both semantics. They study 

the gap, and as is usual in the FTL literature, they search in both directions, namely 

they look both for natural semantical characterizations for T, and R, and for 

reinforcements of To that would be complete and sound for Mod (Ind + Tord) and 

Mod(lnd + Tpa) respectively. The candidates designed for these two model classes 

are the inference systems T, and T2 respectively. Completeness was proved under 

the so called clock condition, and elimination (or clarification of the role) of this 

condition was raised as an open problem in several papers. Soundness of Tz also 

needs some conditions, see Theorem 3 in Section 7 of the present paper. Here we 

prove theorems clarifying the role of the clock condition in the above mentioned 

inference systems. Actually, familiarity with these inference systems is not needed 

for an appreciation of our main results because we prove more general theorems 

which apply to arbitrary inference systems (satisfying some general conditions like 

recursive enumerability), and not only to the particular ones quoted above. 

As indicated above, the project pursued by the quoted computer science FTL 

school is far from being finished (though many important results have been obtained). 

This is illustrated by the “Open questions” sections of [l-4]. The present paper is 

one in a series devoted to further advancing the quoted FTL project. 

2. Syntax and semantics of FTL with modalities 0, [F], U 

Throughout, u denotes the set of all natural numbers. We use first-order temporal 

logic (FTL) with modalities 0, [F], and U denoting “nexttime”, “always-in-the- 

’ The first one is based on the Time-frame being ordered (this is abbreviated as Tord), while the 

second one on the Time-frame’s being a model of Peano’s arithmetic (Tpa). 
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future”, and “until” respectively. (F) abbreviates l[ F]l, and reads “eventually”. 

Given a first-order similarity type or language L, the usual predicate symbols etc. 

of L are considered to be rigid, i.e. their meanings do not change in time (cf. 

[ 13, p. 2551). Similarly, individual variables x, (i E w) are rigid. To this we add an 

infinity yi (i E w) offlexible constants. That is, the meaning of y, is allowed to change 

in time. Other authors, see e.g. Abadi [l-4], add flexible predicates too, but we will 

not need them here though we will mention them occasionally. Our theorems remain 

true even if we allow flexible predicate and function symbols, as will be very easy 

to see. (This will be obvious from the proofs.) Fm(FTL) = FrnL(FTL) denotes the 

set of all FTL-formulas (of similarity type L) defined above. (Our “rigid-flexible” 

distinction coincides with the “global-local” distinction of Kroger [17].) 

For semantic purposes, we use classical two-sorted models Y.R= 

(T, D,fo, . . .,A,. . .),i, where D is a classical first-order structure of similarity type 

L, T= (T, 0, sue, S, +, x) is a structure similar to (of the same language as) the 

standard model N = (w, 0, sue, s, +, X) of arithmetic, and for in o, J; E ‘D (i.e. 

f; : T + D is a function from T into D) serves to interpret the flexible constant yi. 

T is called the time-frame of Y.V, and, except for its language, is arbitrary. For 

simplicity, we often write yC for J;. Mod denotes the class of all models 91 of the 

above kind. (To be precise, we should write ModL. The members of Mod are 

basically the same as Kripke models known from the traditional literature of FTL, 

cf. [ 131. The next definition also agrees with the tradition of philosophical logic [ 131.) 

To associate meanings to FTL-formulas in models from Mod, we follow the 

standard procedure of correspondence theory (cf. [13, $11.4.2.5, pp. 214-217]), and 

define a translation function 

P: Fm(FTL)+ Fmcl(Mod), 

where Fmcl( Mod) is the set of all classical (two-sorted) first-order formulas in the 

language of Mod. In Fmcl(Mod), x, (in w) are the variables of sort D (data), and 

fi (i E w) are variables of sort T (time). We may assume that all occurrences of the 

flexible constants y, are of the form ~1~ =x, in the FTL-formulas (every formula is 

easily seen to be equivalent with one of this form as is well known, cf. [ 111). For 

any cp E Fm(FTL), we let 

P(cp)“Af 3to(t,,=0r\ P*(cp, to)), 

where P* : Fm(FTL) x {t, : i E w} + Fmcl( Mod) is defined as follows: 

Forevery tE{t,:iEw}and p,$eFm(FTL), 

l P*( yi =x,, t) d&f (f;(t) = Xj) (here instead off;(t) one could write y,(t)), 

l P*($, t) dsf IJ whenever $ is atomic and does not contain flexible symbols, 

l P* preserves classical connectives and quantifiers, i.e., 

P*(p A $, t) dsf P*(cp, t) A P*( $, t), 

P*(lcp, t)dAflP*(cp, t), p*px,cp, t) fzf Elx,P”(cp, t) 

and 
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l P”(Oq, t) dAf 3t,( t, = suc( t) A P*(cp, t1)), 
. P*([F](p, t) dsf (Vt, 2 t)P*(cp, fl), 
. P*(pu$, t) dgf (Vt, 2 t)(P*(cp, t,) v 3t,(ts t,4 t, A P*($, t2))). 
This completes the definition (by recursion) of the translation functions P and P*. 

We let 

Here ?Dnl+ P(q) is understood in the usual classical sense. 

If t E T and cp E Fm(FTL) then, following the tradition (cf. [13, p. 466]), we let 

ZR,tlt(p iff tit-cp iff (!?Jl,t)l=P*(cp,t). 

Intuitively, t i== cp means that cp is true at time t in XR. At this point it might be useful 

to observe that Y.R!= cpeY.R, Ol/- cp. 

For any K G Mod, we let 

A model a= (T, . . .) is called a standard-time model iff T= N, i.e. iff T is the 

standard model of arithmetic. 

For any cp E Frn(FTL), +” cp is defined to hold iff cp is valid in every standard-time 

model. 

The semantics +” cp is too restrictive, while Mod k cp is too general. Therefore, 

as usual in modal- and temporal logic, we introduce first-order axiomatizable 

subclasses of Mod, and will use these for semantic purposes. To this end, we recall 

three sets Ind, Tord, Tpa E Fmcl( Mod) of postulates called “induction”, “ordering 

of time”, and “Peano’s arithmetic for time” respectively. These are used in the 

literature for singling out workable model classes (i.e. semantics) for FTL.’ 

where ~(0) is obtained from cp by replacing the free occurrences of t in cp with 0, 

and similarly for cp(suc(t)). Since p(t) may contain free variables other than t, this 

induction allows the use of parameters. 

7”a denotes the usual set of Peano’s axioms for the sort (or structure) T. 
Tord postulates the consequences of Tpa for the reduct (T, 0, sue, S) of T. So, 

the main difference between Tord and Tpa is that Tord ignores + and X. Thus 

when using (Ind + Tord) as semantics, we will pretend that + and x are not there. 

See the 1977 version of [7] or [8] for more detail, where the present approach 

(including P and P*) to FTL was first introduced (adapting the standard 

methodology of philosophical logic to computer science temporal logics). Later 

* These postulate systems were first proposed for the present purpose by the NLP school, see e.g. 

Sain [23], NBmeti [21,8,7], Hzijek [16]. 
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Abadi [l-4] adopted the same definitions from [i’] etc. with some notational 

differences to be indicated soon. 

For any 77r s Fmcl(Mod) and cp E Fm( FTL), we let 

Mod(Th) ef (9X6 Mod: YXl= Th}, and 

Now, the two most frequently used semantics for FTL-formulas cp are 

(Ind+Tord)kcp and (Znd+Tpa)I=cp. 

Abadi [l-4] writes ~,,P(cp) and EpP(~) for (Ind+Tord)l=p and (Ind+Tpa)kcp 

respectively. (In k0 the subscript can be thought of as the abbreviation of “ordering 

on time”, while P in t, abbreviates “Peano’s arithmetic”.) Further, Abadi writes 

+cp for our +” cp. (See e.g. [3, bottom of p.91.) 

The notation Ind b cp might seem confusing, since Ind is in one language, 

Fmcl(Mod), while (o is in another, namely in Fm(FTL). However, these two 

languages have the same class Mod of models, thus our notation makes sense. 

3. Inference systems for lTL 

Next we will consider inference systems for FTL. Our theorems will be about 

arbitrary inference systems satisfying certain general conditions (see conditions (a), 

(a*), (b) in Theorem 1 in Section 4). However, as special cases of these, we will 

consider four concrete inference systems, T,,, R, T, , and T2 introduced in Manna- 

Pnueli [19,20], Abadi-Manna [5], and Abadi [l-4]. Our theorems solve, among 

others, open problems raised about these inference systems in the quoted papers. 

Let t- be an inference system for FTL. Let K 5 Mod. Following the tradition, we 

say that + is complete for (K + ) iff 

(Vcp~ Fm(FTL))(Kt=qo =+ kcp). 

Soundness of + for (Ki==) means the opposite: we say that t is sound for (K l=) iff 

(Vcp E Fm(FTL))(K k cp ti tcp). 

If E G FmcZ(Mod) then, instead of “(Mod(E)+)“, we sometimes write “(2 l=)“. 

That is, “+ is complete (sound) for (X+_)” means that t is complete (sound) for 

(Mod(E)+). For brevity, we often write “K” and “2” for the semantics (Kk) and 

(It=) respectively. 

In the rest of this section we say a little more about the (concrete) inference 

systems TO, R, T, , T2. However, for obtaining our results concerning them, all we 

need to know about them is that they satisfy conditions (a), (a*), (b) in Theorem 

1 in Section 4. Thus, the reader not interested in these particular inference systems 
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may safely ignore the rest of this section. t, and t, denote provability in Ti and 

[w respectively (i E (0, 1,2}). 

(1) T, s R 4 T, 4 T2, where 4 denotes proof theoretic comparison, that is 

Zs T, iff (ET, (p+t,, cp) for all cp E Fm(FTL). 

(2) To is a very natural “basic” inference system. Roughly, T, is equivalent with 

the following (Al) + (A2): 

(Al) is a Hilbert-style complete axiomatization of Mod. 

(A2) contains all first-order instances of all kW-valid propositional FTL- 

schemes. It is known that (A2) is decidable, and many finite axiomatizations 

are known for (A2), cf. e.g. [14, 1.51. T,, is often investigated in the literature, 

see Manna-Pnueli [19,20], Kroger [17, cf. Z‘, in Q 111.9, and “Table of Laws 

and Rules”]; it is the natural first-order extension of the system in [14], or 

of that in [15, B 9, p. 731. 

(3) [w is a resolution system equivalent with To or T, , depending on which paper 

we quote. 

(4) T, and Tz are extensions of T,,. If R is a new rigid predicate symbol not 

occurring in any of cp, r/~ E Fm( FTL), then 

is the new rule which, when added to T,, yields T,. T2 is obtained from T, 

by adding a similar new rule allowing “definitions of” new flexible symbols 

(by temporal recursion). 

The new rule distinguishing T, and T, can, basically, be simulated by 

adding a “real always” (i.e. S5) modality 0 in addition to the present 

always-in-the-future [F] to FTL as in Goldblatt [15, p. 301 or Sain [25]. To 

simulate exactly the new rule of T,, the modality J (for jetzt i.e. “now” 

introduced by Kamp in 1971) seems to be the most widely used tool in the 

literature of temporal logics, see [13, Q 11.2.4.10, p. 1211. & is denoted as 

First cp in the NLP literature, e.g. in [21,22,24,25]. 

The new rule in T2 is very close to the comprehension schema Ex introduced 

in the 1979 version of Andreka-Nemeti-Sain [S] for computer science tem- 

poral logics. (Makowsky-Sain [ 181 reviews some of the “metamorphoses” or 

disguises Ex went through in the computer science literature since 1979.) 

(5) T, is sound for (Ind + Tord), T2 was designed to be sound for (Ind + Tpa) 

but it is not” (see Theorem 3 in Section 7). For more information on T2 see 

Section 7. 

It would be nice to know if some of T,,, T, , T2 is complete for Ind or (Znd + Tord). 

As will follow from Theorem 2, none of them is complete for (Ind + Tpa). If U 

3 There is a mistake in the soundness proof for Tz in [2] etc., but for our present purposes, until we 
reach Theorem 3, we may pretend that Tz is sound for (Ind + Tpa). See also the footnote at the end of 

the proof of Claim 2.2 in Section 5. 
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(until) is omitted then TO and Ti become incomplete for Znd and (Ind + Tord) 

respectively. (For proofs see [9, Theorems 17, 211.) 

4. Clocks and arithmetical formulas 

Let Y(X) E Fm(FTL) with X =(x,, . . . , x,) as free variables. Recall from [l-4] that 

the clock condition C(y) for y is the FTL-formula 

Intuitively, C(y) says that y “behaves like a clock”, that is, it distinguishes different 

time instances from each other. If C(y) holds, y is called a clock. 

Let k be an arbitrary inference system for FTL. An FTL-formula cp is said to be 

arithmetical in t iff there is y E Frn(FTL) with (k( C( y) + cp) + tcp), see [l-4]. That 

is, cp is not arithmetical in E if C(y) is really useful in proving cp, i.e. if I-( C( y) + cp) 

for all y but ~9. 

Thus there are many arithmetical formulas: if tcp or if bL( C( y) + cp) for some y 

then cp is arithmetical in t. Also, any formula of the form (C(y) + cp) is arithmetical 

(under very mild assumptions on E). A natural example for a nonarithmetical 

formula is 3x3x,(x # x1). But this formula is not valid. It is much harder to find a 

nonarithmetical cp such that +” cp. Indeed, [2, 5 6 “Clocks and arithmetical for- 

mulas”] contains a question asking for “more subtle examples” (than 3x3x,(x # x,)) 

of nonarithmetical formulas. In Theorem 1 we will answer this question by exhibiting 

a nonarithmetical (in any of To, . . . , T2) temporal formula which is valid in all 

standard-time models. (We note, however, that among rigid formulas, i.e. ones not 

containing flexible symbols, there are no “more subtle” examples in the sense that 

for any rigid formula cp, cp is not arithmetical in k iff Mod I= 3x, . . .3x,,(A {x, # x, : 

i <j s n}) + p for some natural number n but Mod # cp. This is easy to see, we only 

have to assume T,, s +.) 

This quest for a more subtle nonarithmetical formula seems to be implicit in all 

of [l-4]. Namely, each of these papers contains a theorem4 stating that every FTL 

formula valid in all standard-time models is arithmetical in T2. Unfortunately, this 

theorem turns out to be false below. Probably, it was the lack of a timely answer 

to the above quoted open problem which had led to the belief in the truth of the 

above theorem. Unfortunately, the new discovery influences the status of the 

strongest available (by now) temporal inference system’ which was designed to be 

equivalent with Peano’s arithmetic. Namely, as will be indicated in Section 6, by 

our method elaborated in the proof below, one can also prove that this strongest 

available temporal inference system is not complete for (Znd + Tpa). 

4 See Theorem 6.2. p. 60, in [2], the theorem on p. 127 of [l], Theorem 5.16 on p. 75 of [3], the second 
theorem in 0 6 of [4], p. 12. 

’ Cf. e.g. the “Abstract” of [2] (and “Capsule review” in the preprint form of [2]), as well as Theorem 

7.2 therein, the proof of which essentially uses the above Theorem 6.2. 
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The “more subtle” example for a nonarithmetical temporal formula in Theorem 

1 below is valid in standard-time models, but it is not valid in (Ind + T&z). Also, 

in [ 1,2], Abadi asks if Tr is complete for (fnd + Turd). This, by a theorem of Abadi, 

is equivalent with asking whether there is a formula not arithmetical in T, but valid 

in (1nd + Tord). The latter problem remains open. 

Theorem 1. 
(i) There is an FTL-sentence Q such that +:” +, and Ic/ is not arithmetical in any 

ofTO,R T,, or T2. 
(ii) There is an FTL-sentence $ such that bW +, and J/ is not arithmetical in any 

proof system t satisfying (a) and (b) below. 

(a) + is sound for (Ind + Tpa). 
(b) ( 1) F is compZete for Mod, 

(2) tf~~I\F](~~O~))~[F]~(induction),andi-~F]rp-t(~~O~F]~), 
for any cp E Fm( FTL), further 

(3) t is closed under the rules ofmodus ponens and necessitation, i.e. E(C 

implies both I-[F]cp and ~09. 
(iii) In (ii) above, (a) can be replaced with the foIlowing condition: 

(a*) The “+-provable” formulas form a recursively enumerable set, and t- is 

sound for b‘“. 

Proof. Will be given in Section 5. Cl 

We recall from [l-4] (see the “Open questions” sections), that adding a c&k to 
t- is defined as introducing a rule 

where c is a flexible predicate symbol not occurring in p E Fm(FTL). We call such 

a rule a clock rule. The reason we did not allow flexible predicate symbols in our 

language was only to keep things simple: It is straightforward how to introduce 

flexible predicate symbols, and give meanings to them. The reader not wanting to 

change the language introduced so far may replace c(X), in the definition of a clock 

rule, with yj =x0 where yi does not occur in cp. Theorem 2 below is true for both 

versions. 

As pointed out in the quoted papers, a clock rule can be sound for models having 

infinite data domains (IDi 3 w) only. Hence, whenever clock rules are considered, 

we automatically restrict the semantical considerations to models with infinite data 

domains. So when considering clock rules we will use the semantics (Ind + Tpa + 
“IDI > W” ) instead of the original (Ind + Tpa), and similarly for Tord. 

It is proved in [l-4] that T, and Tz are complete for (Znd + Tord) and (Znd + Tpa) 
respectively, if we consider arithmetical formulas only. Hence, if we add clocks to 

Tr and Tz, then the new systems become complete for (Znd + Tord) and (Ind + Tpa) 
respectively. However, we have to pay an unexpected price for this: we will prove 
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in Theorem 2 (iii) below that the new systems are not sound for (Znd + 7”a + “IDI 3 

w”). This seems to contradict a sentence in Section 9 “Open questions” of [l, 21, 

where Abadi writes that adding a clock to T, is harmless. The last sentence in the 

“Open questions” sections of [l-4] asks if a clock adds power to T, or [w. (The 

question is understood module infinite data domains, of course.) Theorem 2 below 

answers this question in the affirmative. In particular, the suggested clock rule turns 

out to be not sound for (Znd + Tord), or even for (Znd + Tpa) modulo infinite 

domains. 

Recall that krw and trl denote provability in R and T, respectively. 

Theorem 2. 

(i) The inference systems R and T, become stronger if we add clocks to them. That 

is, for +E{i-,, ET,], 

there isa cp E Fm(FTL) with I=” cp, t+t,~, but +(C(c(X))+ cp). (t) 

(ii) Adding a clock adds power to any proof system t satisfying (a*) and (b) of 

Theorem 1. I.e., (i) above holds for any t satisfying (a*) and (b). 

(iii) Zf we add a clock rule to any k satisfying (b) in Theorem 1, then the so 

reinforced system is not sound for (Znd + Tpa +“I DI > w”). In particular, if we add 

clocks to kR or + T, then the so reinforced system is not sound for the semantics denoted 

by i-, or for the one denoted by t, in Abadi [l-4] (even if +,, and kP are restricted 

to infinite data domains). 

Proof. Will be given in Section 5. 0 

5. Proof of Theorems 1 and 2 

In set theory, therefore also in Peano arithmetic, there are many nonequivalent 

notions of finiteness. Examples of these are Dedekind-finiteness, and being isomor- 

phic to a natural number. Our idea of proving (t) of Theorem 2 above is the 

following: We consider two different notions of finiteness, call them FINITE 1 and 

FZNZTE2. We define cp to be the equivalence of these two notions, more precisely, 

cp states that “the data domain D is finite according to FINITE 1” is equivalent to 

“the data domain D is finite according to FZNZTE2”. Shortly, 

9 ?zf ((D is FZNZTEl)@(D is FZNZTE2)). 

Then cp holds in standard time models (because both FINITE 1 and FINITE2 mean 

“real finiteness” there). This gives us I==” cp. But cp is not valid logically (e.g. in Peano 

arithmetic) since we chose two diferent notions of finiteness. (“Different” means 

exactly that they are not equivalent logically.) From this t+ cp will follow. The notion 

of a clock is a very strong notion of infinity. Therefore, if the choices of FINITE 1 
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and FINITE2 are “clever enough”, then both 7FINITE 1 and iFINITE will 

follow from a clock. Thus we will have E( C(. . .) + cp). 

We implement the above idea as follows: 

(a) Instead of FINITE 1 e FINITE2, it will be enough to postulate FINITE l+ 

FINITE2 in q. 

(b) “D is FINITE 1” will be chosen to be “D = (an initial segment of T)“, while 

“D is FINITEZ” will be chosen to be “D + Con (PA)“, where Con (PA) denotes the 

usual formula in the language of Peano arithmetic stating that PA (the set of Peano’s 

axioms) is consistent. 

FINITE2 is a very weak notion of finiteness since all what we know about it is 

the fact that it is true in every finite model (but not vice versa). But this helps us 

in choosing cp according to (a) above (using 3 only, instead of e). 

To see (t), we must check the following two things: 

(A) The two notions of finiteness were chosen “well enough” for having 

k(C(. . .) + cp) (the “clock-part of (t)“). 

(B) FINITE 1 g FINITE2. 

(B) will be proved in Claim 2.2 below (by constructing a model). To see (A), it is 

enough to prove that C(. . .)+ iFINITE 1. This will be done in Claim 2.3, by 

induction. 

Now we come to the details of the proof. 

Let PA, denote a sufficiently strong finite part of Peano’s axioms (PA) for 

N = (w, 0, sue, G, +, x). For instance, PA0 states that d is a linear discrete ordering, 

its usual relationship with sue, 0, and +, further PA,, states the recursive definitions 

of + and x from sue. Let (PA 1 b) be obtained from PA,, by replacing the axiom 

stating that there is no greatest element by the axioms Vx(x s b), suc( b) = b.6 So, 

(PA 1 b) states that b is the greatest element, but arithmetic (+, X, etc.) between 0 

and b is the usual. 

A typical model for (PA 1 6) is 

(Nr ~)~~f({O,l,... , n>, 0, (sue r n), (s r n), c+ r n), (x r n)> 
for any n E w, where (sue 1 n)(n) = n, and for x < n, (sue r n)(x) = x + 1, and similarly 

for + and X. Since (PA 1 b) is finite, we will identify it with the sentence 

Vf(/\ (PA 1 b)). We draw (N 1 n) as 

So the horizontal + denotes successor, the point to the right is the bigger one, and 

we do not draw + and X. 

An infinite model for (PA r b) is 

.+.-$..+..e..+.+... 0 
0 1 2 ,z cr 

6 We note that we still require that (Vx < b) (SW is one-one). 
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whereforalln,m~~,(n+m,nxmaretheusual,andifn=~thenn+x=nxx= 

00 = 6 for all x). This is a fairly trivial model, and it satisfies (PA 1 b) only because 

induction is not postulated in (PA 1 b) (or in PA,, for that matter). 

Let ‘pO be the following temporal sentence: 

(PA 1 b)~y,,=O~[F]3x(y,,=x~Oy~,=suc(x))~(F)y,=b. 

Let us recall from e.g. [lo, pp. 828,1136] that Con( PA) is of the form Vxa(x) with 

a(x) a &-formula. Intuitively, a(x) states that the sequence coded by x is not a 

derivation of FALSE from PA. Let cp, be the temporal sentence cpo A (3x < b)la(x). 

We define 

(0) x tsf (71). 

x will play the role of cp in (t) in the formulation of Theorem 2. Referring back to 

our plan at the beginning of this section, we note that x is equivalent with cpO+ 

(Vx < b)cr(x). ‘p,, plays the role of “D is FZNZTEl”, while (Vx < b)o(x) plays the 

role of “D is FINITE2”. Here note that this formula indeed says that Con(PA) 

holds in D. 

Claim 2.1. kwx. 

We will return to the (easy) proof of this later. 

Recall that Abadi’s T, and Tz are extensions of To, hence if some 4 is T,-provable 

then it is automatically T,- and T,-provable. 

Claim 2.2. bL, x, and Vx if t satisfies (a) of Theorem 1. 

We will return to the proof later (Claim 2.2 will easily follow from Godel’s stronger 

incompleteness theorem and Abadi’s soundness (for Peano’s arithmetic) proof for 

Tz i.e. [3, Theorem 5.17, p. 771). 

The following claim says that x is provable from the assumption that a clock exists. 

Claim 2.3. Let @l(X) be any temporal formula. Then 

(i) t-C(+)+x if + satisjes (b) of Theorem 1, and in particular 

(ii) FTo c($) + x. 

Proof of Claim 2.3. Assume t satisfies (b). Then 

(6) for every propositional temporal formula rr containing only 0 and [F] as 

modalities, if I=” 7~ then every FTL instance of r is provable by t. 

(6) follows from the propositional completeness theorem in Goldblatt [ 15,s 9, p. 731 

(or equivalently from a similar theorem in [14]) because the axioms therein are 

E-provable by (b). For completeness, we note that of (6) above, we will use only 

its special case (7), our proof of (7), and relatively easy consequences of these. 

(7) t(F)[Flcp + O(F)[Flv. 
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This can be derived from (b) directly, as follows: By (b) we have t O[F](F)(p + (F)cp 

because Mod~O(cp+~)+(O~+01+!~), and then the rest of the axioms and 

rules in (b) imply ~[F]cp+cp, kO[F]cp+O~, tO~+(F)cp, ~-(F)(F)P+((F)~~, 

tO[ F](F)(p + (F)cp as was desired. To complete the proof of (7), assume now 

lO(F)[F](p. Then O[F](F)lp. Let $ be O[F](F)lcp. By k“[F]+O[F]“, then 

$ + O$. Thus, by induction, [ F]O[ F]( F)l cp which, by k“O[ F]( F) --, (F)“, implies 

[F](F)l(p. We proved IO(F)[F](~+~(F)[F]~Y proving (7). 

Assume ~LC($) + x and that + satisfies (b). Then, by (b), there exist a nonstandard 

model YJZ E Mod of + and some time instance to of YJJ1 such that tJ- C($) and 

t,ll- ‘pi, hence t,lE cpO. Let this 931 and f0 be fixed. Let X = (x,,, . . . , x,) be the sequence 

of free variables of the temporal formula $(X) in C($). 

In the following lemma, n and to are as above. 

Lemma 2.3.1. Let is n and p(x,, xi+,, . . . , x,) be a temporal formula. Assume 

(7.1) t&V.qF)[F]lp(x;, . . .,x,1. 

Then t,l~VR(F)[F]i3x,p(x,, . . . ,x,). 

Proof of Lemma 2.3.1. Let i and p be as in the lemma. As in the lemma, assume 

(7.1). We let the temporal formulas cZb,(x, p) be [F]Vx,(p(xi, . . . , x,)+x, 2 x), and 

tail, be 3x(x = y,, A (F)clb,(x, p)). From (7.1), we will prove by temporal induction 

that 

(7.2) t,lF[F]tail, for any fixed X E (“+‘)D. 

Proof of (7.2): Let X E (“+‘)D be arbitrary but fixed. 

(7.1) to IF tail, 

follows from (7.1) and from t&-po, the latter of which implies toIFyo=O and 

Vx,(x, 3 0), hence t,lk clbi(O, p), implying t,It(F)clb,(O, p) since kcp + (F)cp, for any 

cp, by (6) or the proof of (7). Assume 

(7.11) t’z to and t’lk tail,. 

Then 

(8) t,d t’lk((F)cZb,(x, p) A x =y,) for some x. 

Fix this x. We will prove 

(8.1) t’I==O(F)clb,(x+l,p). 

An equivalent form of (7.1) is 

(7.1+) &It-VVxVx(F)[F]Vx,(p(x,, . . . ) x,)+x, f x). 

By (7.1+), t’lF(F)[F]Vxi(p(x,, . . . , x,) + xi # x). Then, using (8), the definition of 

cZb,(x,p), and that k((F)[F]a A(F)[F]P)+(F)([F](Y A [F]P) for every (Y and & 

we get t’ik(F)([F]Vx,(p(xi, . . . , x,) + xi # x) A clbi(x, p)), hence 

t’lF(F)[F]vxi(p(x,, . . ) x,)+x f x, 2 x). 
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That is, t’Ik(F)clb,(x+ 1, p). Since clbi(. . .) is of the form [F]cp, by (6) or by the 

proof of (7), (8.1) is proved. Since by (8) t’1E-x =yo, by ‘p. we have +0(x+ 1 =yo). 

Then, by $YJE Mod, t’lkO(x+l =y,A(F)clb,(x+l,p)) that is t’l~Otai&. Since at 

the beginning of the present item (7.11) the choice of t’~ to was arbitrary, we proved 

toI~[F](taizi~Otaili). 

From this and (7.I), temporal induction (i.e. (b)(2)) yields (7.2). 

We now finish the proof of Lemma 2.3.1. 

Let _? E (“+‘)D be arbitrary. By toIt- cpo we have toIE(F)(yo = b). Then by (7.2) and 

by [F] =l(F)l, toIk(F)(yo= b A tail,) which, by 

(y,= by tail,) 3 (yo= b~(F)cZb,(b,p)) 

implies t&(F)cZb,(b, p). This by definition is tol~(F)[F]Vxi(p(xi, . . . , x,) + xi Z= b). 
At the same time, (7.1+) implies rolk(F)[F]Vx~(p(x~y . . . , x,) + xi # b). These two 

formulas yield, by (6) or by the proof of (7), 

fO~~(F)[Fl(vxi(~(x~~~~ . 9 X,) + Xi f b) A VX,(p(X<, . . . ) X,) + Xc 2 b)). 

But by the (PA 1 b) part of ‘p. we have Vx,(x, 3 b + xi = b). Thus 

~oI~m~l~x,~P(4,~~~, %I). 
That is tolE(F)[F]~~xi(p(xi,. . . ,x,). Since the choice of ZE~“+‘)D above was 

arbitrary, we proved toIt-VVx(F)[F]13x,p(xi,. . . ,x,) 0. 

Proof of Claim 2.3 (continued). From C($) one easily proves 

(9) t,lkV~(F)[F]llj(x), 

where X =(x0, _ . . , x,); as follows. 

Let X E (nt’)D be arbitrary but fixed. If t,jlt- [F] 14(Z), then we are done. Assume 

therefore (3t, 2 to)t,It-G(Z). Then, by toIt- C(G), t,ltO[F]l$(R), Hence, by the 

proof of (7), t,lE(F)[F]~~(~). By the choice of XE(“+‘)D we proved (9). 

Let now i E w be arbitrary. Assume 

(9.1) t,I~V~(F)[F]~3x,,. . .x,-,$(X). 

Choosing p(x,, . . ,x,) to be 3x,. . . xi-,+(X), Lemma 2.3.1 implies that (9.1) holds 

for i+ 1 instead of i. (9) postulates (9.1) for i = 0. Therefore by a trivial induction 

on i, we obtain (9.1) for i = n + 1. But this is exactly 

(9.2) t,lE(F)[F]~3371C,(~). 

By t,ltC($) stated in the first part of the (present) proof of Claim 2.3 (a few 

lines below item (7)) we have toII-[F]3Z+(i). This yields from (9.2), by the proof 

of (7), tolk(F)[F1(3~1Cr(~) A i!lS,b(Z)). That is t&(F)[F]FALSE. By the proof of 

(7) this is impossible. 

We derived a contradiction from assuming bLC( (CI) +x. Therefore Claim 2.3(i) is 

proved. To satisfies condition (b) both by item (2) in Remark 1 above and also by 

[3, Theorem 5.7, p. 611 or [l, Theorem on top of p. 1261). Now both (i) and (ii) of 

Claim 2.3 are proved. 0 
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Proof of Claim 2.2. We want to prove t+, x, and box for any t satisfying (a). 

Let A b (PA + lCon( PA)). (Exists by Gtidel’s incompleteness theorem.) Then for 

our formulation VX(T(X) of Con(PA), there is d E A with Ak la(d). Let 2d < 6 E A 
be fixed. (Though exponentiation is not in the language of Peano arithmetic, it is 

well known from the literature that exponentiation is definable in PA, and there is 

a unique generally accepted way of doing it.) 

Let 

Al b=({aeA: u~b},O,(suc r b), (s 1 b), (+ 1 b), (x 1 b)) 

be the usual “initial segment” of A with b as its greatest element. Let (Id r 6) : A + 

(A r b) be defined by (Id 1 b)(x) = min(x, 6) as usual. Let YJl= (A, (A 1 b), 

(Id 1 b), . . . , (Zd 1 b), . . .) E Mod with (Id r b) interpreting all the flexible constants 

yi (i E w). Clearly, 

YJ~I=~, and ‘J,ll~(Znd+Tpa+“~DI~w”). 

Of the latter, YJIl= Znd is true because ?UI is definable in A, and induction was true 

in A. Thus (Znd+Tpa+“IDIaw “) #,y. Therefore, if + satisfies (a) then bLx. It 

remains to check that T2 satisfies (a). 

By the soundness proof of [2] (i.e., the proof of Theorem 7.1 in [2]) for our 

specially constructed x, the fact that (Znd + Tpa)#x implies that VL7-* x.’ q 

Proof of Claim 2.1. Let YJ1= ((w, 0, sue, s), D, y,,, . . .) be a standard-time model (D 
is arbitrary of course), and assume ,331@ cpr . Then 

y, : (w, 0, sue) it (0, OD, sucD) 

is a homomorphism onto D that is Rng( y,) = D. Further D b ( PA0 r 6). In particular 

D has a greatest element b and b = y”(n) for some n E w. Then D must be finite. 

But then D = (0, OD, swD, +, X, b)l= Vxu(x) since Con(PA) holds in the standard 

model of arithmetic. This contradicts our assumption ‘J,,1I= ‘p, proving 'JJ1kx for any 

standard-time model 'J31. 0 

We continue proving Theorems 1 and 2. Claim 2.3 proves that x is provable from 

assuming the existence of any clock in any proof system + satisfying (b) of Theorem 

1. This applies, in particular, to Abadi’s t,(,, I-,!, kr,. Therefore, by Claim 2.2 

(10) x is not arithmetical in T,, T,, T,, or R, nor in any k satisfying (a)+(b) of 

Theorem 1. 

Thus x is the “more subtle example of a nonarithmetical formula” Abadi is asking 

for at the end of the item in [Z, “Examples” , 3 6.11. Namely x is not arithmetical 

7 There is a mistake in the soundness proof in [2], i.e. in the proof of the r, part of Theorem 7.1 in 

[2]. However, this mistake disappears if we assume that ~1, : T-D is onto D for some i E w in every 

model we are considering. Since this is the case in our present example, we may ignore the mistake. See 

also Theorem 3 below, and the remark following its proof. 
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in T2, T, , T,, but it is valid in standard-time models by our Claim 2.1. Abadi’s 

question is motivated by the fact that at that time the only known examples of 

nonarithmetical formulas were like 3x3x,(x #x,) which were of course not valid 

(even in +=“). Therefore also: Claims 2.1-2.3 answer the last Open question in [2, 5 91 

also the last one in [l, § 9, p. 1291, and the last one in [3, $ 5.9, (p. 92)] the following 

way: 

(11) A clock does add power to T, , namely +I” x, indeed x is T, -provable under 

assuming a clock, but VT, x. Here, T, can be replaced with any t satisfying 

(a)+(b) of Theorem 1, hence in particular with the resolution system [w of 

Abadi-Manna [5] which answers a question in [3,5 5.91. (All this is valid 

when the data domains are restricted to be infinite.) 

The second sentence of the second problem in [3, P 5.9 (“Open questions”), p. 921, 

and [2, $91 introduces a new proof rule to T, which permits us to assume the 

existence of a clock formula c(x) (and use C(c(X)) as an axiom) with c a new 

flexible predicate symbol not occurring in the formula we want to prove. Then it is 

written in the quoted papers that this new rule (in particular “T,+the new rule”) 

is harmless as long as the domain of discourse is infinite. Since the semantics used 

for T, in the quoted papers is “(InA+ Tord b)” denoted by k. therein’, it is useful 

to point out that 

(12) (T, + the new clock rule) is not sound for the semantics (Ind + Tord + “ID\ 3 

w” +) or equivalently Jbr “I-,+ ((D( 2 w)“. Nor is it sound for the semantics 

(Ind + Tpa +“IDI 2 w”). 

Proof of (12). By the proof of Claim 2.2, (Ind + Tpa + “ID/ 2 w”) #x. Actually this 

was stated in that proof. However, Claim 2.3 implies tC(c(Z)) +x for any F 

satisfying (b), hence the above new rule does prove x. Thus the new rule is not 

sound for infinite domains when added to To, R, T,, or any F satisfying (b). 0 

Recall that Abadi writes b=cp for what we denote as +” cp (validity in standard-time 

models). Therefore in Abadi’s notation, we have kx by Claim 2.1. Now, (10) 

completes the proof of (i) and (ii) of Theorem 1. (11) proves (i), and (12) proves 

(iii) of Theorem 2. 

It remains to prove Theorem l(iii) and Theorem 2(ii). They differ from Theorem 

1 (ii) and its corollary in Theorem 2 only in that they assume (a*) instead of (a). 

We used (a) in proving Claim 2.2. Let us assume now, on F-, (a*) instead of (a). 

Let 

H dGf {e(x): ä (p~~-VZle(.%)) where e(x) is a Diophantine equation}. 

’ One might have the impression that in the above quotation “harmless” is understood w.r.t. the 
semantics t, because of the note at the end (in brackets) of the first sentence of Abadi’s presently quoted 

second problem. Namely there it is mentioned that T, and R are complete for arithmetical formulas. 

Now, this is stated as a theorem (in the quoted papers) w.r.t. t, as a semantics. 
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By (a*), H is recursively enumerable, and Nt=le(%) for all e(x) E Z-Z, because of 

the following: Assume e(x) E ZZ. Let ti E kN be arbitrary. Let b E N be an upper 

bound of U. Then YJJ1= (N, N ] b, “Zd”)!= cp,,, and YJ31 is a model of E by (a*). Hence, 

by e E H, we have YJJ1+ VXl e(x). Thus N+ le( U). Therefore by Matiasevitch’s 

solution of Hilbert’s tenth problem, there is a Diophantine equation e(z) SF! H such 

that NEVxle(%). 

Now, let us use this e(x) in place of la(x) in defining cp,. That is let pt be the 

formula (‘pO A Se(x)). We claim that we can reprove Claims 2.1-2.3 with qt in 

place of cp, and using (a*), along the following lines. 

By the definition of H and by eE H we have b~(cp,+V%le(%)), hence ~(lcp’) 

(this is the new version of Claim 2.2). Now, +” (1~‘) and EC($) + (1~‘) are 

proved exactly as in Claims 2.1, 2.3 (in those parts we did not use the difference 

between (1~) and e). Let us choose x+ dAf (la+). Then X+ satisfies the conclusion 

of Theorem l(iii). Theorem l(iii) implies Theorem 2(ii). 

This completes the proof of Theorem l(iii) and Theorem 2(ii). 0 

Remark. Let x be as fixed in item (0) in the proof of Theorems 1, 2 above. The 

proof of Claim 2.2 establishes also that 

(13) (Ind + Tpa) # x. 

By [26, § V.11, 

(14) (Znd+ Tpa+Ex)+x. 

Looking into the lattice of logics of programs at the end of [24,25] or [21], (13) 

and (14) give information about the proof theoretic powers of other computer 

science temporal logics. It appears that (Znd + Ex) &t x, and repeating the same 

argument with Con(PA,,+(Znd 1 EL)) in place of Con(PA), as in [12] or [26,§ V.l] 

one could probably prove (Znd + Ex) cL7 (Znd + Tpa + Ex) (this notation means that 

strictly more partial correcfness assertions can be proved from (Znd + Ex) than from 

(Znd + Tpa + Ex)). However, we do not know if (Znd + Tsuc + Ex) or (Znd + Tord + 

Ex) imply x (i.e. if one of these is strictly weaker than (Znd + Tpa + Ex), cf. (14)). 

6. On the incompleteness of T2 

Theorem l(i) above proves that Abadi’s theorem saying that 

(15) (F” cp) 3 (cp is arithmetical in T2), for any cp E Fm(FTL) 

is not true. (See also Abadi [28].) This is the theorem on page 127 of [l] which is 

basically the same as [3, Theorem 5.161 or [2, Theorem 6.21. The main result of these 

works, completeness of the inference system tTz for Abadi’s semantics FP (which 

is our (Znd + Tpak)) is based on (15) disproved above. In more detail, (15) is used 

in all three papers to prove the main completeness theorem (for TJ which is the 

second statement of [2, Theorem 7.21. The proof of this completeness theorem 
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heavily uses (15), see e.g. the first sentence of the proof either in [2] or in [3]. 

Unfortunately, this application of (15) turns out to be essential for proving complete- 

ness of T2. Namely, a modified version of our counterexample x = (lcp,) constructed 

in item (0) in the above proof can be used to show that T2 is indeed nof complete 

for Abadi’s t, that is for (Znd + Tpai=). The modification consists of replacing 

Con(PA), which was denoted as Vxo(x), in our ‘p, with a slightly weaker statement 

Vx(~r(x) such that PA k Vxv,(x) becomes true but “barely”. Here “barely” means 

that Vxu,(x) does not follow from slightly weaker versions of PA. E.g., as in [12], 

one could choose Vxcr,(x) to be Con(&) for a suitable n E w, where LX,, is obtained 

from PA by restricting the induction schema of PA to E,-formulas. For the new x 

we will have t--px but bLTLx. 

Of these claims, i-,x is immediate by PA+ a,(x) and by the definitions of C, 

and x. Proving by, x is more tedious. However, it is not very hard to see the reason 

(on an intuitive level) for bL, x as follows. 

Our x is equivalent with cp”+Vxu,(x), see the material above item (0) for the 

definition of cp,, and x. Assume therefore that !I.)( I= cpo for some model Yl,rl= (T, D,J;),tw 

of T2. (See item (16) below for more on T2 and on what its models look like. To 

be precise, for our present purposes, in (16) below, we should replace the text 

“h : D+ D is a distinguished unary function” with “h : D + D is a first-order 

definable (in VJ1) unary function”.) Now, by the definition of cp,,, D is isomorphic 

to an initial segment of T, that is D = (T 1 b), for some b E T, and all the “recursively 

defined” J;‘s act from T into D. From the mathematical point of view, we may 

identify D with T 1 b, therefore Y.V is equivalent with a structure A= 

(A, 0, sue, c, (+ 1 b), (x I bLJ;),a, where (Vi E co) f; : A + (A 1 b), see the construc- 

tion in the proof of Claim 2.2 for detail and notation. Here (A, 0, sue, 5) = T and 

(A 1 b) = D. A looks like the following: 

o-31+2+ ‘. . +*-+b-+.+... 
< 

+ and x are defined only here 

From the “logical” point of view’ A 1 b behaves like a finite structure even if b 

is nonstandard. So from the point of view of “the logic”, A is only a simple ordering 

with a partial arithmetic defined only on a finite part of A. Thus the arithmetical 

part is negligible. On the other hand, it is well known that simple orderings have 

no “metamathematical power” e.g. they admit an elimination of quantifiers and are 

decidable. Therefore there is no hope for obtaining a truth definition for II,, (i.e. 

for Peano’s arithmetic with restricted induction ) in A. Thus there is no hope for 

deriving Con(ZX,,) from the formal system T, a typical model of which is A. We 

can sum up the reason for tc, x in the following dialog: 

Q: x is a consistency statement about LX, (a weakened version of PA), why 

should T, prove such consistency statements? Surely, set theories or PA do prove 

9 This is sometimes called internal point of view in the literature of nonstandard models (of PA etc.) 
cf. e.g. pp. 199, 204, 265 of [lo]. 
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such consistency statements (but e.g. IX,, in itself does not), but why would T2 have 

the metamathematical” power of set theories or PA? 
A: The power of T2 comes from recursive definability of “new” functionsf: T + D 

in T2, as described in item (16) below. In particular, addition and multiplication 

can be defined recursively, so we have something similar to PA. This is where the 

“metamathematical” power comes from. 

Q: The problem with this is that the new functions f; go from T to D and not 

from T to T. This makes a difference. Namely, in our above constructed A (which 

was a merged version of T and D), all the f;‘s map to elements below the bound 

b. In symbols, f; : A+ (A 1 b). So from the “logical” or “internal” point of view, all 

the f;‘s map into a fixed jIfinite segment of A. In other words, the ranges of all the 

J;‘s are bounded by an internally finite b. So in particular, we cannot define addition 

and multiplication of arbitrary large elements of A (or of T equivalently). Therefore 

we do not have a PA-like system. The same argument shows that we do not have 

any nontrivial “metamathematical” power, therefore we cannot prove Con (IX,) 

and hence we cannot prove x. 

A careful analysis reveals that, indeed, Q wins the argument. The above, of course, 

is only an intuitive explanation and not a carefully elaborated proof. A detailed 

proof and some further consequences are in [29]. In [30], KrajiEek also gave a proof. 

In [22], it is shown that no number of new axioms, but a single new modality 

can eliminate the incompleteness of T2. 

7. On the soundness of T2 

Next we turn to a somewhat closer inspection of the FTL inference system T, of 

[l-4]. We recall from [l-4] that T2 contains an auxiliary axiom of a “second-order 

logic” character” saying that 

(16) If m = (T, DJJiEW isamodelofT,withD=(D,...,h,...)whereh:D+D 

is a distinguished unary function of D, then for any d E D there exists a 

function g: T-t D such that g(0) = d and (Vt E T)g(suc(t)) = h(g(t)), and 

(YJ2, g) is a model of T2 again. (In (gJ1, g) g is added to {J; : i E to}.) 

We note that g does not have to appear in YJ anywhere, in particular g g {J; : i E w} 

is allowed. We will use that T2 is complete for its models [2, Prop. 5.31 or 

[3, Prop. 5.141. 

As was already mentioned, T2 satisfies condition (b) of Theorem 1 above. (At 

this point looking at Remark 1 might be useful for the reader, though is not absolutely 

indispensable.) 

” It is this axiom (16) which we mentioned to be similar to the comprehension schema Ex of the 

NLP school. 
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Theorem 3. T2 is not sound for the semantics (Id + Tpa I=) i.e. for kp of [l-4]. 

Proof. Let PA0 be the finite theory described at the beginning of the proof of 

Theorems 1,2 above. Let D consist of two disjoint models A and B of PA,,. I.e. 

Al= PA0 and Bb PAO. Let the language of A be OA, sue*, Go, +t,, xA and that of B 

be Og, sucB, sB, +B, xs. (Of course, then the language of D is the union of these 

two languages.) Further, A and B are two unary predicates of D (with An B = 0 

and A the universe of A etc.). 

Let AklC’on(PA) and Bk Con(PA). 

All what we said so far is expressible by a single classical first-order formula t+!q, 

in the language of D. Let I/J, be the FTL formula saying that y. is a homomorphism 

mapping the “0, sue, G”-reduct of T onto the “0 sue, s”-reduct of A. I.e. 

(yo=0,~[F]3x(x=y,~A(x)~Osuc,(x)=y,) 

A Vx( A( x) + (F)x = y,) etc.) 

Claim 3.1. (Znd+ Tpa)t#(l$,). 

Proof. This is fairly easy to prove. There exists Ai= PA + lCon( PA). Choose this 

A to be both T and A, and let J; be the identity function ZdA mapping A onto itself 

for all i E 6.1. Let B be the standard model N of arithmetic disjoint from A. Then, 

roughly speaking, 9.X = (A, (Au N), Id,, . . . , Id,, . . .). Clearly 9Jl1= (Znd + Tpa) but 

!?.Rk (l&). This proves Claim 3.1. 0 

Claim 3.2. Ed, (l&). I.e. (1&) is T2-provable. 

Proof. Since T2 is complete for its models, it is enough to prove that 9X+ (i&) for 

every model till of T,. Let ‘JJ? be a model of T, and assume 9Jt1= (c12. We may assume 

that T of ml is in normal form (i.e. its undistinguishable elements are collapsed). 

Then Jo: T +++ A interpreting y, is a surjective “0, sue, 6” homomorphism (by 

931b I&), hence ft’ : A + T is a “0, sue, 6” isomorphism, too. By axiom (16) of T2, 
there is a “0, sue” homomorphism g : (T, 07, SUCK) + (B, Og, sucB) mapping OT to O8 

and preserving SUC. Since T, satisfies condition (b) of Theorem 1, induction along 

T is available. By this induction, one easily proves that g : (T, 0, SIX, C)H 

(4 On sues , cB) embeds T into B as an initial segment (according to stl), and that 

A b PA, moreover, that we have induction on A along OA, and sucA for all two-sorted 

formulas of (92, g). Therefore, 
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is an isomorphic embedding as an initial segment. Further by our above noted 

induction along A one easily proves that h preserves + and X, i.e. that h : A-B is 

an isomorphic embedding. Now A+ lCon(PA) and BI= Con( PA) contradict 

embeddability of A into B since Con(PA) is a ZZ,-formula i.e. Con(PA) is of the 

form V%a(jE) as indicated in the proof of Theorems 1,2 above. Thus (A, ii) F iv(d) 

for some ii E “A. Then h(d) should satisfy iv(%) in B since a(f) is a &-formula 

and therefore its truth is preserved by h. But Bl= V’X(T(X) follows from gz. A 

contradiction, proving Claim 3.2. 0 

Summing up, tTz (l&) and (Znd + Tpa)k(l$,) together prove that T2 is not 

sound for (Znd + Tpa I=). This completes the proof of Theorem 3. •i 

As a consequence of Theorem 3, the theorems stating that T, is sound for the 

semantics (Znd + Tpa k) in [l-4] are, apparently, not true. In particular, this applies 

to [2, Theorem 7.11, [3, Theorem 5.17 (the mistake in the proof is on p.81)], and the 

first theorem in [l, p. 1281. However, these theorems become true if we restrict the 

semantics to those models EQ = (T, D,f;),Ew for which (3 i E w) “D C_ the range of 

J;“. For this case Abadi’s original proof, e.g. that in [2] or [3, p. 811, goes through. 

8. Open problems 

Open problem 1. Find a nice, Hilbert-style inference system t- for FTL which is 

sound and complete for (Znd + Tpa I=) i.e. for Abadi’s t--p. Cf. Section 6 and Theorem 

3 above. 

Open problem 2. We note that T2 is sound for (Znd + Tpa + Ex k) of the NLP 

school, see e.g. [8,27]. Find a natural subset ExO of Ex such that a variant of Abadi’s 

T2 would become both sound and complete for (Znd + Tpa + Exe I=). 

Open problem 3. Is any of To, T,, T2 complete for Znd or (Znd + Tord)? (Cf. the 

last paragraph of Section 3 and the paragraph preceding Theorem 1 in Section 4.) 
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