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Abstract A new, simple, fast and reliablemethod has been developed for the separation/preconcentration
of trace amounts of silver ions using 2-mercaptobenzothiazole/sodium dodecyl sulfate immobilized on
alumina-coated magnetite nanoparticles (MBT/SDS-ACMNPs) and their determination by flame atomic
absorption spectrometry (FAAS). Optimal experimental conditions, including pH, sample volume, eluent
concentration and volume, and co-existing ions, have been studied and established. Under optimal
experimental conditions, the enrichment factor, detection limit, linear range and relative standard
deviation (RSD) of Ag(I) ions were 250 (for 500 mL of sample solution), 0.56 ng mL−1, 2.0–100.0 ng mL−1

and 3.1% (for 5.0 µg mL−1, n = 10), respectively. The presented procedure was successfully applied for
determination of silver content in the different samples of water.

© 2011 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

Silver is an important element that is widely used for
human life. Because of its bacteriostatic properties, silver
compounds are often used in filters and other equipment
to purify swimming pool and drinking water, and is used
in the processing of foods, drugs and beverages [1]. Silver
is usually found at extremely low concentrations in natural
waters because of its low crustal abundance and lowmobility in
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water. It is obvious that in order tomonitor silver concentration
in natural waters and to study silver toxicity effects on bio
organisms in oceanographic research and survey work, highly
sensitive and selective methods for silver determination are
required.

A variety of methods, including spectrometric and elec-
trochemical techniques, have been proposed for the deter-
mination of silver in different environmental samples [2–5].
However, aforementioned methods, except for Flame Atomic
Absorption Spectrometry (FAAS), involve a greater cost and in-
creased instrumentation complexity, limiting its widespread
application to routine analytical work. Direct determination of
trace amounts of metal ions in some samples by FAAS is diffi-
cult because of low sensitivity. Thus, preconcentration proce-
dures are often required. Different techniques, such as cloud
point extraction [6], liquid–liquid extraction [7], dispersive
liquid–liquid microextraction [8–10] and solid-phase extrac-
tion [11–20], have been used to enrich the silver (I) ion and sep-
arate it from interferences.

Nanomaterials can offer several advantages over tradi-
tional SPE sorbents, such as having very high surface ar-
eas and a short diffusion route, which results in high ex-
traction capacity and efficiency [21–23]. However, the use
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of nanomaterials has some inherent limitations, especially
when applied to the adsorption and separation of species
from large volumes of samples. Magnetic solid phase ex-
traction (MSPE) or magnetically assisted chemical separa-
tion (MACS) is a new separation/preconcentration method
for trace amounts of species, prior to their determination
by spectroscopy techniques [24–27]. Magnetite nanoparti-
cles (MNPs) can readily be isolated from sample solutions
by the application of an external magnetic field [28,29].
These NPs are superparamagnetic, which means that they can
readily be attracted by a magnet but do not retain magnetism
after the field is removed. Therefore, suspended superparam-
agnetic particles tagged with organic and/or inorganic species
can be removed from the matrix by applying a magnetic field,
but they do not agglomerate after removal of the field. Hence,
the NPs may be reused or recycled. In this paper, we will
explore the possibility of 2-mercaptobenzothiazol/sodium
dodecyl sulfate immobilized on alumina-coated magnetite
nanoparticles (MBT/SDS-ACMNPs) to act as SPE sorbents for the
separation and preconcentration of trace level silver ions from
environmental samples.

2. Experimental

2.1. Reagents and apparatus

All chemicals were of analytical grade and prepared
with double distilled water. 2-Mercaptobenzothiazole (MBT),
sodium dodecylsulfate (SDS), ferrous chloride (FeCl2.4H2O),
ferric chloride (FeCl3.6H2O), aluminum isopropoxide, ethanol,
sodium thiosulfate, ammonia, hydrochloric acid and sodium
hydroxidewere usedwithout further purification processes. All
chemicals were obtained from Merck. A stock solution of silver
at a concentration of 1000µgmL−1 was prepared by dissolving
appropriate amounts of AgNO3 in deionized water containing
1 mL concentrated nitric acid and stored in the dark. The pH’s
of the solutions were adjusted with a phosphate buffer.

A flame atomic absorption spectro-photometer (PG Instru-
ments, England) was used with a silver hollow-cathode-lamp,
an operating current of 2 mA, and a wavelength and spectral
bandwidth of 328.1 and 0.2 nm, respectively. pHmeasurements
were made with a Metrohm Model 780 pH meter with a com-
bination glass electrode. Other instruments used were: an ul-
trasonic bath (S60H Elmasonic, Germany), a mechanical stirrer
(Heidolph, RZR2020) and an orbital shaker (Ika, KS130 Basic).
An electronic analytical balance (Adam, AA220LA) was used for
weighing the solid materials. In addition, for magnetic sepa-
rations, a strong neodymium–iron–boron (Nd2Fe12B) magnet
(1.2T, 2.5 cm × 5 cm × 10 cm) was used.

The surface morphology of the powders was observed
by the scanning electron microscope (LEO 1455VP SEM).
A Fourier transform infrared spectrometer (IR Prestige-21,
Shimadzu) was used to determine the identity of the as-
prepared nanoparticles and to characterize the coated Fe3O4
nanoparticles. The magnetic properties of the particles were
determined by a vibrating sample magnetometer (VSM 7400
Model Lake–Shore).

2.2. Preparation of alumina-coated Fe3O4 NPs (ACMNPs)

To date, many approaches have been developed for the
preparation of iron oxide nanoparticles [28–30]. The alumina-
coated Fe3O4 NPs (ACMNPs) were prepared according to
Li et al., with minor modifications [31]. As a first step,
the Fe3O4 NPs (MNPs) were prepared by a chemical co-
precipitation procedure [32]. Ferrous chloride (2.0 g), ferric
chloride (5.2 g), and hydrochloric acid (12 mol L−1, 0.85 mL)
were dissolved in 25 mL of pure deionized water. The mixture
was added dropwise into 250mL of NaOH solution (1.5mol L−1)
under vigorous stirring with nitrogen gas passing continuously
through the solution during the reaction. After the reaction,
the obtainedMNPs precipitate was separated from the reaction
medium under themagnetic field, and rinsed with 200mL pure
deionized water, four times. Then, the product was oven dried
at 80 °C.

For preparation of ACMNPs, aluminum isopropoxide (1.0 g)
was dissolved in ethanol (60mL) to form a clear solution. MNPs
(0.1 g) were then dispersed in the freshly prepared solution
for 5 min with the aid of ultrasonic waves. A mixture of water
and ethanol (1:5, v/v) was added dropwise to the suspension of
MNPs with vigorous stirring. The mixture was stirred for half
an hour after addition. Subsequently, the suspension stood for
one hour before separating and washing with ethanol. After
five cycles of separation/washing/redispersion with ethanol,
the powder obtained was oven dried and calcined at 500 °C for
three hours.

2.3. Preparation of MBT/SDS-ACMNPs

A MBT/SDS solution was prepared by dissolving 140.0 mg
2-mercapto-benzothiazole and 200.0 mg SDS in 50 mL of
0.1mol L−1 aqueous ammonia diluted to 100mLwith deionized
water. Ten milliliters of MBT/SDS solution was added to
10 mL of water containing 0.1 g of ACMNPs. The pH of this
suspension was adjusted to 2 by the drop-wise addition of
HNO3(0.1mol L−1) solution. Themixed solutionwas shaken for
15 min and then separated from the reaction medium under
the magnetic field, and rinsed with 10 mL of pure water. This
product was used as sorbent for the silver ion.

2.4. General procedure

The procedure for the magnetic extraction is presented
in Figure 1 and details are as follows: 10 mL of silver (I)
ion solution (5.0 µg mL−1) was added to 0.1 g of MBT/SDS-
ACMNPs; subsequently, the solution was shaken for 15 min to
facilitate adsorption of the metal ions onto the NPs. Then, the
magnetic adsorbent was separated easily and quickly using an
adscititious magnet. Subsequently, the pH of 5 mL of sodium
thiosulfate (0.5 mol L−1) solution was adjusted to 6.0 with a
phosphate buffer and added as eluent. Finally, after mixing,
magnetite nano-adsorbents were separated magnetically from
the solution using the magnet, and were reverted to the cycle
according to Figure 1. The eluate solutionwas also pipetted into
a test tube for FAAS analysis.

2.5. Sample preparation

Water and wastewater samples were collected in acid
leached polyethylene bottles. The samples were filtered before
analysis through a 0.45-µm membrane filter (Millipore) and
stored in a polyethylene container for subsequent usage, after
they were acidified to pH 2.0 with concentrated HNO3 in order
to prevent adsorption of the metal ions on the flask walls.

3. Results and discussion

3.1. Characteristics of modified magnetite nanoparticles

Figure 2 displays the SEM images of MNPs and ACM-
NPs, which illustrate the uniform size distribution of the
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Figure 1: Procedure for magnetic solid-phase extraction.
a

b

Figure 2: SEM images of MNPs (a) and ACMNPs (b).

nanospheres. The magnetic properties were also characterized
by measuring the hysteresis and remanence curves by means
of a vibrating sample magnetometer (VSM). The magnetization
curves show that both MNPs and ACMNPs exhibit typical su-
perparamagnetic behavior due to no hysteresis (Figure 3). Val-
ues of the large saturationmagnetization of MNPs and ACMNPs
were 56.72 and 9.34 emu g−1, respectively. The large saturation
magnetization decreases for ACMNPs, compared to the MNPs,
due to Al2O3 coating on the Fe3O4 NPs. However, these ACM-
NPs are sufficient for magnetic separation with a conventional
magnet.

The modified ACMNPs were confirmed by FT–IR analysis, as
shown in Figure 4. As can be seen in Figure 4 (curve (a)), a broad
band exists around 588.29 cm−1, assignable to the Fe–O–Fe of
Figure 3: The magnetic behavior of MNPs (�) and ACMNPs (•).

Figure 4: FTIR spectra of theMNPs (a), ACMNPs (b), andMBT/SDS-ACMNPs (c).

the MNPs. The peak at about 1602.85 cm−1 can be assigned to
the stretching vibration of N2 adsorbed on the surfaces of the
nanoparticles. The flexing vibration peak of hydroxyl, resulting
from the adsorbedwater, can be observed at 3427.51 cm−1 [33].
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Figure 5: Effect of pH on adsorption of silver. Conditions: ACMNPs (0.1 g),
MBT/SDS solution (10 mL, 4 × 10−7 mol L−1/2 × 10−3 mol L−1, pH2.0) and
Ag (I) solution (10 mL, 5.0 µg mL−1).

The spectrum of ACMNPs (Figure 4, curve (b)), is comparable
with the spectrum of MNPs, after binding alumina and the
broadening of the peak at 644.22 cm−1 can be assigned to
Al–O, which overlapped with the Fe–O characteristic peak.
Comparison of the FT–IR spectra of ACMNPs and MBT/SDS-
ACMNPs (Figure 4, curve (c)) also shows that a new sharp peak
at 1382.96 cm−1 appeared,whichwas due to the C–N stretching
peak of MBT stabilized on ACMNPs. Consequently, the FT–IR
data suggest that MBT are successfully immobilized on the
ACMNPs surface.

3.2. Amounts of SDS and MBT

Negatively charged surfactants, such as SDS, can strongly
adsorb on positively charged surfaces of ACMNPs in highly
acidic solutions. A concentration of SDS, below its critical
micellar concentration (CMC, 8 × 10−3 mol L−1), was used.
Above this concentration, the excess of SDS would form
micelles in the aqueous solution, which were not adsorbed
on alumina surfaces. The influence of amounts of SDS/MBT
on the adsorption of silver ions on ACMNPs was investigated.
The results showed that with an increase in SDS concentration,
the adsorption increases, and a maximum is obtained after the
SDS concentration approaches 2 × 10−3 mol L−1 and remains
constant up to CMC and then decreases, because above this
point, micelles were formed strongly. Thus, a concentration
of 2 × 10−3 mol L−1 was selected as the optimum SDS
concentration for further studies.

In order to study the effect of MBT concentration on the
adsorption of Ag(I) on the ACMNPs, ammoniacal solutions of
SDS/MBT with constant concentrations of SDS and different
concentrations of MBT were used to study the percent of Ag(I)
ions adsorbed on ACMNPs. At MBT concentrations less than
4 × 10−5 mol L−1, the amount of MBT molecules immobilized
into SDS cores is low, so Ag(I) adsorption less than 100 was
observed. Therefore, 4 × 10−5 mol L−1 of MBT was selected as
the optimum concentration for further studies.

3.3. Effect of pH variation

The effect of pH on the adsorption of 10 mL of silver ion
(5.0 µg mL−1) by 0.1 g MBT/SDS-ACMNPs at 25 °C showed that
the adsorption of silver is quantitative (100%) in the pH range
5.0–8.0 (Figure 5). At acidic media, the nitrogen atom could be
protonated and at basicmedia, the thiol proton dissociates. This
reveals that the mechanism of the sorption of the silver ion is
pH dependent and pH could affect the stability of the complex.
Figure 6: Effect of sodium thiosulfate concentration on recovery of silver.
Conditions: ACMNPs (0.1 g), MBT/SDS solution (10 mL, 4 × 10−7 mol L−1/2 ×

10−3 mol L−1, pH 2) and Ag(I) solution (10 mL, 5µg mL−1, pH 6.5), sodium
thiosulfate (5 mL, pH 5.0).

Thus, the mean pH value (6.5) was used as the optimum pH for
further work.

3.4. Standing and magnetic separation time

We found that the standing time had an obvious effect on
the target analyte extraction. When the MNPs were isolated
immediately, without a standing process, the recovery of Ag(I)
ions was only 45%. But, when the standing time was adjusted
to 5, 10, 15, 20, 25 and 30 min, recovery was improved to
67, 72, 78, 85, 93 and 99.8% respectively. A standing time of
30 min was sufficient to achieve satisfactory adsorption and
a better recovery of silver ion. Meanwhile, in the experiment,
MBT/SDS-ACMNPs possessed super-paramagnetism properties
and large saturation magnetization, which enabled them to be
completely isolated in the least time (less than 1 min) by a
strong magnet.

3.5. Effect of the type, concentration, volume and pH of the
desorbing solution

Various desorbing reagents of sodium acetate, ammonia,
sodium thiocyanate, sodium thiosulfate and thiourea were
used to find the best desorbing solution for the adsorbed
silver ion. For 50.0 µg of silver ion, adsorbed on 0.1 g
of sorbent (MBT/SDS-ACMNPs), different concentrations of
eluent were investigated. Among the different solutions used,
a sodium thiosulfate solution provided the higher recovery.
The concentration of the sodium thiosulfate solution was
optimized. The recovery of desorbed silver ions as a function
of thiosulphate concentration is represented in Figure 6. As
shown, at concentrations larger than 0.5 mol L−1 sodium
thiosulfate, silver ions were completely desorbed from sorbent
surfaces. Therefore, a concentration of 0.5 mol L−1 sodium
thiosulfate was selected as the most suitable eluent for further
studies.

To find the optimum pH of the sodium thiosulfate solution
for desorbing silver ions from sorbent surfaces, a series of
sodium thiosulfate solutions with different pH values was used.
The results show that the recovery of silver ions at pH < 6.0 is
maximum. By this observation, it was proposed, as an idea, that
at acidic pH, i.e. at a pH range of 2.0–6.0, the hydronium ion
could competewith the silver ion for being adsorbed on sorbent
surfaces. In acidic media, 2-mercaptobenzothiazole produces
a complex form as ML2, but in basic pH values, a secondary
complex of the form M2L is produced [34]. Recoveries less
than 100%, at basic solutions, could be explained due to the
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Table 1: Analytical characteristics of proposed method at the optimum
conditions.

Regression equation A = 0.1654 C + 0.007
Correlation coefficient (r) 0.9987
Linear range 2.0–100.0 ng mL−1

LOD (n = 5) (ng mL−1) 0.56
RSD (%) (n = 5) 3.1 (for 5 µg mL−1)
Enrichment factor 250

formation of silver hydroxide. Furthermore, MBT and/or SDS
could be washed out at these pH values, which consequently
decrease the capacity of the adsorbent. Therefore, pH 5 was
selected as the optimum pH value for the eluent solution.

3.6. Effect of sample volume

The effect of a sample volume on the adsorption of silver
ions onMBT/SDS-ACMNPswas investigated using different feed
volumes of water samples, ranging between 50–1000 mL. The
maximum sample volume with a high recovery percentage
for the process was determined. The recovery of silver ions
was quantitative, up to 500 mL of sample volume. By applying
500 mL sample volume under optimum conditions and, as
stated previously, desorbing silver ions with 2 mL of sodium
thiosulfate solution, a preconcentration factor of 250 was
obtained.

3.7. Adsorption capacity study and sorbent regeneration

The adsorption capacity study used here was adapted from
the method recommended by Maquieira et al. [35]. In order to
study the adsorption capacity of a sorbent, 100 mg MBT/SDS-
ACMNPs was added to 50 mL of standard solution, with
different concentrations of Ag(I), at pH 6.5. After shaking for 2 h,
the magnetic adsorbent was separated using a magnet and the
supernatantswere decanteddirectly. Themagnetwas removed,
and a 5 mL solution containing 0.5 mol L−1 sodium thiosulfate
was added as eluent and shaken for 5min. Then, themagnetwas
used again to settle the ACMNPs and the eluate was separated
for FAAS. The sorption capacity (Q,mg g−1) was calculated as:

Q = [(Ci − Ce) V ] /M,

where Ci and Ce are concentrations of analyte ions in the
initial and equilibrium solutions after adsorption, respectively
(mg L−1); V is the volume of the solution (L); and M is the
amount of sorbent (g). The results showed that the maximum
amount of Ag ions that can be sorbed byMBT/SDS-ACMNPswas
found to be 11.6 mg g−1.

Regeneration is one of the key factors for evaluating the
performance of the adsorption material. In this work, it was
found that ACMNPs can be reused up to four times without loss
of analytical performance. Considering that 5.0 g of ACMNPs
could be prepared in one batch, and only 100 mg of ACMNPs
were used for one extraction operation, this reusable time is
acceptable.

3.8. Effect of co-existing ions

The recovery of 5.0 µg mL−1 of Ag+ ions was investigated
in binary mixtures containing silver ions and one foreign ion.
The following excess of ions did not interfere with the reac-
tion (i.e. caused a relative error of less than 5%): more than a
1000-fold amount of Na+, Ca2+ and Mg2+; a 200-fold amount
of Mn2+,Ni2+, Zn2+, Cu2+, Fe2+, Co2+, Cd2+,K+, Cr3+, Fe3+,
Bi3+ and Pd2+; a 100-fold amount of NH+

4 ,NO-3, CH3COO-,
SO2-

4 , PO3-
4 , C2O2-

4 ,Hg2+ and a 50-fold amount of I-, F-, Cl- and
Br-. The results showed thatmost of the investigated ions donot
interfere in the adsorption–desorption, and in determination of
traces of silver ions in water samples.

3.9. Analytical performance

Table 1 shows the analytical characteristics of the method
under optimal experimental conditions. The analytical features
of the method, such as limit of detection (LOD), linear range of
calibration curve and precision, were examined. The LOD of the
proposed method based on three times the standard deviation
of the blank (3Sb) was 0.56 ng mL−1 for the silver ion (n = 10).
The linear range of the calibration curve for Ag(I) was 2.0–100.0
ngmL−1, with a correlation coefficient of 0.9987. The regression
equation for the line was A = 0.1654 CAg + (7 × 10−3) (n = 5)
where CAg is the concentration of Ag(I) in ng mL−1 and A is
the absorbance. The relative standard deviation (RSD) for 10
replicate measurements of 5.0 µg mL−1 of silver ion was 3.1%

3.10. Analytical applications

In order to assess the applicability of the method to real
samples, it was applied to the separation, preconcentration and
determination of Ag(I) in differentwater samples. The reliability
was checked by spiking experiments. The results are shown in
Table 2. As the results show, the proposed method is suitable
Table 2: Recoveries results of real water samples spiked with silver ion and wastewater samples.

Sample Ag(I) (ng mL−1)a Recovery (%)
Added Founded

Waste water (copper factory, Sarchashmeh, Rafsanjan)
0 12.4 (±0.5) –
5 17.2 (±0.6) 97

10 21.1 (±0.3) 96

Tap water (Sirjan)
0 BLRb –
5 4.7 (±0.1) 99

10 10.2 (±0.2) 102

River water (Hajiabad, Bandar Abbas)
0 BLR –
5 5.3 (±0.3) 101

10 10.2 (±0.4) 99

Spring water (Koran, Sirjan)
0 BLR –
5 4.7 (±0.4) 98

10 9.8 (±0.3) 96
a Mean ±standard deviation (n = 5);.
b Below linear range.



M.A. Karimi et al. / Scientia Iranica, Transactions F: Nanotechnology 18 (2011) 790–796 795
Table 3: Comparison of the proposed method with other reported methods for separation/preconcentration of silver ion.

System Analysis
method

Sorbent Sorbent
capacity
(mg g−1)

Enrichment
factor

RSD (%) Linear range
(ng mL−1)

LOD
(ngmL−1)

Reference

SPE FAAS Alumina – 100 1.59 – – [13]
SPE FAAS Silica gel 0.384 130 3.03 – – [14]
SPE FAAS Naphthalene 0.029 10 4.4 10–100 3.9 [15]
SPE FAAS Amberlite XAD-16 12.4 200 3.1 – 110 [16]
SPE FAAS Octadecyl silica membrane disks 1.07 360 – – 6 [17]
SPE FAAS Alumina 16.18 100 0.01–0.50 – – [19]
SPE FAAS Octadecyl silica membrane disks 0.91 200 1.6 – 100 [36]
SPE FAAS Dithizone – 100 3.21 – – [37]
SPE FAAS 2-Mercaptobenzo thiazole-silica gel 0.343 300 2.04 – – [38]
MSPE FAAS Alumina-coated Magnetite nanoparticles 11.6 250 3.1 2–100 0.56 This work
for the preconcentration of silver ions at the ng mL−1 level in
real samples.

4. Conclusions

In this study, a new sorbent of MBT immobilized on SDS-
ACMNPs has been prepared by the precipitation method. The
modified nanoparticles are highly monodisperse and magnet-
ically separable, and have been successfully employed for the
magnetic solid-phase extraction of Ag(I) from environmental
water. The developedmethod is simple, rapid and sensitive, and
very suitable for rapid adsorption of Ag(I) from large volumes of
the sample solution. In this work, regeneration found that the
ACMNPs can be re-used up to four times without loss of an-
alytical performance. Table 3 shows a comparison of the pro-
posed method with other reported methods. It can be seen that
some obtained values for the proposed method, such as LOD,
linear range and enrichment factor, are as good as, or better
than, somepreviously reportedmethods. Furthermore, it avoids
the time-consuming column passing (about 1 h in the conven-
tional SPE method) and filtration operation, and no clean-up
steps were required.
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