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A b s t r a c t - - U s i n g  a suitable approximation in classical Tchebychef's iterative method of the third 
order, a new method for approximating, simultaneously, all zeros of a class of analytic functions in a 
given simple smooth closed contour is constructed. It is proved that its order of convergence is three. 
The analysis of numerical stability and some computational aspects, including a numerical example, 
are given. Also, the asynchronous implementation of the proposed method on a distributed memory 
multicomputer is considered from a theoretical point of view. Assuming that the maximum delay r 
is bounded, a convergence analysis shows that the order of convergence of this version is the unique 
positive root of the equation x r+l - 2x r - -  1 = O, belonging to the interval (2, 3]. 

K e y w o r d s - - I t e r a t i v e  methods, Zeros of analytic functions, Convergence order, Numerical stabil- 
ity, Asynchronous implementation. 

1. I N T R O D U C T I O N  

Let  z ~-~ ~ ( z )  be an ana ly t i c  funct ion inside and  on the  s imple  s m o o t h  closed con tour  F,  w i t h o u t  

zeros on F and  wi th  the  known number  n of  s imple  zeros inside F. T h e n  ¢ is of  t he  form 

n 

¢( z )  = X ( z )  1-[(z  - ¢5) (1) 
j=l 

ins ide F,  where  ~ 1 , . - . ,  ~n are  t he  zeros of  • ( inside F)  and  X(z )  is an  ana ly t i c  funct ion  w i t h o u t  

zeros inside F (see [1]). In  prac t ice ,  the  n u m b e r  of zeros n of  ¢ inside F can  be d e t e r m i n e d  

by  the  computable argument principle proposed  by G a rga n t i n i  [2]. Fol lowing A na s t a s se lou  and  

Ioak imid i s  [3], X(z )  can be represen ted  as X(z )  = e xp (Y (z ) ) .  Y(z )  is also an ana ly t i c  funct ion  

ins ide  F which  for an a r b i t r a r y  complex  number  t E int F such t h a t  ¢ ( t )  ¢ 0 is given by  

whence  

1 Jfr log[(w - t)-n~(w)] dw, 
r ( z )  = ~ w - z (2) 

1 ~ 1og[(w - t ) - " ¢ ( w ) ]  
Y'(z)  = ~ 0 ,  -(w Z ~ dw. (3) 

In  t he  recent  pape r s  [4-7], some i t e ra t ive  me thods  for the  s imul t aneous  d e t e r m i n a t i o n  of  s imple  

zeros of  ana ly t i c  funct ions  of t he  form (1) have been proposed .  T h e  a im of  th i s  p a p e r  is to  presen t  

a new i t e ra t ive  m e t h o d  for app rox ima t ing ,  s imul taneously ,  zeros of  the  men t ioned  class of  ana ly t i c  

Typeset by ,4A~-TEX 

85 



86 M . S .  PETKOVId AND S. B. TRI~KOVI6 

functions. This method is constructed by a suitable approximation of the term O"(z)/(2O'(z)) in 
the classical Tchebychef third order method (known also as Olver's method, SchrSder's method 
of order 3, etc.) 

14- + t ( z ( m ) ) ~ - ~ l ~ j  , m = 0,1, . . . .  (4) 

In Section 2, we state a convenient approximation for (I)"(z)/(2¢'(z)) which enables us to con- 
struct  a new method of Tchebychef's type for the simultaneous approximation of all zeros of (I) 
inside in the given closed contour. The convergence analysis shows that  the order of convergence 
of the proposed method is also three. Numerical stability of this method in the presence of the 
error of numerical integration, necessary for the calculation of Y'(z),  is presented in Section 3. 
Besides, some computational aspects of the considered method, including a numerical example, 
are given. Finally, in Section 4 we discuss some theoretical aspects of the asynchronous imple- 
mentation of the proposed method on a distributed memory multicomputer and consider its order 
of convergence in dependence on the maximum delay. 

2 .  S I M U L T A N E O U S  T C H E B Y C H E F - L I K E  M E T H O D  

Consider now Tchebychef's method (4) applied to an analytic function ~ belonging to the class 
of the form (1). Let us introduce the errors 

ECru+l) _(rn+l)  E~m) Z} m) ¢i" 

For simplicity, we will write in the sequel zi, zi, gi, ei instead of z} re+l) z} m), (re+l) _(m) , Q ,e i , respec- 
tively. Besides, let ~ E {~l , . - - ,~n}  denote the error of maximum magnitude. We first state the 
following necessary approximation. 

LEMMA 1. Let z l , . . . ,  zn be reasonably close approximations to the zeros ~1,. . . ,  ~n. Then 

1 + 0 ( 6 ) .  (~) ¢ " ( z , )  = Y'(zO + 7 - - 7  20'(z~) ~#~ 

PROOF. Applying the logarithmic derivative to (1), we obtain 

O'(z) = y ' (z)  + E 1 . 
¢(z )  z - ¢~' (6) 

j----1 

tha t  is, 

[ ¢'(z)  = ¢(~)  Y ' C z )  + - . 
j=l  z ~j 

Hence, we find the second derivative 

~"(z) = ~'(z) Y'(z)  + 1 + ~(z) Y"(z)  - ~_, ( z - ' ( ~ ) 2  ' 
j = l  Z --  ~j j = l  

whence, using (6), 

~'"(") = Y'(z)  + ~_, ~ + ¢'(z)/~Cz) (z -¢~)2 
¢'(z) ~ffil ~=1 

(y , c . )  + c a .  _ = + Y"(~) - E j = ,  (1/(~ - ¢j)2) 

Y'Cz) + 5"=~=~.  (ll(z - (j)) 

Y'2(z) + 2Y'(z) 01(~  - ¢0 + E~@~ (iI(~ - ¢~))) + Y"(z) n - 1  n + 2 Ek=~ E~=~+~ O l ( z  - Ck)) OICz - ~ ) )  
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By introducing the functions 

hi(Z) = 1 Ai(z)  = 
j = l  Z --  ~j  ' k = l j = k + l  
j¢i  k¢i j¢i 

1 1 

z - ¢ ~  z - ¢ ~ '  

after some transformations of the last expression we get 

~b't(z) Yt(z)  + Y~q#i (1 / (z  - ~j)) + (z - ~i) (ai (z)Y ' (z)  + (1/2)y '2(z)  + (1/2)YU(z) + Ai(z))  

2¢'(z) 1 + (z - Cd (V'(z)  + ~ ( z ) )  

Putt ing z = zi, ei = zi - ~i and ai(zi) = hi, we obtain 

• "(zi)  Y ' ( z i )  + Y~j¢i (1/(zi - (~)) + ¢i (a iY ' (z i )  + (1/2)y '2(z i )  + (1/2)Y"(z~) + Ai(z i))  

2~'(zd 1 + c~(Y'(z) + ~ )  

Let us denote the expression in the brackets of the numerator with/~i. Then one yields 

• "(zd 1 
2O'(zi) 1 + e i (Y ' ( z )  + ~ )  

1 

1 + s,(Y'(z) + ~ )  

) 1 e~¢~ 
Yt(z i )  + E zi - 4j + 1 + e , (Yt (z )  + hi) 

+ ~ (zi - z,) (1 + ~/(z~ - zA) + o(~d. j¢i 

Developing the expressions (1 + cj/(z~ - zj))  -1 and (1 + e i (Y ' ( z )  + hi)) -1 in the geometric 
series (assuming that  [st[ and leil are sufficiently small) and rearranging the obtained expression, 
we get (5). | 

Therefore, O"(z i ) / (2~ ' ( z i ) )  can be approximated by Y'(zi) + ~ j # i ( z i  - zj) -1. Coming back 
to Tchebychef 's  formula (4), we obtain a Tchebychef-like iterative method for the simultaneous 
approximation of all zeros of the analytic function • inside F 

m = O , 1  . . . .  

( i)) 
(w) 

The convergence speed of the simultaneous Tchebychef-like method (7) is considered in the 
following theorem. 

THEOREM 1. Let ~1, . . . ,  ~ be the zeros of an analytic function of the form (1) and let z~°) , . . . ,  

z (°) be their sufticiently close approximations. Then the order of convergence of the iterative 
method (7) is three. 

PROOF. As in the proof of Lemma 1, we will omit the iteration index, for brevity. From (7) we 
obtain ( ( 1 1 Y ' ( z i )  + E zi z----~ ' gi = si ¢ ' ( z i ) / ¢ ( z i )  1 Jr ~ ' ( z i ) / ¢ ( z i )  j¢i  

whence, using (6) and the abbreviation Bi = Y ' ( z i )  + (1/ei) + Y~j#i(1/(zi - ( j)) ,  

1( 1)) 
~ i = s i - ~  1 + ~  j#~z~-z~ ' 
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Arranging the last expression, we find 

e, Y ' ( z ' ) s ' + e ' a ' + l + e ' ( Y ' ( z ' ) + E ~ # , ( 1 / ( z ' - z ~ ) ) )  

1 + Y'(z,)~i + eia, 1 + Y'(zi)e, + e,ai 
2 ¢2(a, + Y'(z,)) + ~(~ ,  + Y'(z,)) 2 - ¢2~Y'(zi) - Q ~-~-j#i (1/(z, - zj)) 

[1 + ~,(V,(z,) + °,)]2 
2 ~ ,  + ~ ( ~ ,  + v'(~,)) 2 - ~, E j ~  (1/(z, - zj)) 

[1 + ei(V'(z,) + 0,)] 2 
2 ~ a ,  + 63(a, + Y'(zi)) 2 - Q ~-~j#i (1/(z, - ¢5))" 1/(1 - (~j/(z, - Cj)) 

[1 + ¢,(Y'(z,) + a,)] 2 

Developing the expression (1 - ¢j/(z~ - ~j))-I  in the geometric series, we obtain 

~ (o, + Z'(z,)) 2 - ~ E~#,  (~j/(z,  - ¢j)2 + . . . )  
g' = [1 + ~,(Y'(zi) + a,)] 2 (8) 

Hence, taking Igl = maxl<,<n Igi[ and [e[ = maxl<i<n [~,1, we find [g[ = O(M3), from which we 
conclude that  Tchebychef-like method (7) for calculating the zeros of analytic functions of the 
form (1) has the cubic convergence. | 

REMARK 1. Particularly, if *(z) is a monic polynomial with simple zeros ~1, . . . ,  ~ ,  that  is 

X(z )  = 1 ,  Y(z)  = 0 ,  • ( z )  = 
j=l  

then (7) reduces to the simultaneous method for polynomial zeros. 

Algorithm (7) requires the calculation of the derivative Y'(z)  at the points Z l , . . . ,  z,,. As it 
was noted by Ioakimidis and Anastasselou [4], the values Y'(zi) given by (3) should be computed 
in practice by applying a sufficiently accurate quadrature rule for contour of the form 

1 f r  g(w) dw ~ E akxg(wk:~), 
2rci k=l 

where akA are the weights and wkx the corresponding nodes of the quadrature rule. As rec- 
ommended in [4], it is convenient to apply trapezoidal quadrature rule along the circumference 
F = {w :lwl = R} with nodes 

akx=Rexp(iOkx), OkX-- ( 2 k - 1 ) r  k = l , . .  ,~. 

Since an extensive discussion on the computational aspects of numerical integration in the ap- 
plication of iterative formulas for analytic functions has been given in the papers [4-7], we omit 
details. 

3.  S O M E  C O M P U T A T I O N A L  A S P E C T S  

In the previous section, we have noted that  the calculation of the values Y'(zi) appearing 
in the iterative formula (7) was done by the numerical integration in the complex plane. This 
approximate calculation involves an error in the determination of the zeros applying method (7). 
In this section we are going to investigate the influence of the error of numerical integration on 
the convergence rate of the iterative method (7) and point out some computational features. 
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Let us assume that  5i is the absolute value of the upper error bound occurring in the approxi- 
mate integration applied in order to calculate Y~(zi). The procedure of the analysis of numerical 
stability of the method (7) is similar to that  presented in [8]. It is based on the substitution of the 
complex number Y~(zi) by the disk {Y~(zi); ~i} and the use of circular complex arithmetic. For 
the definition of the basic operations of circular complex arithmetic and their properties, see [9]. 

For simplicity, we introduce the notations 

1 

c~ = Y'(z~) + E z ~ - ~ j '  
j#~ 

1 

di = Y'(z i )  + E zi - z j '  
j ¢ i  

"/i -- [l+eiCil 

For the error gi = £i - ~i from (7), we obtain 

(°,,,( 1)) ~e2,:=z,-~ ¢,(z,) 1 + ~  (Y'(z~);ed+~z ~----~ 
j¢~ 

1 ( 

=ei - {y , (z i )+Z jn i (1 / (z i_¢ j ) ) ;~ i  ) 1 +  

1 ( {di;~i} ) .  
= e i -  {ci+l/ei;~i} 1+ {ci+l/ei;~i} ' 

tha t  is, 

}) {Y ' ( z , )  + Ejn=l (1/(z, - Q)) ; 5i 

g~ ~ 2~ = ei - {1 +eici; le~l~} 1 + { 1 - T ~ i c ~ i } ]  " 

Hence, applying circular arithmetic operations, after extensive but elementary calculations, we 
find the following expressions for the center and radius of the disk 2i: 

midZi = ei [e i (c i -d i )  + ¢3c 2 - Li? 2 + K(74] 
M2 , (9) 

rad Zi = [ei[2 [~i(2 - 7~) + "[i(26i + 2]di[ + ]di[Ti)] 
iMd2 , (lO) 

where 

M i  (1 + e.,:ci) (1 - ,.),2) L i  = 1 + 2c.i~, + c,~ 2 2 3 2 3 = , +2c~Q, K i = l + c ~ e ~ + c i e ~ + c  ie i 

are complex numbers which, for 
Let us consider the difference ci - di: 

1 1 
c,-~, =Y'(z,)+~5~, z, ! ¢5 Y'(z')-~z,5~, z-----5-~z,-¢5 

_ 1 ~ 1 _ ~  1 ~ 1 _ _ 

j¢i j# . . . . .  

sufficiently small I~i[, are bounded and tend to 1 when ~i --* 0. 

1 

• . zi zj 

1 
1 - c j / (z i  - 4j)" 

After developing the expression 
ment, we find 

c i - d i = - E  (z i - - ( j )2  + " "  + O (  e2)" 

Substituting this estimate in (9) we obtain 

(-  + ) + + 
mid2 i  Mt 

1/(1 - e j / ( z i  - Q)) into the geometric series and some arrange- 

(11) 

C ~  31:8-6 
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Since 7 / =  0([~[6i) ,  from (10) and (11) we estimate 

rad Zi = O ([ei[26i) ,,~ ai[ei[25i, mid Zi = O(~ 3) "~ bi~ 3, 

where ai > 0 and bi 6 C are bounded numbers. According to this and the obvious implication 

gi e Zi ~ [gi[ <_ mid2 i  + r a d Z i ,  

we have the estimate 

[gi[ = 0 (H2(lbi[ le[ + ai6i)) H = max  ]~i[. l<i<n (12) 

From the inequality (12) we conclude that  Tchebychef-like method (7) preserves the cubic 
convergence if 5i = O(H) .  Since [~(zi)[ = O([~i]), we can say that  the order of convergence of (7) 
is the same as in the absence of the error of numerical integration (calculating Y' ( z i ) )  if this error 
is of the same order as the absolute value of the function ~ at the point z = zi. If Y' (z i )  was 
calculated with relatively small accuracy so that  the condition 5~ = O([O(zi)D is not satisfied, 
then the convergence speed of the method (7) decreases, but not too much. For example, if even 
6i = O(1) (which often assumes a crude calculation of Y' (z i ) ) ,  then the order of convergence of 
the iterative method (7) will be at least two. According to this we infer that  Tchebychev-like 
method (7) is rather stable in the presence of quadrature errors, which has been confirmed by 
numerical experiments. 

REMARK 2. If Ai = ~(z i ) /O ' ( z i )  denotes Newton's correction, then from (7) we have 

zi = zi - Ai -- (Ai)2 [Y'(zi) T E ( z i  - zJ)-l] 

Hence, in spite of the quadrature errors (if they are reasonably small), the convergence of the 
method (7) is practically ensured by the main correction te rm--Newton  correction Ai. At the 
same time, Y' ( z i )  is multiplied by the quantity (Ai) 2, which is very small (in magnitude) if zi is 
sufficiently close to the zero ~i, so that  the influence of the quadrature error is neutralized. This 
analysis is quite similar to tha t  given in [4]. 

REMARK 3. In the case when some of the sought zeros are very close to the contour F, the 
presented algorithm (7) (and, also, all other algorithms based on the same principle) can produce 
poor results if the quadrature formula is not applied with high accuracy. Generally speaking, the 
price to be paid in order to attain very high convergence and approximations with a great number 
of accurate digits consists of the requirement for a very high precision arithmetic. Fortunately, 
at the present time, this is not a problem since multiprecision arithmetic (about 32 significant 
digits or more) is often built-in on modern computers. 

EXAMPLE. In order to demonstrate the convergence rate of Tchebychef-like method (7), we have 
considered the analytic function 

• (z) = e z - 2 cos 3z - 2 

inside the disk D = {z : [z[ < 1.5}. Using the computable argument principle [2] it has been 

found that  this analytic function has n = 3 zeros inside D. The real numbers z~ °) = -1 .4 ,  

z (°) = -0 .5 ,  z (°) -- 0.9 (found by a search algorithm including a proximity test for the detection 
of the presence of a zero) have been taken as starting approximations. Algorithm (7) has been 
realized in MS-FORTRAN (Microsoft version 5.1) using double-precision arithmetic (about 16 
significant digits) on PC 486/66. 
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Table 1. Approximations obtained by Tchebychef-like method (7). The underlined 
digit indicates the first incorrect digit. All digits of z~ 3) are correct. 

91 

Z}I) Z}2) z~i-(3) 
-1.2485 -1.22974921 -1.2297087181150930 

-0.8150 -0.82192655 -0.8219322065738026 

0.5836 0.56406522 0.5640643677390563 

The results of the first three iterative steps are displayed in Table 1. The underlined digit 
indicates the first incorrect digit. 

4. A S Y N C H R O N O U S  I M P L E M E N T A T I O N  
O F  A T C H E B Y C H E F - L I K E  M E T H O D  

The parallelization of simultaneous iterative methods for finding zeros on distributed memo- 
ry multicomputers has been considered in detail in [10-14]. It has been emphasized there that  
the total  cost of such a parallelization per iteration is the sum of a computation time and a 
communication time needed for a total exchange of data  at each iterative step. 

Synchronous versions of simultaneous methods have been studied extensively in a number of 
papers. According to the presented theoretical analysis as well as practical experimentations, it 
turns out tha t  Weierstrass-Durand-Kerner method is the most efficient regarding the total CPU 
time. For this reason, we will be concerned in this section with an another implementation of 
simultaneous method on multicomputers, which can compete with synchronous implementation 
under suitable conditions. Namely, in order to decrease the communication time the following 
strategy carl be applied (see [12,14,15]). In each iteration, any processor does not have to wait for 
the end of the total exchange but  deals with instantly available data. This type of algorithm is 
called asynchronous by Baudet [16] indicating that  the local computation is performed using only 
a part  of the global information. The implementation of an asynchronous method is executed 
in such a way that ,  at each iterative step, a processor sends the most recently computed entries 
to its neighbors only, decreasing the communication time. The decrease of this time is attained 
on the account of the convergence rate of the asynchronous version, which is the subject of this 
section. 

Since the model of asynchronous implementation has been described extensively in the papers 
cited above, we will omit details and concentrate to the convergence analysis of asynchronous 
version of Tchebychef-like method (7). We assume that  the number of processors k(_< n) is given 

in advance. The starting vector z (°) -- (z~°), . . . ,  z (°)) is computed by all the processors P1,..., Pk 
using some suitable search procedure. Furthermore, each step of the algorithm consists of shar- 
ing the computation of n improved approximations z~m),..., Z(n m) among the processors and in 
updating their data  z (m) through a broadcast procedure. If I(1, m),. . . ,  I(k, m) are disjunctive 
partitions of the set { 1 , . . . ,  n} where UI(j, m) -- { 1 , . . . ,  n}, at the mth iterative step the proces- 

sor Pj(j = 1,. . . ,k) computes z~ m) for a l l /  C I(j,m) by the iterative formula (7) and then it 
transmits these values to the neighbor processors. As explained by Cosnard and Fraigniaud [12], 
the indices distribution is necessary at each iteration to ensure the safe convergence of the applied 
method. The program terminates when some stopping criterion (referred to as STOP(z(m))) is 
fulfilled, for instance, if 

for a given sufficiently small ~. 
Let us assume that  the new approximation z~ re+l) is calculated by a processor Ph, h • (1,. . . ,  

k}. Evidently, to ensure the convergence, this processor must know the value of z~ m). The 
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_(m-l-i) improved approximation ~i is calculated by the asynchronous Tchebychef-like formula 

• 
_(re+l) ~_ (m) t~(z~rn)) 1 +  

z, 
( 1 )) 

(13) 

In (13), Z) m-r(j'm'h)) is the last approximation to the zero (j known by the processor Ph at 
step m. Here r( j ,  m ,  h) is a delay depending on j, m and h and indicating that the processor Ph 

only knows the value of zj  computed at step m - r ( j ,  m,  h). The maximum delay will be denoted 
by r; that is, r = maXj,m,h r(j, m, h). 

According to the previous we give a program in pseudocode for a parallel implementation of 
the simultaneous method (13) (following [12]): 

(0) 
(1) 
(9) 

(3) 

P r o g r a m  ASYNCHRONOUS TCHEBYCHEF-LIKE METHOD (13) 
begin  

for all j = 1 , . . . ,  k do determination of the starting approximations z(°); 
m : - - 0  
do 

for all j = 1 , . . . ,  k do in parallel  
begin  

Distribute I ( j ,  m); 
Compute z~ re+l) by (13), i e I ( j ,  m)  

Send ~(re+l) ~i , i E I ( j ,  m) ,  to neighbors; 
end  
m : = m + l  

until  S T O P  (z (m)) holds true; 
OUTPUT z (m) 

end  

As mentioned above, the asynchronous implementation decreases the convergence speed of the 
applied method. In the following theorem we give the lower bound of the order of convergence 
of the asynchronous Tchebychef-like method (13). 

THEOREM 2. Suppose  that  s tart ing approximations z~°), . . . , z(n °) are reasonably close to the  zeros 
~1 , . . . ,  zn o f  the  analytic function ¢ o f t  he  form (I).  Further, assume that  r ( j , m ,  h) is bounded  

for all j = 1 , . . . ,  n and a/ /h  = 1 , . . . ,  k. Then  the asynchronous Tchebychef-l ike algorithm (13) 

is locaJ1y convergent wi th the  order o f  convergence at  least ~ > 2, where ~ is the unique posi t ive  

root of the equat ion 

x ~+1 - 2x ~ - 1 = O, r = m a x  r( j ,  m ,  h). (14) j,rn,h 

PROOF. For simplicity, the approximations z~ m-r) to the roots ¢1,. . . ,  (n at the iterative step m 
will be shortly denoted with zj if r = 0 and z~ if r > 0. According to this notation we introduce 

the errors e~ = zi - ¢i and e~ = z~ - ~j. The new approximation z~ re+l) will be denoted with zi 
and the corresponding error with gi -- £i - ~i. 

The proof of Theorem 2 is performed in quite a similar way as the proof of Theorem 1 assuming 
only that zj and ej are substituted by z~ and e~. According to this, starting from (13) we obtain 
the relation 

2 g, = e 3 (ai + Y'(zi)) 2 - e i Y~q#i (e; /(z~ - ¢j)2 + . . .  ) (15) 

[1 + e i ( Y ' ( z i )  + a~)] 2 
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which corresponds to (8). Let ( = ( ~ 1 , . . - , ¢ n )  and  z (m) -- ( z ~ m ) , . . . , z  (m)) be the  vectors of 

zeros and  their  approximat ions .  If a t  the  i terat ive step m we define the absolute  error em by 

em :--- llz (m) - ~11oo, t hen  from (15) we ob t a in  

em+l = 0 (62mEm-r) . 

For large m > m0 let us pu t  em -- O(E) ,  where 0 < E < 1 according to the assumed closeness 

of ini t ia l  approximat ions .  Therefore, the sequence (era) tends  to 0. Let the order of convergence 

of the  sequence (era) be ~?; t ha t  is, em+l  = O (e~) .  T h e n  

so t h a t  we have 

, , , , ,  

em+z=O(e2m.em_~) =O(E 2+'/'1~) and  e m + , - - O ( E ' 7 ) .  

By the  compar i son  of the exponents  it follows ~ /=  2 + 1/77 r, which reduces to the  equa t ion  (14). 

Let f (~ )  = ~r+z _ 277r _ 1. The  funct ion f is convex and  f (0)  = f (2)  = - 1 ,  f (3 )  = 3 r - : t  _> 0 

holds. Hence, f has the  unique  posit ive zero ~/belonging to the  interval  (2, 3]. | 
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