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We propose an online algorithm for planning under uncertainty in multi-agent settings
modeled as DEC-POMDPs. The algorithm helps overcome the high computational
complexity of solving such problems offline. The key challenges in decentralized operation
are to maintain coordinated behavior with little or no communication and, when
communication is allowed, to optimize value with minimal communication. The algorithm
addresses these challenges by generating identical conditional plans based on common
knowledge and communicating only when history inconsistency is detected, allowing
communication to be postponed when necessary. To be suitable for online operation,
the algorithm computes good local policies using a new and fast local search method
implemented using linear programming. Moreover, it bounds the amount of memory used
at each step and can be applied to problems with arbitrary horizons. The experimental
results confirm that the algorithm can solve problems that are too large for the best
existing offline planning algorithms and it outperforms the best online method, producing
much higher value with much less communication in most cases. The algorithm also proves
to be effective when the communication channel is imperfect (periodically unavailable).
These results contribute to the scalability of decision-theoretic planning in multi-agent
settings.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A multi-agent system (MAS) consists of multiple independent agents that interact in a domain. Each agent is a decision
maker that is situated in the environment and acts autonomously, based on its own observations and domain knowledge, to
accomplish a certain goal. A multi-agent system design can be beneficial in many AI domains, particularly when a system
is composed of multiple entities that are distributed functionally or spatially. Examples include multiple mobile robots
(such as space exploration rovers) or sensor networks (such as weather tracking radars). Collaboration enables the different
agents to work more efficiently and to complete activities they are not able to accomplish individually. Even in domains in
which agents can be centrally controlled, a MAS can improve performance, robustness and scalability by selecting actions in
parallel. In principle, the agents in a MAS can have different, even conflicting, goals. We are interested in fully-cooperative
MAS, in which all the agents share a common goal.

In a cooperative setting, each agent selects actions individually, but it is the resulting joint action that produces the
outcome. Coordination is therefore a key aspect in such systems. The goal of coordination is to ensure that the individual
decisions of the agents result in (near-)optimal decisions for the group as a whole. This is extremely challenging especially
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when the agents operate under high-level uncertainty. For example, in the domain of robot soccer, each robot operates
autonomously, but is also part of a team and must cooperate with the other members of the team to play successfully.
The sensors and actuators used in such systems introduce considerable uncertainty. What makes such problems particularly
challenging is that each agent gets a different stream of observations at runtime and has a different partial view of the
situation. And while the agents may be able to communicate with each other, sharing all their information all the time is
not possible. Besides, agents in such domains may need to perform a long sequence of actions in order to reach the goal.

Different mathematical models exist to specify sequential decision-making problems. Among them, decision-theoretic
models for planning under uncertainty have been studied extensively in artificial intelligence and operations research since
the 1950’s. Decision-theoretic planning problems can be formalized as Markov decision processes (MDPs), in which a single
agent repeatedly interacts with a stochastically changing environment and tries to optimize a performance measure based
on rewards or costs. Partially-observable Markov decision processes (POMDPs) extend the MDP model to handle sensor un-
certainty by incorporating observations and a probabilistic model of their occurrence. In a MAS, however, each individual
agent may have different partial information about the other agents and about the state of the world. Over the last decade,
different formal models for this problem have been proposed. We adopt decentralized partially-observable Markov deci-
sion processes (DEC-POMDPs) to model a team of cooperative agents that interact within a stochastic, partially-observable
environment.

It has been proved that decentralized control of multiple agents is significantly harder than single agent control and
provably intractable. In particular, the complexity of solving a two-agent finite-horizon DEC-POMDP is NEXP-complete [12].
In the last few years, several promising approximation techniques have been developed [3,11,17,19,46,47]. The vast majority
of these algorithms work offline and compute, prior to the execution, the best action to execute for all possible situations.
While these offline algorithms can achieve very good performance, they often take a very long time due to the double
exponential policy space that they explore. For example, PBIP-IPG – the state-of-the-art MBDP-based offline algorithm –
takes 3.85 hours to solve a small problem such as Meeting in a 3×3 grid that involves 81 states, 5 actions and 9 observations
[3]. Online algorithms, on the other hand, plan only one step at a time and they do so given all the currently available
information. The potential for achieving good scalability is more promising with online algorithms. But it is extremely
challenging to keep agents coordinated over a long period of time with no offline planning. Recent developments in online
algorithms suggest that combining online techniques with selective communication – when communication is possible –
may be the most efficient way to tackle large DEC-POMDP problems. The main goal of this paper is to present, analyze,
and evaluate online methods with bounded communication, and show that they present an attractive alternative to offline
techniques for solving large DEC-POMDPs.

The main contributions of this paper include: (1) a fast method for searching policies online, (2) an innovative way for
agents to remain coordinated by maintaining a shared pool of histories, (3) an efficient way for bounding the number of
possible histories agents need to consider, and (4) a new communication strategy that can cope with bounded or unreliable
communication channels. In the presence of multiple agents, each agent must cope with limited knowledge about the
environment and the other agents, and must reason about all the possible beliefs of the other agents and how that affects
their decisions. Therefore, there are still many possible situations to consider even for selecting just one action given the
current knowledge. We present a new linear program formulation to search the space of policies very quickly. Another
challenge is that the number of possible histories (situations) grows very rapidly over time steps, and agents could run
out of memory very quickly. We introduce a new approach to merging histories and thus bound the size of the pool of
histories, while preserving solution quality. Finally, it is known that appropriate amounts of communication can improve
the tractability and performance of multi-agent systems. When communication is bounded, which is true in many real-
world applications, it is difficult to decide how to utilize the limited communication resource efficiently. In our work,
agents communicate when history inconsistency is detected. This presents a new effective way to initiate communication
dynamically at runtime.

The rest of the paper is organized as follows. In Section 2, we provide the background by introducing the formal model
and discussing the offline and online algorithms as well as the communication methods in the framework of decentralized
POMDPs. In Section 3, we present the multi-agent online planning with communication algorithms including the general
framework, policy search, history merging, communication strategy and implementation issues. In Section 4, we report the
experimental results on several common benchmark problems and a more challenging problem named grid soccer. We also
report the results for the cooperative box pushing domain with imperfect communication settings. In Section 5, we survey
the various existing online approaches with communications that have been applied to decentralized POMDPs, and discuss
their strengths and drawbacks. Finally, we summarize the contributions and discuss the limitations and open questions in
this work.

2. Background

In this section we provide a formal description of the problem and some essential background. We consider settings in
which a group of agents coordinate with each other at discrete time steps. The agents operate over some finite number
of steps, T , referred to as the horizon. At each time step, each agent first receives its own local observation from the
environment and then takes an action. The combination of all agents’ actions causes a stochastic change in the state of
the environment, and produces some joint reward, after which a new decision cycle starts. In such cooperative sequential
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decision-making settings, the agents have to come up with a plan that maximizes the expected long term reward of the
team. Planning can take place either offline or online. In offline planning, the computed plans are distributed to each agent
and executed by each agent based on its local information. Hence the planning phase can be centralized as long as the
execution is decentralized. Online planning algorithms often interleave planning with execution. Thus they only need to
find actions for the current step, instead of generating the whole plan at once as offline algorithms do. Agents can usually
share information with each other by communication. But communication is not a free resource in many applications. We
will discuss the communication model in detail later in this section.

2.1. Formal model of decentralized POMDPs

The Markov Decision Process (MDP) and its partially observable counterpart (POMDP) have proved very useful for
planning and learning under uncertainty. The Decentralized POMDP offers a natural extension of these frameworks for co-
operative multi-agent settings. We adopt the DEC-POMDP framework to model multi-agent systems, however our approach
and results apply to equivalent models such as MTDP [41] and POIPSG [40].

Definition 1 (DEC-POMDP). A decentralized partially observable Markov decision process is a tuple 〈I, S, {Ai}, {Ωi}, P , O ,

R,b0〉 where

• I is a finite set of agents indexed 1, . . . ,n. Notice that when n = 1, a DEC-POMDP is equivalent to a single-agent POMDP.
• S is a finite set of system states. A state summarizes all the relevant features of the dynamical system and satisfies the

Markov property. That is, the probability of the next state depends only on the current state and the joint action, not
on the previous states and joint actions: P (st+1|s0, �a0, . . . , st−1, �at−1, st, �at) = P (st+1|st, �at).

• Ai is a finite set of actions available to agent i and �A =×i∈I Ai is the set of joint actions, where �a = 〈a1, . . . ,an〉 denotes
a joint action. We assume that agents do not observe which actions are taken by others at each time step.

• Ωi is a finite set of observations available to agent i and �Ω =×i∈I Ωi is the set of joint observations, where �o =
〈o1, . . . ,on〉 denotes a joint observation. Every time step the environment emits one joint observation, but each agent
only observes its own component.

• P is a state transition probability table. P (s′|s, �a) denotes the probability that taking joint action �a in state s results in a
transition to state s′ . P describes the stochastic influence of actions on the environment. We assume that the transition
probabilities are stationary, which means that they are independent of the time step.

• O is a table of observation probabilities. O (�o|s′, �a) denotes the probability of observing joint observation �o after taking
joint action �a and reaching state s′ . O describes how the agents perceive the state of the environment. The observation
probability is also assumed to be stationary.

• R : S × �A → 	 is a reward function. R(s, �a) denotes the reward obtained from taking joint action �a in state s. R spec-
ifies the agents’ goal or task. It is an immediate reward for agents taking a joint action in some state. The agents do
not generally observe the immediate reward at each time step, although their local observation may determine that
information.

• b0 ∈ �(S) is the initial belief state distribution. It is a vector that specifies a discrete probability distribution over S that
captures the agents’ common knowledge about the starting state.

Formally, we define the history for agent i, hi , as the sequence of actions taken and observations received by agent i. At
any time step t ,

ht
i = (

a0
i ,o1

i ,a1
i , . . . ,ot−1

i ,at−1
i ,ot

i

)
is the history of agent i, and ht = 〈ht

1, . . . ,ht
n〉 is the joint history. The term joint belief b(·|h) ∈ �(S) denotes the probability

distribution over states induced by joint history h. Given a set of joint histories of the previous step, computing a set of
joint belief states of current step is straightforward using Bayes’ rule:

∀s′∈S ,bt(s′|ht) = O (�ot |s′, �at−1)
∑

s∈S P (s′|s, �at−1)bt−1(s|ht−1)∑
s′′∈S O (�ot |s′′, �at−1)

∑
s∈S P (s′′|s, �at−1)bt−1(s|ht−1)

(1)

Throughout this paper, we use b(h) as a shorthand of the joint belief b(·|h).
A local deterministic policy δi for agent i is a mapping from local histories to actions in Ai , i.e. δi(hi) = ai . And

a joint deterministic policy, δ = 〈δ1, . . . , δn〉, is a tuple of local deterministic policies, one for each agent, i.e. δ(h) =
〈δ1(h1), . . . , δn(hn)〉 = �a. A deterministic policy can be represented as a policy tree with nodes representing actions and
edges labeled with observations. A joint deterministic policy is a set of policy trees. Similarly, a local stochastic policy for
agent i, πi(ai |hi), is a mapping from a local history hi to a distribution over Ai . A joint stochastic policy, π = 〈π1, . . . ,πn〉,
is tuple of local stochastic policies.
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Solving a DEC-POMDP for a given horizon T and start state s0 can be seen as finding a policy δ that maximizes the
expected cumulative reward

V
(
δ, s0) = E

[
T −1∑
t=0

R
(
st , �a t)∣∣s0

]
(2)

Because of the recursive nature of DEC-POMDPs, it is more intuitive to specify the value function recursively:

V
(
δ,ht) =

∑
st

p
(
st |ht)[R

(
st , �a) +

∑
st+1,�o

P
(
st+1|st , �a)

O
(�o|st+1, �a)

V
(
δ,ht+1)] (3)

where �a = δ(ht),ht+1 = ht ◦ �a ◦ �o and the state distribution p(st |ht) given history ht is computed recursively as follow:

p
(
st |ht) = O

(�o|st , �a)∑
st−1

P
(
st |st−1, �a)

p
(�a|ht−1)p

(
st−1|ht−1) (4)

where ht = ht−1 ◦ �a ◦ �o and p(s|h0) = b0(s),∀s ∈ S . A survey of DEC-POMDP models and algorithms is available in [48].
Previous studies have identified different categories of DEC-POMDPs characterized by different levels of observability

and interaction. The computational complexity of solving these problems ranges between NEXP and P [26]. When each
individual observation of an agent identifies the true state uniquely, a DEC-POMDP reduces to a multi-agent MDP (MMDP)
[15]. When the joint observation identifies the true state, a DEC-POMDP is referred to as a DEC-MDP. A DEC-MDP is called
transition-independent DEC-MDP (TI-DEC-MDP) when the transition models of the agents are independent of each other [9].
Other special cases that have been considered are, for instance, goal-oriented DEC-POMDPs [26], event-driven DEC-MDPs [8],
network distributed POMDPs (ND-POMDPs) [33], DEC-MDPs with time and resource constraints [13,14,29], DEC-MDPs with
local interactions [51] and factored DEC-POMDPs with additive rewards [36].

In this work we consider the general finite-horizon DEC-POMDPs, without any simplifying assumptions on the obser-
vations, transitions, or reward functions. The complexity of general finite-horizon DEC-POMDPs has been shown to be
NEXP-complete. Due to these complexity results, optimal algorithms have mostly theoretical significance. Current research
efforts in this area focus mostly on finding scalable approximation techniques [3,11,17,19,46,47].

2.2. Offline algorithms versus online algorithms

Developing algorithms for solving DEC-POMDPs approximately has become a thriving research area. Most existing algo-
rithms operate offline, generating some type of a complete policy before execution begins. The policy specifies what action
to take in any possible runtime situation. While good performance can be achieved using these algorithms, they often take
significant time (e.g. more than a day) to solve modest problems. The reason is that they need to consider all possible
policies of the other agents – or a sufficiently large set of policies – in order to preserve solution quality. In domains such
as robot soccer, it is not feasible to consider all possible strategies all through to the end. Besides, small changes in the
environment’s dynamics require recomputing the full policy. In contrast, online algorithms only need to plan the current
action and thus can be much faster. This has long been recognized in competitive game playing such as chess. A typical
algorithm often performs a limited amount of lookahead and plans only for the current step, and then repeats this process
online after observing the opponent’s response. Furthermore, online planning can better handle emergencies and unforeseen
situations, which allows online approaches to be applicable in many domains for which offline approaches are not adequate.

Implementing online algorithms for decentralized multi-agent systems is very challenging. Since the underlying system
state as well as the observations of the other agents are not available during execution time, each agent must reason about
all possible histories that could be observed by the other agents and how that may affect its own action selection. In
cooperative multi-agent domains, agents must ensure coordination. Consider, for example, a robot soccer problem in which
two defenders (D1 and D2) are trying to mark two attackers (A1 and A2). Each defender has different observations of
the environment and thus may compute a different best joint plan online based on its own local knowledge. For example,
the best joint plan based on D1’s knowledge is 〈D1 → A1, D2 → A2〉 and the best joint plan based on D2’s knowledge is
〈D1 → A2, D2 → A1〉, where Di → A j denotes defender Di marking attacker A j . However, the actual joint action executed
is 〈D1 → A1, D2 → A1〉, which is an example of miscoordination. The outcome of miscoordination could be arbitrarily bad
and cause severe failures in teamwork [57]. In the example mentioned above, miscoordination leads to undesired behavior,
namely two defenders mark A1 while A2 is left unmarked. In practice, if each agent computes policies with different private
information, there is a risk that the resulting policies will fail to achieve the intended effects. On the other hand, if agents
ignore their private information, their policies become open-loop controllers, without considering their local observations.
Thus, we define coordination as follows.

Definition 2 (coordination). When agents maintain a single shared plan (joint policy) and always execute an action that is
part of that plan (policy), we say that the MAS exhibits coordination. Otherwise, it exhibits miscoordination.
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It is very difficult to guarantee coordination when planning is performed online and agents have different local informa-
tion. Another major difficulty is that online algorithms must often meet real-time constraints, greatly reducing the available
planning time, compared with offline methods. Due to these difficulties, work on online planning for DEC-POMDPs has been
sparse. In this paper, we address these key challenges of multi-agent online planning and answer the following questions:
(1) How to guarantee coordination when agents operate based on local observations, each having different private infor-
mation? (2) How to meet planning time constraints and bound memory usage when each agent must reason about a vast
number of possible outcomes and action choices of other agents?

2.3. Communication in decentralized POMDPs

Agents with limited source of information about their teammates must reason about the possible histories of team
members and how these histories affect their own behaviors. Communication can alleviate this problem by sharing pri-
vate information such as sensory data. Hence, online algorithms often incorporate communication to improve performance.
However, communication is often limited by bandwidth and sometimes can be costly or unreliable. For example, robots
that work underground or on another planet may need to move to certain locations to initiate communication. Even when
communication is readily available and cheap – for instance, in the case of indoor mobile robots – limited bandwidth and
unreliability often lead to latency and robots may need to wait for a period or resend messages several times until the
critical information is fully received. In all these situations, too much communication will affect negatively the performance
of the system. Thus, an interesting and challenging question is how to integrate online planning with communication and
use communication effectively.

Bounded communication is recognized as an important characteristic of multi-agent systems due to several factors:
(1) Agents may move into regions that have no coverage of the communication signal. For example, search and rescue robots
working in subterranean tunnels such as subways and mine caves may have no wireless communications because high
frequency waves cannot penetrate rock, limiting radio communication to areas with line of sight between the transceivers
[30]. Another example is two Mars rovers with one rover located behind some blocking obstacle [6]. In both examples,
robots must move to certain spots where the wireless connection is available and then try to communicate with each
other. Obviously, communication is costly if the working sites are far from the communication spots. Agents must bound
the frequency of communication and maintain coordination when communication is unavailable. (2) Agents may not be
able to share all the information with other agents all the time due to the limitations of the communication channel and
computational device. Consider, for example, the AIBO soccer robot [42]. Communication latency of the wireless network is
high. On average, messages takes 0.5 seconds to be received by all teammate robots, and in some cases, latency is observed
to be as high as 5 seconds. This latency makes it difficult for the robots to communicate all the most recent information
all the time. The robots also have limited computational power. They receive and process images at 20 frames per second.
Because each image may contain only a few (or none) of the relevant state features, it takes time to build a world model
and compute what should be shared with others. Besides, receiving messages from others at 20 Hz overloads the robot
operating system’s message buffers. After a few minutes of attempting to communicate their private information as they are
updated, the robots’ motion controllers are affected, causing the robots to slow down and occasionally crash. (3) Another
important factor is communication failures, which are very common in wireless sensor networks [1]. Failures may require
multiple attempts to communicate before the information is transmitted successfully. In all the scenarios mentioned above,
bounded communication is preferable. Additionally, it is known that free communication reduces a DEC-POMDP to a large
single agent POMDP. This is done by having each agent broadcast its local observation to the other agents at each time
step. When all of the local observations are known to every agent, they can be treated as a single joint observation, giving
the system the same complexity as a single-agent POMDP, PSPACE-complete. When communication is not free, finding the
optimal communication policy is as hard as the general DEC-POMDP, which is NEXP-complete [41]. In this work, we adopt
bounded communication which is a more suitable assumption for the domains we are interested in.

There are three possible ways in which agents can share information and coordinate their actions: indirect communi-
cation, direct communication, and using common uncontrollable observed features. In indirect communication, one agent’s
actions can affect the observations made by another agent. Hence these observations can serve as messages transmitted
between the agents. Generally, when the observations of the agents are dependent on non-local information, each obser-
vation provides some form of indirect communication. Thus a general DEC-POMDP already includes this form of indirect
communication, and the policy determines what to communicate and when. With direct communication, information can
be shared by the agents by sending messages directly to each other. When there are components of the global system state
that are observed by both agents but are not affected by any of these agents’ actions, the agents can then act upon the
common knowledge and coordinate their actions without exchanging messages directly.

In this work we consider direct communication and use the sync communication model [61] where each agent broadcasts
its local information to all the others. The communication language simply allows transmission of the agents’ action-
observation histories. The tell and query models [61] are more complex, allowing one way communication between one
pair of agents. In designing a general communication strategy, one must determine when to communicate, with whom to
communicate, and what to send. However, when the sync model is used, the main question is when to initiate communica-
tion. Once communication is initiated by any agent, all the agents share their local information. Communication is generally
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Fig. 1. Online planning framework for two agents.

assumed to be instantaneous – a message is received without delay as soon as it is sent. But in this work we consider the
impact of possible stochastic delays.

The sync communication model is essential to simplify the already high complexity of planning with different sets of
partial information. Nevertheless, this does not necessarily mean that agents must transmit all their local information to the
other agents. Agents need only transmit the information which is relevant to establishing coordination. For example, in the
multi-access broadcast channel problem [11], the actual information communicated may be only several bytes to indicate
the status of the buffer, but the messages in the buffer themselves may be several mega-bytes or giga-bytes large. Similarly,
it is common for a file sharing system to broadcast the file names in a directory to all the peers instead of transmitting
all the files. In DEC-POMDPs, the messages exchanged among agents are sequences of high-level observations, not the
sensor readings that are the basis for each observation. Additionally, it is possible to incorporate selective communication
methods [43] within our model. Generally, this can be done by choosing observations with larger impact on the beliefs –
an interesting direction that is left for future work. In practice, the usefulness of selective communication often depends on
how the observation model is defined. Even with selective communication, the question of when to communicate remains
open. Another challenge simplified by the sync model is the choice of whom to communicate with. This is particularly
relevant when each agent interacts directly with a subset of the group, rather than the entire team. In this paper, we focus
on general DEC-POMDP settings without assuming any special interaction structure. The domains we investigate require
coordination among all the agents, which means that the action of one agent affects the optimal choices of all the others.
The sync model is thus suitable for these settings, and the question of when to communicate that it presents is still very
challenging.

Additionally, we use and-communication [20], assuming separate communication and action phases in each time step.
Thus communication facilitates better domain-level action selection by conditioning domain actions on the specific infor-
mation received, rather than replacing domain-level actions as in or-communication [20]. We did not factor an explicit cost
for communication in this work because any such cost would have been arbitrary and not particularly relevant to the appli-
cations we are interested in. In the experimental results, we show that our approach is effective in the sense that it achieves
better value with less communication compared with existing online techniques with communication. This guarantees that,
if the cost of communication is specified, our approach will be beneficial for any such cost.

3. Multi-agent online planning with communication

In this section we introduce a new algorithm, Multi-Agent Online Planning with Communication (MAOP-COMM), for
finding approximate solutions of general DEC-POMDPs. This algorithm is executed in parallel by all the agents in the team,
interleaving planning and execution. More precisely, our online algorithm is divided into a planning phase, an executing
phase and an updating phase, which are applied consecutively at each time step. An example involving two agents is shown
in Fig. 1.

Definition 3 (belief pool). A belief pool at time-step t is defined by a tuple 〈{Ht
i |i ∈ I}, Bt〉, where Ht

i is a set of histories for
agent i and Bt is a set of joint belief states, Bt = {b(ht)|ht ∈ Ht} where Ht =×i∈I Ht

i .

To illustrate this concept, consider the robot soccer problem mentioned in Section 2.2. Suppose that the defense strategy
is that each defender should mark the nearest attacker. Then, the belief pool will contain knowledge about who is the
nearest defender for each attacker. As long as all the defenders maintain the same belief pool and use the same tie-breaking
rule, the outcome plans they compute (determining which defender marks each attacker) will be the same. This guarantees
that the strategies of the defenders are coordinated.
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Algorithm 1: Expand Histories and Update Beliefs

Input: Ht , Bt , δt

Ht+1 ← ∅; Bt+1 ← ∅
for ∀ht ∈ Ht ,∀�o ∈ �Ω do

�a ← δt(ht)

// append �a, �o to the end of ht.

ht+1 ← ht ◦ �a ◦ �o
// calculate the distribution of ht+1.

p(ht+1) ← p(�o, �a|ht)p(ht)

// test if ht+1 is a reachable joint history.

if p(ht+1) > 0 then
Ht+1 ← Ht+1 ∪ {ht+1}
// compute the belief state of ht+1.

bt+1(·|ht+1) ← Update belief with bt(·|ht), �a, �o
// add bt+1 into a hash table indexed by ht+1.

Bt+1 ← Bt+1 ∪ {bt+1(ht+1)}
return Ht+1, Bt+1

Definition 4 (local and joint policies). A local policy for agent i is a mapping from a set of histories to a set of actions,
δi : Hi → Ai , and δi(hi) denotes the action assigned to history hi . A joint policy is a set of local policies, δ = 〈δ1, δ2, . . . , δn〉,
one for each agent, and δ(h) denotes the joint action assigned to joint history h.

In the planning phase, each agent computes a joint policy δt for every possible history in the belief pool. During the
executing phase, agent i adds its new observation to its own local history, ht

i ← ht−1
i ◦ ot

i , executes an action ai = δt
i (h

t
i )

according to its component in the joint policy δt and its current local history ht
i , and appends the action to the end of the

local history, ht
i ← ht

i ◦ ai . After that, each agent updates its own belief pool based on the plan δt , as shown in Algorithm 1,
and continues to the next step.

As mentioned, coordination is an important issue in multi-agent planning since the outcome of uncoordinated policies
can be arbitrarily bad. In offline planning, the coordination is guaranteed by distributing and executing the same pre-
computed joint policy. It is much more difficult to achieve coordination in online planning because the policy is computed
online and each agent receives different (or partial) information from the environment.

In our online algorithm, each agent maintains the same joint histories for the team. This ensures that all the agents
find the same joint policy and thus remain coordinated. While the algorithm is randomized, it nevertheless ensures that
each agent finds the same set of joint policies by using the same pseudo-random number generator with an identical
seed. It is important to emphasize that we only use common knowledge for planning. With the same belief pool and
randomization scheme, each agent can generate exactly the same joint policy. Each agent’s local observation is used only
for policy execution.

Definition 5 (belief inconsistency). When an agent believes that p must be true and the agent’s observation implies ¬p, we
say that the belief of that agent is inconsistent.

Intuitively, belief inconsistency occurs when an agent’s beliefs contradict the observations it obtains from the environ-
ment. For example, in the robot soccer problem mentioned in Section 2.2, suppose that D1 observes that its nearest attacker
is A2, not A1 as indicated by its (inconsistent) belief. Then D1 should communicate with all the other defenders, inform-
ing them that the nearest attacker to D1 is actually A2 so that they can update their belief pools with more accurate
information. Hence, the team benefits from communication by finding better plans based on consistent beliefs.

This is why communication is triggered when our algorithm detects belief inconsistency. The agent then initiates com-
munication as soon as the communication resource is available. When communication occurs, each agent broadcasts its
own local observation sequence to the other agents (the sync model). Consequently, each agent can construct the actual
joint history and calculate the actual joint belief state. The best joint action is then selected based on the new joint belief
state. And the belief pool is emptied and replaced with the actual history.

Notice that communication is not essential to ensure coordination in our framework, but it offers an optional mecha-
nism to improve performance. This makes the use of communication more flexible, particularly in domains with a bounded
communication resource. Communication can be easily integrated into our framework by considering it before the plan-
ning phase. Coordination is guaranteed in any case because communication just updates the common knowledge of the
agents. More precisely, the belief pools of the agents are the same without communication, and they remain the same
after communication occurs. The sync model used by our work guarantees that each agent has the same knowledge after
communication.
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Algorithm 2: Multi-Agent Online Planning with Communication

Input: b0, seed[1..T − 1]
foreach i ∈ I (parallel) do

�a0 ← arg max�a Q (�a,b0)

Execute the action a0
i and initialize h0

i
H0 ← {�a0}; B0 ← {b0}; τcomm ← false
for t = 1 to T − 1 do

Set the same random seed by seed[t]
Ht , Bt ← Expand histories and beliefs in Ht−1, Bt−1

ot
i ← Get the observation from the environment

ht
i ← Update agent i’s own local history with ot

i
if Ht is inconsistent with ot

i then
τcomm ← true

if τcomm = true and communication available then
Synch ht

i with other agents
τcomm ← false

if agents communicated then
ht ← Construct the communicated joint history
bt(ht) ← Calculate the joint belief state for ht

�at ← arg max�a Q (�a,bt(ht))

Ht ← {ht}; Bt ← {bt(ht)}
else

π t ← Search the stochastic policy for Ht , Bt

at
i ← Select an action according to π t(ai |ht

i )

Ht , Bt ← Merge histories based on π t

ht
i ← Update agent i’s own local history with at

i
Execute the action at

i

Theorem 1. The multi-agent online planning algorithm (MAOP-COMM) always guarantees coordination among agents with or without
communication.

Proof (sketch). We present several mechanisms to ensure that each agent maintains the same belief pool and finds the
same joint policy for the team, so they can still coordinate with each other online. As shown in Algorithm 1, only common
knowledge arising from the model is used to update the belief pool. Agents run the algorithm in lockstep and a set of
predetermined random seeds are used to ensure that all the agents come up with the same randomized behavior. The
only private information is the local history of each agent, which is tracked by remembering the actions executed and
the observations received in previous steps. This local history is only used to execute the plan and has no effect on the
coordination mechanisms. In Fig. 1, the inputs and outputs of the plan and update modules are the same for all agents. The
“execute” module is the only part that considers the local information of each agent, but this does not make any change to
the belief pool as well as the joint policy and cannot lead to miscoordination. We use the sync communication model to
reset the belief pools with the same histories and joint belief state. Thus, each agent also maintains the same belief pool
after communication. As long as the belief pools of each agent are identical, the joint policies computed based on the belief
pools are still the same. Therefore, agents remain coordinated. �

Our online algorithm starts by first calculating and executing the best joint action for the initial belief state using a
heuristic value function. Then, the main planning loop shown in Algorithm 2 is executed. Generally, there are three major
challenges in implementing this framework: (1) It is an NP-hard problem to find the decentralized policies for every possible
history of every agent [58]. In Section 3.1, we provide an approximate solution by solving a series of linear programs. (2) The
belief pool itself can be extremely large, making it impossible be managed online. More precisely, the number of possible
histories grows exponentially with the time step. In Section 3.2, we introduce policy-based techniques to bound the memory
usage of the belief pool. (3) Detecting inconsistency in the belief pool is nontrivial given only the agent’s local information.
In Section 3.3, we describe a method to address that problem efficiently. Finally, in Section 3.4, we discuss some data
structures used in our implementation to store belief pools.

3.1. Searching stochastic policies using linear programming

In decentralized multi-agent systems, agents without knowledge of the observations of the other agents must reason
about all the possible belief states that could be held by others and how that affects their own action selection. In order to
find agent i’s policy qi for history hi , agents need to reason about all the possible histories h−i held by the others as well
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Fig. 2. Illustration of similarity between the one-step online planning and the one-step offline policy tree construction.

as all the possible policies associated with them. In other words, we need to find a joint policy δ that maximizes the value
function below:

V (δ) =
∑
h∈H

∑
s∈S

p(s|h)V
(
δ(h), s

)
(5)

where p(s|h) is the state distribution given a joint history h.
It is important to point out that the joint policy created by our approach is a truly decentralized policy, which depends

on the private information of each agent. That is, the resulting policy of each agent depends only on its individual obser-
vation history, i.e. δ(h) = 〈δ1(h1), . . . , δn(hn)〉. The goal of our multi-agent online planning is that each agent independently
calculates the same plan δ(h) for the team and then executes its share of the plan based on its own local history. For
example, agent i will execute the action ai = δi(hi). The advantage of a decentralized policy is that each agent can execute
its part of the plan independently based on the local information it acquired so far.

Finding decentralized policies online is analogous to the one-step policy tree construction used in offline DEC-POMDP
planning algorithms. As shown in Fig. 2, the histories (h1,h2, . . . ,h8) are paths of the tree from the root down to the
current branches. The target of both online and offline planning is to associate the histories with the “right” sub-policies
that satisfy the optimality criterion. In offline planning histories are often represented as trees and the goal is to construct
the best complete policy. In contrast, online algorithms store histories in a sequence form and evaluate the policy only
for the current step. Obviously, the number of histories represented in the sequence form is much smaller, which is a key
advantages of online planning.

The straightforward way of finding the best joint policy is to enumerate all possible mappings from histories to sub-
policies and choose the best one. However, the size of the joint space is exponential over the number of the possible
histories. The number of histories itself grows exponentially with the problem horizon. In fact, this problem is equivalent to
the decentralized decision problem studied by [58], which has been proved to be NP-hard [58]. In our algorithm, we find an
approximate solution using stochastic policies, by solving the problem as a linear program. The value of a joint stochastic
policy, π , is as follows:

V (π) =
∑
h∈H

p(h)
∑

�q

∏
i∈I

πi(qi|hi)Q
(�q,b(h)

)
(6)

where p(h) is the probability distribution of history h, b(h) is the belief state induced by h, and Q (�q,b(h)) is the value of
policy �q at b(h). Note that �q is a policy from the current time to the end of the problem, so Q (�q,b(h)) is the value that
agents will achieve in future steps when starting with a state distribution b(h). Unfortunately, the optimal value of Q is not
available online. In fact, this is a subproblem of the original DEC-POMDP with a new horizon T − t where t is the current
time step. So trying to find the optimal value is equivalent to solving the entire problem offline by simply setting t = 0. But
the optimal value can be estimated by certain heuristics. Usually, the heuristic close to the optimal value may take more
time to compute but yield better performance and vice versa.

We use one-step lookahead to estimate the value of future steps. It means that we consider a policy with only one action
node. In this case, any approach which provides a set of value functions V (s) can be used to define the heuristic. Ideally, the
heuristic should represent not only the immediate value of a joint action but also its expected future value. As mentioned,
finding the optimal value is intractable because it requires us to do as much work as solving the entire DEC-POMDP. One
approach we used is the solution of the underlying MDP. For the one-step lookahead case, qi, �q can be simplified to ai, �a.
The QMDP heuristic [28] can then be written as follows:

Q (�a,b) =
∑

b(s)

[
R(s, �a) +

∑
′

P
(
s′|s, �a)

V MDP
(
s′)] (7)
s∈S s ∈S



496 F. Wu et al. / Artificial Intelligence 175 (2011) 487–511
Table 1
Improving the policy using linear programming.

Variables: ε,πi(qi |hi)

Objective: maximize ε

Improvement constraint:

V (π) + ε � ∑
h∈H p(h)

∑
�q πi(qi |hi)

∏
k �=i πk(qk|hk)Q (�q,b(h))

Probability constraints:

∀hi ∈ Hi ,
∑

qi
πi(qi |hi) = 1

∀hi ∈ Hi ,qi ,πi(qi |hi) � 0

where V MDP is the value function of the underlying MDP. The QMDP heuristic is an upper bound of the optimal value since
it is based on the assumption that agents fully observe the underlying system state at each step. A tighter bound would be
the QPOMDP heuristic [44]:

Q (�a,b) =
∑
s∈S

b(s)

[
R(s, �a) +

∑
s′∈S

P
(
s′|s, �a) ∑

�o∈ �Ω
O

(�o|s′, �a)
V POMDP

(
b�o

�a
)]

(8)

where b�o
�a is the successor belief state of b with �a, �o and V POMDP is the value function of the underlying POMDP. Intuitively,

this means the agents will share their observations at each future step. When a concrete problem is considered, domain-
specific knowledge can be used to better estimate the heuristic value. In our implementation, we use the QMDP heuristic
because the underlying MDPs of the tested domains can be solved quickly and optimally. The one-step lookahead could be
extended into a multi-step lookahead, but this is much more complex in our settings and beyond the scope of this article.

To start the search procedure, each local stochastic policy πi is initialized to be deterministic, by selecting a random
action with a uniform distribution. Then, each agent is selected in turn and its policy is improved while keeping the other
agents’ policies fixed. This is done for agent i by finding the best parameters πi(qi |hi) satisfying the following inequality:

V (π) �
∑
h∈H

p(h)

[∑
�q

πi(qi|hi)π−i(q−i|h−i)Q
(�q,b(h)

)]
(9)

where π−i(q−i |h−i) = ∏
k �=i πk(qk|hk). The linear program shown in Table 1 is used to find the new parameters of πi . The

improvement procedure terminates and returns π when ε becomes sufficiently small for all agents. Although the algorithm
will terminate after a finite number of iterations, convergence to optimality is not guaranteed. It is possible to get stuck in a
suboptimal Nash equilibrium in which the policy of each agent is optimal with respect to the others. In fact, the suboptimal
solution may achieve a value which is arbitrarily far from the globally optimal one. Hence, algorithms which start with an
arbitrary policy and make iterative improvements by alternating among the agents cannot produce polices which are within
a guaranteed bound of the optimal value.

One simple technique is to use random restarts to move out of local maxima. The observation is that different starting
points may converge to different locally optimal values. Hopefully, with several random restarts, one of the values may be
globally optimal or close to it. This process is shown in Algorithm 3. The number of restarts is determined by the online
runtime constraint. If the time per planning step is long, more restarts can be used and there is a better chance to get close
to the globally optimal solution. This simple technique works very well in the test domains we experimented with.

Note that each agent shares the same random seed so that all agents have the same randomized behavior. It is easy to
construct situations in which two policies qi and q′

i have the same value. In order to guarantee coordination, each agent
will choose the same policy according to a predetermined tie-breaking rule based on a canonical ordering of the policies
(e.g. qi ≺ q′

i ).

3.2. Bounding joint histories using policy-based merging

Note that the underlying system state as well as the observations of other agents are not available during the execution
time of DEC-POMDPs. Each agent must reason about all the possible histories that could be observed by the other agents and
how that may affect its own action selection. However, the number of possible joint histories increases exponentially with
the horizon, which is (|Ωi |T )|I| assuming that each agent coordinates at each step and knows the joint policy. For a small
problem with 2 agents and 2 observations, the number of possible joint histories with 100 steps is 2100×2≈1.6 × 1060,
which is infeasible for any planning algorithms. Even storing them in the memory is impossible. This presents a major
challenge for developing online algorithms for DEC-POMDPs.

Optimal history merging. A more detailed analysis of the planning process shows that most of the joint histories kept in
memory are useless. One reason is that the goal of reasoning about others’ histories is to find out what others do and see.
Clearly, each time only one sequence corresponds to this for each agent. Because they do not share private information
with each other, what agents can do is to maintain a distribution over the histories based on the information they have. As
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Algorithm 3: Search Stochastic Policies with Random Restarts
Input: H, B
for several restarts do

// select the start point randomly.
π ← Initialize the parameters to be deterministic with random actions
repeat

ε ← 0
foreach i ∈ I do

// optimize the policy alternatively.
πi, ε

′ ← Solve the linear program in Table 1 with H, B,π−i

ε ← ε + ε′

until ε is sufficiently small
if π is the current best policy then

π∗ ← π

return π∗

long as the distribution is sufficiently accurate, eliminating histories early on may have no effect on the decision. Another
reason is that the history segments of the early stage may be useless. For example, in the multi-agent tiger problem [32],
two agents are facing two doors (left and right): behind one lies a tiger and behind the other lies untold riches. The agents
can independently open either door or listen for the position of the tiger. The reward function is designed to encourage
coordination in that opening a door together will sustain less injury if the tiger is present or receive a greater amount of
wealth if the riches are present. The listen action incurs a small cost. The position of the tiger is reset randomly after a
door is opened. The resulting policy with horizon 6 may be that an agent listens twice, opens a door if it receives the same
observation of the tiger’s position, listens twice again and then again opens a door if it received the same two observations
of the tiger’s position. For all histories in which an agent opens a door on the third step, the best action for it to take by the
time of the last step will not be affected by any observations received in steps 1 to 3. Those observations provide no useful
information since the tiger’s position is reset if a door is opened. From the perspective of the team, the only important
thing for an agent is the probability that others opened a door in step 3. This quantity can be found by grouping similar
histories together.

Definition 6. Two histories hi,h′
i for agent i are probabilistically equivalent (PE) when the following holds: ∀h−i, p(h) = p(h′)

and ∀h−i, s,b(s|h) = b(s|h′) where h = 〈hi,h−i〉,h′ = 〈h′
i,h−i〉 and h−i is a joint history without agent i’s.

The PE condition means that two histories of an agent have the same distribution and also the same resulting belief
state, but they may differ in action-observation sequences. The following property has been established for histories that
are probabilistically equivalent.

Lemma 1. (See [38].) When two histories are PE, then they are best-response equivalent and can be clustered together as one history
without any loss of value.

Although the PE condition has very nice theoretical properties, it is not very applicable in practice because it requires to
know h−i , every possible history combination of other agents. As mentioned earlier, the range of values of h−i will be very
large and it is intractable to test every possibility. Considering every possible h−i is important because every single value
may affect the policy of agent i. Hence it is worth analyzing how these values affect agent i’s policy. First, agent i could
form a belief about the current state by reasoning about the history of the other agents, h−i . Together with its own history
hi , agent i can calculate a state distribution b(〈hi,h−i〉) based on the joint history. Second, agent i needs to know what
policies others take because it should choose a policy which complements the others. In this context, the goal of reasoning
about the histories of other agents is to compute a policy. If the optimal policy q∗

i of agent i with hi is given, agent i can
follow the policy without considering its own history as well as the others’. For example, in the multi-agent tiger problem,
if an agent knows that the optimal policy from now on is to open a door whenever it hears the tiger’s roar behind that
door twice, remembering what happened before is not necessary.

Definition 7 (policy equivalent). Two histories hi,h′
i of agent i are policy equivalent (POE) when hi,h′

i , have at least one
identical optimal policy.

Here, a policy means a complete conditional plan from the current step to the last step. Usually, a policy is represented
as a tree with nodes corresponding to actions and branches corresponding to observations. The optimal policy is a fixed
point in policy space, which produces the best team performance given that other agents follow their optimal policies.
Therefore, the optimal policy of an agent is part of the optimal joint policy of the team. In DEC-POMDPs, there exists at
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least one optimal joint policy for the team. The optimal joint policy of small problems can be computed by optimal offline
algorithms [5,27,55,56].

Theorem 2. When two histories hi,h′
i of agent i are POE, then they can be merged without loss of value in policy generation by keeping

either of them.

Proof. At step 0, if the optimal policies for steps 0 to T are given, agents can select the optimal joint policy for b0. At step t ,
assume agent i merges two histories ht

i and h′t
i because they share the same optimal policy qt

i . At any future step t + k, for

any k-step history hk
i , history ht

i ◦hk
i and h′t

i ◦hk
i must still share the same optimal policy qt+k

i . If not, the optimal policies for
ht

i and h′t
i are different because they have different sub-trees, contradicting the assumption that ht

i and h′t
i have the same

optimal policy. Due to the assumption of optimality, qt+k
i must be a sub-policy tree of qt

i . At step t + k, for any given k,
agent i can still find the optimal policy after merging ht

i and h′t
i . The theorem thus holds for all steps by induction. �

Theorem 3. When two histories of agent i are PE, they are also POE, meaning that at least one of their optimal policies is the same.

Proof. The proof is based on the theorems in [38]. Suppose that histories ht
i ,h′t

i are PE at step t . At any step t + k, the

identical extensions ht+k
i ,h′t+k

i , created by appending the same length-k action-observation sequence to the end of ht
i ,h′t

i ,

are also PE. Since ht+k
i ,h′t+k

i are PE, they have equal optimal Q-value function. And agent i will always select the same

optimal action for ht+k
i ,h′t+k

i based on the optimal Q-value function. Hence it is very easy to build a policy which is optimal
both for ht

i ,h′t
i by considering every possible extension with optimal actions. When two histories of agent i are PE, they

have at least one equal optimal policy so they are also POE. �
However, when two histories of agent i are POE, they are not necessarily PE. For example, in the multi-agent tiger

domain, suppose that agent i opens the left door (OL) when the history is hi but it opens the right door (OR) if the history
is h′

i . After the door is opened, the tiger’s position is reset. So agent i will follow the same optimal policy. Obviously, hi ◦{O L}
is not PE with h′

i ◦ {O R}, but they are POE. Therefore, the POE condition is more general than the PE condition, P E ⊂ P O E .
In single-agent POMDP, the policy tree can be evaluated given a history, thus an agent can either compare the policy or
value. Since multiple optimal policies may exist but have the same value, the value equivalent (VE) condition may be more
general, P O E ⊂ V E . However, when multiple agents are involved, only a joint policy with a joint history can be evaluated.
It is not clear how to calculate the exact value of a local policy given the history of a single agent in DEC-POMDPs.

Approximate history merging. In DEC-POMDP offline planning, the POE condition facilitates sub-policy reuse. Reusing a policy
for several histories is the same as mapping several histories to a single policy. When handling a policy, this is referred to
as reuse. It is called merging when managing histories. In the optimal bottom-up dynamic programming algorithm, the best
policies from the current to the last step are available. The number of policies is much lower than the number of possible
histories because a small set of policies can be reused to build any complex policies in the next iteration. When considering
approximate solutions, the condition of optimal policies can be relaxed. For example, consider a robot sent out to clean
10 rooms in a building. There are three type of rooms: 5 office rooms, 3 meeting rooms and 2 restrooms. The robot only
needs to know how to clean these three types of rooms. In other words, the optimal policy for one type of room can be
reused several times in the policy of cleaning the 10 rooms. In this scenario, the policy of cleaning one type of room is not
necessarily optimal. In fact, the basic idea of MBDP is to keep a fixed number of policies and reuse them approximately
when building the policies of the next iteration. The same observation can be applied to online planning as a way to merge
histories.

Unfortunately, the optimal policy for each agent is not available during execution time. Finding the optimal policy is
as hard as solving the entire problem. But we can approximate future polices using limited lookahead. A k-step lookahead
policy is a set of policy trees of depth-k, one for each agent. The k-step lookahead policy therefore can be evaluated by
decomposing the value function into an exact evaluation of the k-steps and a heuristic estimate of the remaining part. Then,
we can define similarity by comparing the structure of depth-k trees. The k-step lookahead policy is generated by pre-
computed heuristics. The POE condition is approximated by the similarity of the k-step lookahead policies. More precisely,
two histories of agent i are POE when the k-step lookahead policies of them have similar structure. In this paper, we require
that the depth-k policy trees be identical for them to be considered similar, but that can be generalized to other measures
of similarity.

We present a way (Algorithm 4) to maintain a bounded size belief pool online and use it to coordinate the strategy of
the team. Bounding the size of histories is important especially for online planning, where the planning time of each step
is limited. Clustering methods often have no guarantee to reach a desired size of belief pool. If the size is too large, the
algorithm may exceed the planning time and miss the action cycle. Even worse, without a policy there is no way to maintain
the belief pool. In real applications, this may cause damage to the system if no special recovery process is implemented.
In our algorithm, we merge histories whenever they are POE and then randomly choose just one history per policy, so the
number of histories retained is bounded by the number of the policies generated and the definition of similarity. At each
step, heuristics are used to perform the k-step lookahead and create a fixed number of policies.
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Algorithm 4: Policy-Based History Merging

Input: Ht , Q t ,π t

foreach i ∈ I do
H̃t

i ← ∅
// Hi is a hash table indexed by qi.

Hi(qi) ← ∅,∀qi ∈ Q i

// group histories based on the policy.
foreach hi ∈ Ht

i do
// get the policy of hi according to π t

i .
qi ← Select a policy according to π t

i (qi |hi)

// add hi to the hash table with key qi.
Hi(qi) ← Hi(qi) ∪ {hi}

// generate a new set of histories.
foreach qi ∈ Q t

i do
// keep one history per policy.
if Hi(qi) is not empty then

hi ← Select a history from Hi(qi) randomly
H̃t

i ← H̃t
i ∪ {hi}

// fill up the history set.

while |H̃t
i | < |Q t

i | do
qi ← Select a policy from Q t

i randomly
if Hi(qi) is not empty then

hi ← Select a history from Hi(qi) randomly
H̃t

i ← H̃t
i ∪ {hi}

return H̃t

Fig. 3. Communication model for two agents.

3.3. Communicating when inconsistency arises

In our online planning framework, communication will be initiated before the planning phase, as shown in Fig. 3. First,
each agent will decide if communication is necessary then check if the resource is available. If communication is not needed,
agents will continue to plan without communication. If communication is needed, but the resources are unavailable, the
agents will postpone communication to the next step. Otherwise, they will sync their local information and do planning
based on the information received from teammates. The local information communicated is just each agent’s local observa-
tion sequence between the last communication step and the current step. The resources include the local communication
device of the agents and the communication channel. All communication failures require re-communication at the next step.
The decision to communicate is thus made whenever other agents initiate communication, communication is postponed in
the previous step, or inconsistency of the belief pool is detected.

To verify the inconsistency of a belief pool, it will be straightforward if agents know the current state of the system.
However, in the DEC-POMDP model, the state is unavailable online and each agent can receive only its own local observation
at the execution time. Fortunately, agents’ local observation often provides partial information of the system state. Hence
we can detect the problem by examining any inconsistency between the belief pool and the local observation of the agent
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from the environment. Intuitively, when agent i tries some action and observes oi , the probability of which is less than ε
according to the belief pool, it is likely that there is something wrong with the belief pool.

Let ht
i denote agent i’s local history at step t , and ot

i be the local observation agent i receives from the environment
at step t . Note that ht

i is the local history we maintain at step t , not the local action-observation sequence. We denote
with B(ht

i ) a set of joint beliefs with the history component ht
i in the pool.

Definition 8 (ε-inconsistency). At time step t , the maintained belief pool Bt is said to be ε-inconsistent with agent i’s local
observation ot

i if

max
∀b,∀ot

−i

{∑
s′∈S

O
(�o t |s′, �a)∑

s∈S

P
(
s′|s, �a)

b(s)

}
< ε (10)

where �a is a joint action based on �o t and the joint policy computed at the previous step, �o t = ot
i ∪ ot

−i , ot
−i ∈×k �=i Ωk and

b ∈ B(ht
i ).

This definition is used to monitor inconsistency between agent i’s local history and observation, which provides an
indication of history inconsistency in the pool. The threshold ε is determined by the structure of the observation function.
If the uncertainty regarding the observation is small, ε should be small too. Note however that this rule cannot detect every
form of inconsistency in the belief pool and is only based on the current local observations. And when inconsistency is
detected, it only means that there is a high likelihood of a problem in the belief pool.

The amount of communication is determined by both the observation structure and the heuristic. Intuitively, agents can
make the right decision as long as the belief pool contains a joint history that is close to the real joint history. However,
agents cannot obtain the observations of the other agents at execution time, so it is impossible to know the real joint
history. But they can check for inconsistency of the history pool based on their local information. If the pool is inconsistent,
the agent can refresh the belief pool by communicating with the other agents and synchronizing the observation sequence.
After synchronization, the belief pool contains only the real joint history and is consistent.

Unlike most approaches which require instantaneous communication, our approach allows agents to postpone commu-
nication when the resource is unavailable. They can sacrifice some value and make decisions without communication. The
role of communication is therefore to improve performance when it is possible. When communication fails for a long time,
state-of-the-art approaches continue to make decisions using either open-loop methods which totally ignore the local ob-
servations [44,52] or local-greedy methods which lead to miscoordination due to the different local information of each
agent. Obviously, the open-loop or local-greedy policies can become arbitrarily poor given a problem with sufficiently long
horizons. Our approach computes a joint policy conditioned on the local observation of each agent. The common joint policy
ensures that each agent will take coordinated actions while utilizing its local information. Hence agents can coordinate their
behavior even without communication.

It is worthwhile to point out that our concept of belief inconsistency is fundamentally different from the idea of belief
divergence [60]. The belief divergence approach first establishes a reference point, which is the belief of agents when they
last synchronized their knowledge. Then it compares the current belief state with that reference point. The distance between
the belief points is measured by KL-divergence. If the divergence reaches some threshold, the agents communicate with each
other to synchronize their observation sequences. This approach assumes that the other agents do not receive independently
any new observations and that their beliefs remain static after the last communication step [60]. In contrast, our approach
keeps updating the joint beliefs given the possible observations of the other agents. Belief inconsistency is detected when
the agent’s local observation does not match the projected joint belief.

To summarize, our approach has the unique ability to postpone communication and at the same time take into account
new local observations and maintain coordination. While other approaches also allow (or could be easily modified to al-
low) postponement of communication, the result is a significant degradation in performance. Specifically, in Dec-Comm,
this leads to open-loop operation discarding local observations. In approaches that rely on belief divergence, postponing
communication leads to a greater divergence of beliefs and increases miscoordination.

3.4. Implementation considerations

As mentioned earlier, we only try one-step lookahead in our implementation. So the policy for each agent is just a
one-node policy tree associated with a certain action. When storing the history, we do not need to save the whole action-
observation sequence in the belief pool. We only need to assign an index to a history and use a hash table ht = 〈�θ,bt〉 to
represent the joint history, where �θ = 〈θ1, . . . , θn〉, θi is the history index for agent i and b is the joint belief induced for the
joint history by Eq. (1). Since we keep only one history for one policy, the history index for agent i can be represented as a
tuple θi = 〈qt−1,ot〉 where qt−1 is the policy tree index of the previous step and ot is the observation of the current step.
i i i i
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Fig. 4. Example of history expansion and updating. The joint history 〈�θ0,b0〉 with two components 〈q1,∗〉 and 〈q2,∗〉 in the pool is expanded to
〈�θ1,b1〉, 〈�θ2,b2〉, 〈�θ3,b3〉, 〈�θ4,b4〉 by assigning all possible joint observations. Agent 1 gets the observation o1 from the environment and updates its lo-
cal history from 〈q1,∗〉 to 〈q1,o1〉. Agent 2 gets the observation o2 and updates its local history from 〈q2,∗〉 to 〈q2,o2〉.

Fig. 5. Example of history merging and policy execution. The histories 〈q2,o1〉 and 〈q2,o2〉 in the pool map to the same policy q5, so only one history is
randomly selected (e.g. 〈q2,o1〉) for the next step and its index is updated to 〈q5,∗〉. 〈q1,o1〉 maps to q3 and its updated index becomes 〈q3,∗〉. 〈q1,o2〉
maps to q4 and its updated index is 〈q4,∗〉. The policy for the local history of agent 1 〈q1,o2〉 is q3, so agent 1 executes q3 and updates its local history
to 〈q3,∗〉. Agent 2 executes q5 and updates its local history to 〈q5,∗〉 since 〈q2,o2〉 maps to q5.

For the one-step lookahead case, this index can be further simplified as θi = 〈at−1
i ,ot

i 〉. Therefore, the data structure we use
to represent each element of the belief pool ht ∈ Ht is

ht = 〈〈〈
qt−1

1 ,ot
1︸ ︷︷ ︸

θ1

〉
,qt−1

2 ,ot
2︸ ︷︷ ︸

θ2

〉
, . . . ,

〈
qt−1

n ,ot
n︸ ︷︷ ︸

θn

〉
︸ ︷︷ ︸

�θ

〉
,bt 〉

At every step, we update each index as well as the joint belief state. Fig. 4 shows how to expand histories and update
the index of the agent’s local history with its observation. Fig. 5 shows how to merge histories and update the index of
the agent’s local history after executing a policy. Note that the new history is created by appending first a new action and
then a new observation to the end of a previous history. The history index without observation is represented by 〈q,∗〉 in
the figures for the intermediate histories during the update process, hi ◦ ai , that are missing an observation. It is possible to
design different types of indices and keep more than one history for each policy if needed.

Each agent’s own local history used for execution is also represented by an index. At each step, we will update the
index of the agent’s own local history using 〈qt

i ,oi〉, where qt
i is the policy agent i executes and oi is the observation

received from the environment at the current step t . If the history indexed by 〈qt
i ,oi〉 is merged and represented by another

history 〈qt
i ,o′

i〉 in the pool, we will change agent i’s local history index to 〈qt
i ,o′

i〉. Hence we always map the agent’s local
history to a history in the pool. For the purpose of communication, agent i also stores an action-observation sequence
〈a0

i ,o1
i ,a1

i ,o2
i , . . . ,at−1

i ,ot
i 〉 that includes the actions executed and observation received.

To summarize, we developed new data structures to implement the belief pool as well as each agent’s local history.
Instead of storing all the observation-action sequences, we use indices to represent histories. Each index of a history 〈qi,oi〉
contains two parts: a pointer to agent i’s policy, qi and the current local observation oi . In Fig. 4, we show how to expand
the belief pool by every joint observation and how to update each agent’s local history by its current observation received
from the environment. In Fig. 5, we show how the expanded histories are merged and how each agent’s local history
is updated after executing a new policy. These two figures illustrate the key operations using the new representation of
indices in our implementation.
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4. Experimental results

We have implemented and tested MAOP-COMM using three standard benchmark problems and a more challenging prob-
lem called grid soccer. In each of these environments, we first solved the underlying (centralized) MDP and provided the
resulting value function as a heuristic to our algorithm. The reported results are averages over 20 runs of the algorithm on
each of the problems. We present the average accumulated reward (Reward), average online runtime per step (Time(s)), and
average percentage of communication steps (Comm(%)) with different horizons (Horizon). While communication is limited
and minimizing it is an important goal, we did not add an explicit cost for communication because any such cost would
have been arbitrary and not particularly relevant to these applications. The main purpose of the experiments is to test
whether high-valued plans can be computed quickly on-line, while using little communication. Specifically, our goal was
to achieve significantly better value with significantly less communication compared to the state-of-the-art. MAOP-COMM
was implemented in Java and ran on a 2.4 GHz Intel Core 2 Duo processor with 2 GB of RAM. Linear programs were solved
using lp_solve 5.5 with Java wrapper. All timing results are CPU times with a resolution of 0.01 second.

We did try to compare MAOP-COMM with the two existing online planners that use communication (i.e., BaGA-Comm
and Dec-Comm), but only Dec-Comm with particle filtering (Dec-Comm-PF) can solve the benchmark problems we used.
As mentioned earlier, the main reason for this limitation is that BaGA-Comm and the exact version of Dec-Comm do not
bound the size of histories (or beliefs). In our experiments, we observed that agents often kept silent for 10 steps or
more. Consequently, the number of possible joint histories becomes very large (e.g., 52×10 for 2 agent problem with 5
observations after 10 steps without communication). Even the BaGA-Cluster approach could not reduce such pool of histories
to a manageable size in the test domains. BaGA-Comm and the exact version of Dec-Comm ran out of memory and time
very quickly. Therefore, we compared MAOP-COMM with Dec-Comm-PF, the only existing algorithm that bounds the amount
of memory.

In fact, BaGA-Comm and Dec-Comm yield similar performance (average values and amount of communication) in most
domains which are tractable for both of them. Another fact pointed out by [44] is that Dec-Comm using an exact tree
representation of joint beliefs and Dec-Comm-PF that approximates beliefs using sufficiently large particle filters provide no
substantial difference in performance. Therefore, comparing our algorithms to Dec-Comm-PF – the leading communicative
online algorithm which is applicable to all the test problems – presents the best way to assess the benefits of our approach.

To put these results in perspective and better understand the role of communication, we also include the results for
FULL-COMM – the case of full communication (communicating observations at each step, ε = +∞), and MAOP – our own
online approach with no communication (no inconsistency monitoring, ε = 0). The monitoring threshold for MAOP-COMM
was set to ε = 0.01 and the number of particles for Dec-Comm-PF was 100. According to our experiments, using more than
100 particles resulted in no substantial difference in value but an obvious increase in runtime for Dec-Comm-PF. We did
not use a discount factor in these experiments because all the tested problems involve a finite horizon.

It is important to emphasize that the FULL-COMM strategy is expected to outperform approaches that use partial com-
munication. Nonetheless, we provide the results of FULL-COMM to establish an upper bound for our online algorithm.
Although perfectly reliable and instantaneous communication is generally unrealistic, it is interesting to show how well the
online communication approach performs when it uses the same MDP heuristic. In our implementation, FULL-COMM runs
as a POMDP with joint actions and observations. The joint action selected at each step is based on a one-step lookahead
using the MDP heuristic. It takes very little time because the main computation is the Bayesian update of only one joint
belief state. We do not consider the time for transmitting observations among agents. As discussed earlier, the FULL-COMM
strategy simply reduces a DEC-POMDP to a POMDP, which is much easier to solve. Our goal in these experiments is to
show that our proposed approach for online planning with bounded communication is effective, when compared with the
FULL-COMM upper bound.

4.1. Perfectly reliable communication channel

Our initial set of experiments involves a communication channel that is perfectly reliable; it is assumed to be always
available and without noise. We relax these assumptions in the following section.

Standard benchmark problems. The first set of experiments involves four standard benchmark problems: Broadcast Chan-
nel [11], Meeting in a Grid [11], Cooperative Box Pushing [46] and Stochastic Mars Rover [4]. These benchmarks have been
widely used to evaluate cooperative multi-agent planning algorithms modeled as DEC-POMDPs.1 Because the number of
possible histories is extremely large and bounding the size of histories is one of our key contributions, we used benchmark
problems with larger observation sets. Other well-known benchmark problems such as Multi-Agent Tiger [32], Recycling
Robots [2] and Fire Fighting [35] have only 2 observations.

The Broadcast Channel problem [11] is a simplified two agent networking problem. At each time step, each agent must
choose whether or not to send a message. If both agents send messages, there is a collision and neither gets through. This
problem has 4 states, 2 actions and 5 observations. The results in Table 2 show that in this problem all the methods achieved

1 Original domain descriptions are available for download from the DEC-POMDP repository: http://users.isr.ist.utl.pt/~mtjspaan/decpomdp/index_en.html.

http://users.isr.ist.utl.pt/~mtjspaan/decpomdp/index_en.html
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Table 2
Benchmark results (20 trials).

Horizon Algorithm Reward Time (s) Comm (%)

Broadcast channel: |S| = 4, |Ai | = 2, |Ωi | = 5

20 MAOP 18.25 < 0.01 0.0
MAOP-COMM 18.35 < 0.01 0.0
Dec-Comm-PF 18.45 < 0.01 0.0
FULL-COMM 18.90 < 0.01 100.0

100 MAOP 89.95 < 0.01 0.0
MAOP-COMM 90.35 < 0.01 0.0
Dec-Comm-PF 90.0 < 0.01 0.0
FULL-COMM 90.60 < 0.01 100.0

Meeting in a 3×3 Grid: |S| = 81, |Ai | = 5, |Ωi | = 7

20 MAOP 3.10 0.15 0.0
MAOP-COMM 3.35 0.26 11.0
Dec-Comm-PF 2.90 0.22 70.50
FULL-COMM 4.75 < 0.01 100.0

100 MAOP 15.30 0.19 0.0
MAOP-COMM 17.10 0.30 12.10
Dec-Comm-PF 14.90 0.24 78.20
FULL-COMM 24.70 < 0.01 100.0

Cooperative box pushing: |S| = 100, |Ai | = 4, |Ωi | = 5

20 MAOP 7.50 0.14 0.0
MAOP-COMM 99.30 0.16 11.50
Dec-Comm-PF 136.75 0.35 83.50
FULL-COMM 222.50 < 0.01 100.0

100 MAOP −16.0 0.13 0.0
MAOP-COMM 441.95 0.13 12.26
Dec-Comm-PF 296.50 0.36 59.87
FULL-COMM 880.50 < 0.01 100.0

Stochastic Mars Rover: |S| = 256, |Ai | = 6, |Ωi | = 8

20 MAOP 18.19 0.97 0.0
MAOP-COMM 46.19 0.05 17.0
Dec-Comm-PF 45.02 2.46 22.0
FULL-COMM 61.41 < 0.01 100.0

100 MAOP 51.15 2.20 0.0
MAOP-COMM 222.86 0.09 18.00
Dec-Comm-PF 133.04 2.39 35.00
FULL-COMM 325.04 < 0.01 100.0

similar values with runtime less than 0.01 seconds. Both MAOP-COMM and Dec-Comm-PF initiated no communication. The
performance without communication was almost the same as the case of full communication. These results have a simple
intuitive explanation. The probability that an agent’s buffer will fill up on the next step is 0.9 for one agent and 0.1 for the
other. Therefore, it is easy to coordinate in this case by simply giving one agent a higher priority.

In the Meeting in a Grid problem [11], two robots navigate on a grid with no obstacles. The goal is for the robots to
spend as much time as possible in the same location. In order to make the problem more challenging, we used larger
3×3 grid and simulated a noisy sensor with a 0.9 chance to perceiving the right observation. This problem has 81 states,
since each robot can be in any of 9 squares at any time. Each robot has 5 actions and 7 legal observations for sensing
a combination of walls around. The results in Table 2 show that MAOP – the online algorithm without communication –
performed surprisedly well in this case. The one-step lookahead provided a good heuristic for this problem because agents
can meet anywhere and the problem resets after that. The results for FULL-COMM show that agents do not benefit much
from communication. MAOP-COMM achieved a higher value than Dec-Comm-PF, but with much less communication. The
runtimes of MAOP-COMM, MAOP and Dec-Comm-PF were short and quite close to each other.

In the Cooperative Box Pushing domain [46], two agents located on a 3×4 grid are required to push boxes (two small and
one large box) into a goal area. The agents benefit from cooperation because when they cooperatively push the large box into
the goal area they get a very high reward. In order to make the problem more challenging, we have the agents transition to a
random state when the problem resets itself. We also included uncertain observations in this domain with a 0.9 probability
for the right observation and a 0.025 probability for the others. This domain has 100 states with 4 goal states and 96 non-
goal states. Each agent has 4 actions and 5 observations. The results in Table 2 show that in this domain communication
did improve performance significantly. MAOP without communication performed poorly. The one-step lookahead was no
longer a good heuristic because agents in this domain have multiple goals (large box or small box). For this domain with
longer horizons such as 100, MAOP-COMM outperformed Dec-Comm-PF, again with much less communication. MAOP and
MAOP-COMM ran a little faster than Dec-Comm-PF.
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Fig. 6. The 3×3 grid soccer domain with 1 opponent and 2 teammates.

Table 3
Grid soccer results (20 trials).

Horizon Algorithm Reward Time (s) Comm (%)

Grid soccer 2×3: |S| = 3843, |Ai | = 6, |Ωi | = 11

20 MAOP 180.50 0.25 0.0
MAOP-COMM 290.6 0.28 14.80
Dec-Comm-PF 129.50 1.36 33.5
FULL-COMM 373.90 < 0.01 100.0

100 MAOP 1157.80 0.14 0.0
MAOP-COMM 1933.90 0.16 15.40
Dec-Comm-PF 1441.60 1.28 30.80
FULL-COMM 1933.60 < 0.01 100.0

Grid soccer 3×3: |S| = 16,131, |Ai | = 6, |Ωi | = 11

20 MAOP 190.70 1.90 0.0
MAOP-COMM 296.00 2.30 27.0
Dec-Comm-PF 271.40 15.26 59.0
FULL-COMM 356.0 < 0.01 100.0

100 MAOP 803.60 1.96 0.0
MAOP-COMM 1679.50 2.50 26.90
Dec-Comm-PF 1044.40 9.48 70.70
FULL-COMM 1808.20 < 0.01 100.0

The Stochastic Mars Rover [4] is a larger problem with 256 states and 2 agents. Each agent has 5 actions and 8 ob-
servations. The original problem has deterministic observations. We made it more challenging by introducing uncertainty
into the observations. Each agent observes with 0.9 probability what is really in front of it, and with 0.025 probability any
other observation. The results in Table 2 show that communication is critical in this domain as well. Without communica-
tion, MAOP gets less value than MAOP-COMM – the communicating version. Again, for the longer horizon, MAOP-COMM
produces much higher value than Dec-Comm-PF with much less communications.

To summarize, MAOP-COMM performed very well in all the benchmark problems using much less communication than
Dec-Comm-PF. In some domains such as Broadcast Channel and Meeting in a Grid, MAOP could also achieve very high value
without any communication. Although the tested horizon was only up to 100, our approach can solve problems with much
larger horizons since we bound the size of histories at each step. The experimental results varied a little with the horizon
because in problems with longer horizons there is a greater chance for miscommunication and error accumulation. The
parameter ε presents a good way to tradeoff between the amount of communication and overall value. In domains such as
Cooperative Box Pushing, a larger ε would allow more communication and consequently improve performance.

The grid soccer domain. To demonstrate scalability, we also tested our algorithm on a more challenging problem called grid
soccer. Shown in Fig. 6, the domain includes two agents for one team and one opponent for the other team. Each agent has
4 possible orientations (up, down, left or right). The opponent – with full observation and reliable actions – always executes
a fixed policy and tries to approach the ball as fast as possible. If the opponent bumps into an agent with the ball, it will
get the ball and the game terminates with a reward of −50. If the agent with the ball enters the goal grid, the game also
terminates with a reward of 100. Each agent has 6 actions: north, south, east, west, stay and pass. Each action has a 0.9
probability of success and 0.1 probability of having no impact on the current state. When an agent executes a pass action,
the ball is transferred to the other agent on the next step, if and only if the other agent executes the stay action at the
same time. Otherwise, the ball goes out of the field and the game terminates with a reward of −20. For each step resulting
in a non-terminal state, there is a penalty of 2. After reaching a terminal state the problem is reset. Each agent gets one out
of 5 possible observations describing the situation in front of it (free, wall, teammate, opponent, goal) and 2 observations
indicating who controls the ball. Thus, the total number of observations is 11. The observation is noisy with a 0.9 chance
to perceive the correct observation and a 0.01 chance to perceive each of the other observations. We tested our algorithm
on two grid soccer problems: one is a 2×3 grid with 3843 states, and the other is a 3×3 grid with 16,131 states. These
problems are the largest tackled so far by decision-theoretic algorithms for multi-agent planning.



F. Wu et al. / Artificial Intelligence 175 (2011) 487–511 505
Fig. 7. Result of accumulated rewards with different thresholds.

The results are shown in Table 3. MAOP-COMM achieved higher value than Dec-Comm-PF, while the performance of
MAOP is competitive, indicating that MAOP-COMM with a smaller ε would use even less communication and produce good
value. The runtimes of MAOP-COMM and MAOP were almost ten times faster than Dec-Comm-PF. One reason is that the
operators in MAOP-COMM and MAOP are much cheaper than the particle filtering used in Dec-Comm-PF. Another reason is
that the number of histories kept by MAOP-COMM and MAOP is much smaller than the number of particles used by Dec-
Comm-PF. MAOP-COMM and MAOP scaled well in the 3×3 instance. The most state-sensitive operator was the Bayesian
update. For a problem with 16,131 states, the update loop takes hundreds of seconds. Fortunately, the transition functions
are sparse in many real applications including grid soccer, allowing us to optimize the Bayesian update in all the algorithms
including Dec-Comm-PF. Incidentally, in problems with larger state spaces, the runtime advantage of keeping less histories
became more significant.

4.2. Imperfect communication channel

In many real-world applications, communication could be unreliable due to noise or poor reception. For example, when
a wireless communication network is used, connectivity could be intermittent and messages may have to be retransmitted
several times. Our work allows communication to be postponed when the communication channel is not available. While
communication could be postponed in other approaches, the downside is more severe. Dec-Comm [44], for example, will
simply ignore the agents’ local observations and run open-loop policies. The belief divergence approach [60] will make
incorrect assumptions about the other agents’ beliefs and run greedy policies, which are likely to be uncoordinated. In
contrast, when communication is postponed, our approach still computes a conditional plan that takes into consideration
all the possible observations. As discussed in Section 3, this conditional plan remains coordinated for all the agents.

In this section, we present experimental results for the cooperative box-pushing domain with an imperfect commu-
nication channel. We simulated intermittent communication by drawing a random variable from a uniform distribution
each time communication is initiated. If the value is greater than some threshold, the communication channel is available;
otherwise, it is unavailable. We varied the threshold from 0.0 to 1.0 and measured the accumulated rewards and percent-
age of communication averaged over 20 runs. Communication is always available when the threshold is 0.0 and there is
no communication allowed when the threshold is 1.0. We show the results of two MAOP-COMM variants: MAOP-COMM-
POSTPONE, which postpones communication until the channel is available, and MAOP-COMM-DROP, which simply drops the
communication attempt when the channel is not available.

We show the results of accumulated rewards in Fig. 7 and the results of percentage of communication in Fig. 8 with
different thresholds. As expected, the reward and amount of communication goes down in MAOP-COMM-DROP when the
probability of unavailable communication is high. It means that these communication steps are truly critical for the co-
operative box pushing domain and simply dropping them will gradually decrease the rewards. Interestingly, the rewards
and amount of communication grow for a certain range of threshold values when we postpone communication until it is
available.

Interestingly, as the threshold starts growing (from 0 to 0.4), the agents implemented by MAOP-COMM-POSTPONE com-
municate a little bit more but also get better value. The value then declines as the threshold continue to grow. We have
tried to analyze and explain this phenomenon, which seems counterintuitive. There are several possible reasons contributing
to this. When communication is postponed, agents still need to make decisions without communication. The inconsistent
belief pool becomes more and more uncertain as time goes on. The actions computed based on these uncertain beliefs will
introduce some randomness. And because the value function is based on a heuristic that overestimates future performance,
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Fig. 8. Result of percentage of communication with different thresholds.

this randomness can have a positive effect on performance. Another possible explanation for problems with multiple goals is
that agents may change their current goals after the communication. Once an agent initiates communication, all the agents
in the team will be forced to refresh their belief pool. Since the heuristic is only an estimate of future value, changing
goals too frequently based on the heuristic may not be desirable. Therefore agents may lose value if they communicate and
change their undergoing goal too often. Consider, for example, the cooperative box pushing domain. Suppose that Agent 1
is close to the small box and decides to push it by itself based on the current belief pool. At the same time, Agent 2 is close
to the large box and initiates communication, which forces Agent 1 to refresh its belief pool. Based on the new belief pool
and the heuristic, the two agents establish a new goal and decide to push the large box together. However, the new goal
computed by the overestimating heuristic may not be achievable while the old goal of Agent 1 could be achieved within
the limited horizon. Thus, the agents could lose value by incorrectly estimating their abilities and abandoning current goals.
This is also the reason that when to communicate, not the frequency of communication is more important [20].

We also compared our algorithms with Dec-Comm when the communication channel is imperfect. As the results show,
MAOP-COMM-POSTPONE performs better than Dec-Comm with higher value and less communication. Interestingly, the
value of Dec-Comm also grows when a certain amount of uncertainty about the reliability of the communication channel
is introduced. Overall, these experiments confirm the advantage of MAOP-COMM-POSTPONE in domains with imperfect
communication, which is an important factor in real-world applications.

5. Related work

The literature on planning and communication in DEC-POMDPs or equivalent models can be generally divided into works
that compute full offline policies and those that do not. In this section, we only describe related work where explicit
communication is involved. More general surveys of DEC-POMDP solution methods have been recently published by Seuken
and Zilberstein [48], Oliehoek et al. [35] and Bernstein et al. [10].

5.1. Offline planning with communication

One group of solution methods determines the entire plan and communication strategy offline, before plan execution
starts. The stored plan is then used at runtime. The COM-MTDP model [41] and DEC-POMDP-COM model [25], which have
equivalent complexity [48], provide theoretical frameworks for reasoning about communication offline. The COM-MTDP
model offers a framework for analyzing the optimality of team performance and the computational complexity of the
agents’ decision problem. In terms of optimality analysis, it is able to encode existing teamwork theories and models, based
on joint intentions and STEAM [57], and provide a novel algorithm which outperforms these earlier coordination strategies.
The DEC-POMDP-COM model formalizes the problem for a given communication language and semantics, and examines the
value of an optimal policy of action and communication with different cost models.

Pynadath and Tambe’s work focuses on the optimality and complexity analysis of various communication models. The
optimal solution they provide is not particularly useful in practice due to the complexity result – NEXP-complete in the gen-
eral communication case. Besides, the COM-MTDP communication policies used in the joint intention instantiations require
the designer to specify a joint persistent goal and allow an agent to send a message when the goal has been achieved [41].
The DEC-POMDP-COM model applies to the more general problem where the agents are allowed to communicate more than
once and optimize the timing and frequency of communication. Both models require a priori semantics for the communi-
cated messages. The semantics define the type of messages as well as the situations in which agents will communicate.
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Assuming a message set Σ with user-defined, fixed semantics simplifies the optimization problem, but makes the model
design more difficult and domain-dependent.

Spaan et al. [50] established a new model where messages are sent as part of agents’ action vectors and received in the
next time step as part of the recipients’ observation vectors. In contrast to the COM-MTDP and DEC-POMDP-COM models,
it does not require an explicit communication language, but instead treats the semantics of communication as part of the
optimization problem. They also present an iterative method for computing a joint policy for the team in a decentralized
fashion, treating communication as an integral part of the reasoning process. Given a set of fixed policies for all agents
but agent i, the policy computation process converts the DEC-POMDP into a POMDP from i’s perspective, which factors the
expected contribution to the joint team reward of the policies of the other agents. The communication policy is based on
a heuristic method in which information entropy is defined over policies and states. However, the model is restricted to
transition independent agents where each agent’s observation only depends on an agent’s local state.

Generally, reasoning about communication offline requires the enumeration of all possible messages and their effect
on the team. Unfortunately, the number of these messages grows exponentially and is as large as the set of all possible
observation histories. The COMMUNICATIVE DP-JESP technique integrates a communication strategy into K -step components
of the JESP algorithm and finds a Nash equilibrium of policies for multiple agents [31]. The JESP (Joint Equilibrium-Based
Search for Policies) approach tries to find the policy that maximizes the joint expected reward for one agent at a time,
keeping the policies of the other agents fixed. the process is repeated until an equilibrium is reached [32]. DP-JESP is
a dynamic programming approach to reason about an agent’s policy in conjunction with its teammates. The multi-agent
belief state defined in this approach is a distribution over the current state as well as the observation history of the other
agents. Since the agent does not know exactly what observations the other agents have received at runtime, the algorithm
allows the agents to periodically synchronize their own observation histories to reduce the likelihood of undesired behavior.
In order to keep the algorithm tractable, it uses a fixed communication decision, which enforces a rule that communication
must occur at least every K steps. Thus no policy can be indexed by an observation history of length greater than K . It also
uses the sync model but does not assume a separate communication phase. That is, in each decision cycle, an agent can
either choose to communication or act.

Using information value theory, the value of communication can be defined as the net gain from communicating, which
is the difference between the expected improvement in the agents’ performance due to communication and the costs
associated with communication. When the value of communication is greater than certain threshold, agents can benefit from
the communication by sharing their local information. However, computing the exact value of communication is intractable
especially in multi-agent systems where communication is constrained and each agent has different partial information
about the overall situation. Under the myopic assumption – that communication is only possible at the present time –
it is possible to estimate efficiently the value of communication. Becker et al. [7] studied the implications of the myopic
assumptions and developed a myopic communication strategy for transition-independent DEC-MDPs. Carlin and Zilberstein
[18] extended the work to more general DEC-POMDP models and further improved the performance with non-myopic
reasoning. Both works use the sync model of communication and determine the communication strategy offline.

5.2. Online planning with communication

Online approaches provide an important alternative in which the decision when and what to communicate occurs at
execution time. The approaches most similar to ours are Bayesian Game Approximation with Communication (BaGA-Comm)
[20] and Avoids Coordination Errors by reasoning over Possible Joint Beliefs with Communication (ACE-PJB-Comm) [42], also
known as Dec-Comm [44].

In the BaGA-Comm framework, a series of smaller Bayesian games are constructed and solved using BaGA [21] to gener-
ate policies and joint-type spaces at each time-step. An alternating-maximization algorithm is used to find locally optimal
solutions for each Bayesian game. To guarantee that each agent has sufficient information to independently construct the
same game, a large type space, which corresponds to possible joint histories, is maintained by each agent. In order to exert
some control over the size of the type space, a followup method, BaGA-Clustering [22], introduced two types of clustering:
Low Probability Clustering (LPC) and Minimum Distance Clustering (MDC). LPC removes the clusters with low probability by
merging each one with its nearest remaining neighbor. MDC repeatedly finds the most similar pair of clusters and merges
them. Both LPC and MDC use the worst-case expected loss as the similarity measure. Although clustering methods may
alleviate the exponential growth of histories in some domains, they do not generally bound the number of histories kept
in memory. In the worst case, the size of histories still grows exponentially when limited clustering is possible. Besides,
clustering methods are often time-consuming. To further improve the performance, several communication strategies are
used to share information among agents. The authors present three types of communication strategies: a fixed policy, an
Expected Value Difference (EVD) policy and an approach based on Policy Difference (PD). The experimental evaluation of
these method showed that EVD and PD result in similar performance and number of communication acts, and are much
better than the fixed policy approach. This work has demonstrated that it is important to decide when – not just how
often – an agent should communicate to achieve good performance [20].

Unlike BaGA-Cluster, which merges histories based on their similarity in terms of the worst-case expected loss, we
merge histories based on the similarity of the future policy structures. Moreover, our approach bounds the size of the
histories in memory at each step while BaGA-Cluster does not. Thus, our algorithm can solve problems in which agents
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may not communicate for a long period of time, while BaGA-Comm becomes intractable very quickly when the state and
observation spaces are large. For communication, Emery-Montemerlo also uses the sync model. But rather than transmitting
local observations, agents broadcast their current type to the team. However, the type information may not be sufficiently
accurate after the lossy clustering procedure is applied.

In the Dec-Comm framework, each agent maintains a distribution of possible joint beliefs and chooses to communicate
only when integrating its own observation history into the joint belief causes a change in the joint action selected by the
QPOMDP heuristic function. This work emphasizes the challenge of avoiding coordination error by reasoning over possible
joint beliefs. However, the number of possible joint beliefs often grows rapidly beyond what is feasible to store in memory.
To address this, Roth et al. utilize a fixed-size method for modeling the distribution of possible joint beliefs using particle
filtering. The approach requires only a fixed amount of memory due to the use of sampling. Nevertheless, in many domains,
the number of particles needed to accurately model joint beliefs may be large. With the particle representation, agents
may initiate too many communications when the real joint belief is not sampled. Our approach can better address these
situations because it initiates communication when history inconsistency is detected. Basically, communication in Dec-Comm
is based on the PD policy, which initiates communication when the policies before and after communication are different.
Additionally, Roth et al. use the tell model for communication, which allows some subset of agents to broadcast their mes-
sages to others. Subsequent work has also addressed the question of what to communicate, which selects the most valuable
subset of observations from an agent’s observation history, instead of using the entire set as the broadcast message [43].

5.3. Other relevant work on communication

Several different aspects of communication within special cases of DEC-POMDPs have been studied in recent years. Roth
et al. [45] proposed an algorithm to generate decentralized policies with minimal communication for factored DEC-MDPs.
It employs techniques for solving factored MDPs to generate the centralized, free-communication plan for the team offline.
At the runtime, each agent executes a factored policy by traversing the policy tree, choosing branches according to the
values of the state variables that it encounters, until it reaches an action at a leaf. Communication is needed to facilitate the
execution of those portions of the policy without context-specific independence. It utilizes the query communication model,
where each agent asks its teammates for information when needed.

Spaan and Melo [51] introduced interaction-driven Markov games (IDMGs), assuming communication only occurs at
interaction states. It explicitly distinguishes between situations in which agents should interact and situations in which
they can act independently. In non-interaction states, each agent chooses its individual actions based on a simple heuristic
approach that completely disregards the existence of other agents. In interaction states, each agent communicates its current
individual state to the other agents. Then each agent computes a specific Nash equilibrium of the corresponding matrix-
game and chooses actions accordingly. Communication is assumed to be unlimited and noise-free.

Williamson et al. [59] introduced the dec_POMDP_Valued_Com model, which adds a special communication reward func-
tion to DEC-POMDPs. The impact of any communication is measured using KL Divergence – the difference in information in
an agent’s belief state with and without communication. They extended an online approach called Real Time Belief Space
Search (RTBSS) to generate the policy. Early work on RTBSS relied on extensive domain knowledge to encode explicitly how
the agents should coordinate, assuming that communication is some parallel activity to other actions [39]. The online ap-
proach of Williamson et al. [59] is quite similar to the Dec-Comm algorithm, except that the former algorithm only uses the
local observations to update the joint belief states. This work relies on a hand-tuned parameter to value communication as
a weighted sum of the communication reward and the original reward. To overcome this, the RS_dec_POMDP model approx-
imates this valuation by shaping the reward based on belief divergence [60]. Like the dec_POMDP_Valued_Com model, the
RS_dec_POMDP model still requires a domain-dependent communication reward function, provided by the designer, as an
add-on to the general DEC-POMDP model. Most importantly, the belief update in their work is domain-dependent. In gen-
eral DEC-POMDPs, agents must consider the joint belief space, which takes into account the behaviors of the other agents.
This joint belief space blows up exponentially because there are so many choices and outcomes of policies for the other
agents, and each agent can only obtain its own observation. Hence we use a policy-based history merging technique to
bound memory usage. But for specific domains such as RoboCup rescue, it is possible to design an ad-hoc belief monitoring
mechanism so that the algorithm only maintains a single belief state at each step of agents’ online decision-making [59].

Oliehoek et al. [34] use a QBG value function [37] to find communication policies for domains where communications
have a one-step delay. They model the problem using Bayesian Games and adapt Persues, an approximate POMDP solver,
to compute QBG value functions. More recent work extends this approach to handle stochastic delays [52]. They present a
model which allows communication to be delayed by one or more time steps and explicitly considers future probabilities
of successful communication. The Q value function is exact when the communication delays are at most one time step.
In situations with delays longer than one time step, agents take coordinated decisions based on some open-loop method.
Unlike our work, this approach does not consider when to communicate.

There are many other ways to use communication in multi-agent systems. Stone and Veloso [53] utilize the low-
bandwidth communication to do real-time task decomposition and dynamic role assignment. Xuan [61] consider com-
munication in DEC-MDPs whenever an agent notices ambiguity in what it should plan next. Shen et al. [49] formulate the
DEC-MDP with a two-layer Bayesian network and find the near-optimal communication strategy for problems with a given
structure. Goldman et al. [24] address the problem of potential misbehavior resulting from misinterpretation of messages
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exchanged, and establish a formal framework to identify a collection of properties that allow agents to interpret what oth-
ers are communicating. Some researchers have managed to learn communication policies using reinforcement learning in
settings that do not require a complete model to be known [23,54]. Most of these approaches focus on fully-observable
multi-agent domains and are based on reinforcement learning, which relies on many trials [16]. The major benefit of com-
munication is to improve coordination since each independent learner may have different models online.

6. Conclusions

We present a new online algorithm for planning under uncertainty in multi-agent settings with bounded communication.
The algorithm addresses the key challenge of keeping the team of agents coordinated by maintaining a shared pool of histo-
ries that allows agents to choose local actions and detect inconsistency when it arises. The algorithm has several important
advantages. First, it can use communication very selectively to recover from inconsistency. It can also delay communication
when the resource is not available and – if needed – avoid communication for a long period of time. A second advantage
is scalability. The algorithm can solve existing benchmark problems much faster than the best offline algorithms and it can
solve larger problems that are beyond the scope of offline DEC-POMDP planners. Finally, the algorithm performs very well
in practice, outperforming the best existing online method by producing better value with less communication.

The performance of online planning is highly dependent on the quality of the value function which guides the behavior
of agents when interacting with the environment. The optimal value function is not available at execution time because
calculating it may take as much computation time as solving the entire problem. But it can be approximated by some
heuristic functions such as the Q-value function of the underlying MDP. The effectiveness of such heuristics is, however,
domain dependent. In multi-agent settings, it is challenging to find heuristics that take into account the interdependence
among the agents. That is, the actions of one agent may affect the observations of other agents. This is an implicit form of
communication, which may be critical for coordination. How to capture this type of information by the heuristic function is
an important and interesting research direction for multi-agent online planning.

As discussed earlier, it is intractable to keep all the possible histories of the team. Therefore we introduce a technique for
bounding the usage of memory when maintaining the belief pool. Obviously, any such bounding of memory will introduce
error into the pool, thereby making the pool inconsistent with the real situation. To the best of our knowledge, we are
the first to address this type of inconsistency by explicit communication among agents. The algorithm monitors the belief
pool at each step and refreshes the pool by sharing the private information of agents when inconsistency is detected by
any of the agents. It is worth mentioning that the effectiveness of our detection method depends on the precision of the
agents’ observations. We verify the belief pool using each agent’s local observation at each step. If the observation is very
noisy, it is hard to tell whether the detected inconsistency is due to problems with the belief pool or merely uncertainties
in the local observation. In many applications, the sensor data should be accurate enough to detect inconsistencies of the
belief pool. If not, the agents may keep silent without exceeding the usage of communication resources. In this paper, we
use communication to share local information among agents. Another interesting type of communication is to negotiate the
team’s policy among the agents. This type of negotiation is nontrivial and beyond the scope of this paper.

More broadly, this paper tries to draw the attention of the AI community to online methods as a viable alternative for
multi-agent decision-theoretical planning. We show that online planning with limited communication can perform quite
well, while taking much less time. Surprisingly, work on this topic has been sparse [21,22,43,44]. Our work contributes to
the literature by presenting a complete framework of multi-agent online planning with two new methods for bounding the
usage of both memory and communication resources; it explores several promising research directions for planning and
learning in multi-agent systems.
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