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Abstract In this paper, we propose a new security protocol for proxy signature by a hierarchy of

proxy signers. In this protocol, the original signer delegates his/her signing capability to a prede-

fined hierarchy of proxy signers. Given the documents of a security class to be signed by the original

signer, our scheme suggests a protocol for the hierarchy of proxy signers to sign the document on

behalf of the original signer. The concept of hierarchical access control limits the number of people

who could sign the document to the people who have the required security clearances. User in a

security class requires two secret keys: one which identifies his/her security clearance, and that

can also be derived by a user of upper level security clearance and second is his/her private key

which identifies him/her as a proxy signer for the signature generation. We show that our scheme

is efficient in terms of computational complexity as compared to the existing related proxy signature

schemes based on the hierarchical access control. Our scheme also supports addition and deletion of

security classes in the hierarchy. We show through security analysis that our scheme is secure

against possible attacks. Furthermore, through the formal security analysis using the AVISPA

(Automated Validation of Internet Security Protocols and Applications) tool we show that our

scheme is also secure against passive and active attacks.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

A digital signature can help to provide the integrity and authen-

ticity of a message, such as a document, file, etc. This concept
cannot however be applied directly to a situation where the ori-
ginal signer delegates his/her signing capability to a proxy sign-

er to sign the documents on behalf of himself/herself. Mambo
et al. (1996) introduced the concept of proxy signature. In a
proxy signature scheme, the original signer delegates his/her

signing capability to a proxy signer. The proxy signer signs
the documents on behalf of original signer. A verifier can then
verify that the document is signed by a proxy signer. Further,

the verifier can also verify its validity and that the proxy signer
has the capability to do so. More precisely, in a proxy signature
ier B.V. All rights reserved.
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scheme there is an original signer who delegates his/her signing
capability to a proxy signer by issuing a proxy key. The proxy
signer then signs a message on behalf of the original signer.

From the proxy signature signed by a proxy signer using the
proxy key, any verifier can check the original signer’s digital
delegation as well as the proxy signer’s digital signature. Several

proxy signature schemes have been proposed in the literature
(Mambo et al., 1996; Shao, 2003; Tan et al., 2002). A survey
on proxy signatures can be found in Das et al. (2009).

Hierarchical access control is an interesting area of research
in the field of cryptography. In such a system, there is a prede-
fined hierarchy which gives the information of the security
clearance of a user belonging to a particular security class. This

hierarchy can be represented by a partially ordered set (poset).
A hierarchy is constructed by dividing the users into a number
n of disjoint security classes, say SC1,SC2, . . . ,SCn which are

partially ordered with a binary relation 6 defined on the set
U= {SC1,SC2, . . . ,SCn}. In such a set, SCi 6 SCj implies that
SCj has the higher security clearance than that for SCi, and the

documents accessed by SCi can also be accessed by SCj, but
the reverse is not allowed. Consider an example of user hierar-
chy shown in Fig. 1. In this figure, a hierarchy is constructed

by a set of five disjoint security classes SC1, SC2,SC3, SC4,
and SC5. SC1 has the highest security clearance level. The secu-
rity classes SC2, SC4, and SC5 at the bottom level contain the
lowest security clearances. SC1 can access the secret informa-

tion possessed by SC2, SC3, SC4 and SC5. SC3 can again ac-
cess to the secret information held by SC4 and SC5.

Akl andTaylor (1983) proposed the first-ever hierarchical ac-

cess control based key assignment scheme. Chung et al. (2008)
proposed a key management and derivation scheme based on
the elliptic curve cryptosystem. In their approach, the secret

key of each security class can be determined by a trusted central-
ized authority. Their scheme has the ability to solve the dynamic
key management efficiently and flexibly. However, it is recently

shown inDas et al. (2012) that their scheme is vulnerable to exte-
rior root finding attack in which an attacker (adversary) who is
not a user in any security class in a user hierarchy can derive the
secret key of a security class by using the root finding algorithm.

Many dynamic access control schemes have been proposed in
the literature, some of them are Lin (1997), Akl and Taylor
(1983), Shen and Chen (2002), Zhong (2002), Sandhu (1988),

Giri and Srivastava (2007, 2008),Wu andWei (2005), andOdelu
et al. (in press, 2012, 2013).

In this paper, we devise a new proxy signature scheme

based on hierarchical access control. The main motivation
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Figure 1 An example of a poset in a user hierarchy.
behind our new approach is as follows. In the absence of an
original signer, the signing capability can be delegated to a
group/set of users in a user hierarchy wherein the security

clearances of those users are predefined. Note that the user
hierarchy contains only the security classes for proxy signers,
not for any original signers. For example, in an organization

some important documents can be singed on behalf of the head
of that organization. There is a predefined hierarchy of secu-
rity clearances among the members of that organization. A

document of security clearance containing in the security class
SCi can be signed by that security class on behalf of the head
of the organization. For example, in Fig. 1, the documents
containing to the security class SC5 can be singed by either

SC1 or SC3 or SC5. The verifier needs to verify the following
two conditions: (i) whether the right person has signed the doc-
ument and (ii) whether the user has been delegated the signing

capability to sign the document.
A widely accepted list of required security requirements for

a proxy signature is given below (Das et al., 2009):

� Strong unforgeability: A designated proxy signer can only
have the ability to create a valid signature on behalf of

the original signer, whereas the original signer and other
third parties cannot create a valid proxy signature.
� Strong identifiability: Anyone can determine the identity of
the proxy signer from the corresponding proxy signature.

� Strong undeniability: This property tells that once a proxy
signer has created a valid proxy signature on behalf of the
original signer, he/she cannot deny later the signature

creation.
� Verifiability: This means that the verifier can be convinced
of the original signer’s agreement from the proxy signer.

� Distinguishability: Anyone can distinguish the proxy signa-
tures from the normal signatures.
� Secrecy: The original signer’s private key must not be

derived from any information, such as the sharing of the
proxy key, proxy signatures, etc.
� Prevention of misuse: The proxy signer cannot use the
proxy key for any other purpose than it is made for.

Giri et al. (2009) introduced the concept of proxy signature
based on hierarchical access control. Their scheme contains the

hierarchical access control scheme followed by a proxy signature
scheme. A trusted central authority is responsible for generating
and assigning keys to the users in the hierarchy. Their access con-

trol scheme is based on Newton’s interpolating polynomials.
Further, their scheme is also secure against different attacks.

Our scheme is different from the scheme proposed by Giri
et al. In our scheme, we define a set of designated proxy signers

in the user hierarchy selected by the original signer. Based on
the document pertaining to a particular security level class, the
original signer selects a user, called the proxy signer, from that

set based on their availability and work load who can sign
those documents on behalf of the original signer. In our
scheme, the secret key of the proxy signer is embedded into

the proxy signature so that any verifier can verify that the right
person only has signed the document. We show through anal-
ysis and simulation using the AVISPA tool that our scheme is

secure against possible attacks. Furthermore, our scheme is
also efficient as compared to Giri et al.’s scheme.

The rest of this paper is organized as follows. In Section 2,
we discuss some mathematical preliminaries which are needed
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to describe and analyze our scheme. In this section, we describe
briefly the mathematical background on the one-way hash
function, the polynomial evaluation over a finite field and

the discrete logarithm problem. In Section 3, we introduce
our new proxy signature scheme which uses the concept of
hierarchical access control policy. In Section 4, we analyze

the performance and security for our proposed scheme. In Sec-
tion 5, we show through simulation that our scheme is secure
against passive and active attacks. For this purpose, we use the

AVISPA tool for formal security analysis in this paper. In Sec-
tion 6, we compare the performance of our scheme with Giri
et al.’s scheme. Finally, we conclude the paper in Section 7.

2. Preliminaries

In this section, we describe briefly the mathematical back-

ground on the one-way hash function, the polynomial evalua-
tion over a finite field and the discrete logarithm problem,
which are useful for discussing and analyzing our proposed
scheme.

2.1. Hash functions

A one-way hash function H:{0,1}* fi {0,1}n takes an arbi-

trary-length input x 2 {0,1}*, and produces a fixed-length
(say, n-bits) output H(x) 2 {0,1}n, called the message digest
or hash value. The hash function can be applied to the finger-

print of a file, a message, or other data blocks, and it has the
following important attributes (Stallings, 2003):

(i) The hash function, H can be applied to a data block of

all sizes.
(ii) For any given input x, H(x) is relatively easy to compute

which enables easy implementation in software and

hardware.
(iii) The output length of H(x) is fixed.
(iv) From a given hash value y =H(x) and the given hash

functionH(Æ), it is computationally infeasible to derive x.
(v) For any given input x, finding any other input y(„x)

such that H(y) =H(x) is computationally infeasible.

(vi) Finding a pair of inputs (x,y), (x „ y), such that
H(x) = H(y) is again computationally infeasible.

An example of a one-way hash function is SHA-1 (Secure

Hash Standard, 1995), which has the above desired properties
(i) to (vi). However, the National Institute of Standards and
Technology (NIST) does not recommend SHA-1 for top secret

documents. Further, in 2011, Manuel showed collision attacks
on SHA-1 (Manuel, 2011). As in Das (2012b,a) one can also
use the recently proposed one-way hash function, Quark

(Aumasson et al., 2010). Quark is a family of cryptographic
hash functions which is designed for extremely resource-
constrained environments like sensor networks and radio-

frequency identification (RFID) tags. Like most one-way hash
functions, Quark can be used as a pseudo-random function
(PRF), a message authentication code (MAC), a pseudo-ran-
dom number generator (PRNG), a key derivation function,

etc. Quark is shown to be much efficient hash function than
SHA-1. However, in this paper, we use SHA-2 as the secure
one-way hash function in order to achieve top security. We

may use only 160-bits from the hash digest output of SHA-2.
2.2. Polynomial evaluation in GF(q)

Given a polynomial f(x) of degree t, where f(x) =
atx

t + at�1x
t�1 + � � �+ a1t + a0 2 GF(q)[x] whose coeffi-

cients ai’s are from the finite field, Galois field GF(q),q being

a prime. By applying Horner’s rule (Cormen et al., 2010), we
require t modular multiplications and t modular additions in
order to find the value of f(x) at a point x = x0.

In a special case, if f(x) is of the form fðxÞ ¼
Qt

i¼0
ðx� aiÞ þ b ðmod qÞ, where ai’s and b are from GF(q), then
to find the value of b, we need any one of the values ai’s. Using
that ai, we can find b by b = f(ai) (mod q), for some i.

2.3. Computational problems

In this section, we describe two computational problems: Dis-

crete Exponentiation Problem (DEP) and Discrete Logarithm
Problem (DLP).

2.3.1. Discrete exponentiation problem (DEP)

Given a multiplicative group G and an element g 2 G having
order n. Then, compute y = gx modn, for any given x. This
problem is computationally easy/feasible even if n is large. This

modular exponentiation can be done efficiently by using the re-
peated square-and-multiply algorithm with time complexity
O((log2n)

3) (Delfs and Knebl, 2007).

2.3.2. Discrete logarithm problem (DLP)

Given an element g in a finite group G whose order is n, that is,
n= #Gg (Gg is the subgroup of G generated by g) and another

element y in Gg, find the smallest non-negative integer x such
that gx = y. It is relatively easy to calculate discrete exponen-
tiation gx (mod n) given g, x and n, but it is computationally
infeasible to determine x given y, g and n, when n is large.

3. The proposed hierarchical-based proxy signature scheme

In this section, we first list the notations to be used in our

scheme. We then discuss the different phases of our scheme.

3.1. Notations

We use the notations listed in Table 1 for describing our pro-
posed proxy signature scheme.

3.2. Different phases

Our scheme contains six phases: setup phase, delegation phase,
proxy signature generation phase, proxy signature verification

phase, and phases for addition of new security classes in the hier-
archy and removal of existing security classes from the hierarchy.

3.2.1. Setup phase

In this phase, the system parameters for the original signer are
selected. The central certification authority (CA) then chooses
the system parameters for each security class in the hierarchy.

This phase consists of the following steps:

Step 1. CA selects large primes p and q such that p � 1 is per-
fectly divisible by q, that is, q Œp � 1.



Table 1 Notations used in the proposed scheme.

Symbol Description

p A large prime number

q A larger prime such that q––p � 1

A Original signer

B Proxy signer

V Verifier

ski Full secret key of security class, SCi

si Partial secret key of security class, SCi

Fi(x) Public polynomial of security class, SCi

g Generator of original signer, A

gi Generator of security class, SCi

SiT Data S concatenates with data T

XA Secret key of original signer, A

XB Secret key of proxy signer, B

YA Public key of original signer, A

YB Public key of proxy signer, B

H(Æ) Secure one-way hash function

Mw Warrant of a message, M
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Step 2. CA then selects a generator g 2 Z�p, where
Z�p ¼ f1; 2; . . . ; p � 1g.

Step 3. Consider a user hierarchy where there are n security

classes SC1,SC2, . . . ,SCn in the hierarchy with par-
tially ordered relation 6 defined on it. The CA then
generates n generators g1; g2; . . . ; gn 2 Z�q for n secu-

rity classes in the user hierarchy, where
Z�q ¼ f1; 2; . . . ; q� 1g.

Step 4. CA generates randomly the full secret key ski 2 Z�q
and partial secret key si 2 Z�q for each security class
SCi in the user hierarchy.

Step 5. CA then calculates the public polynomial Fj(x) for

each security class SCj in the hierarchy as
F jðxÞ ¼

Q
SCi>SCj

ðx� gsi
j Þ þ skj ðmod qÞ as in Chung

et al. (2008).
Step 6. CA sends (ski,si) to each security class SCi in the hier-

archy via a secure channel.
Step 7. CA also sends the public polynomial Fi(x), q and gi to

each security class SCi via a public channel. CA

finally makes p, q, g, gj’s, Fj(x)’s and the hash function
H(Æ) as public.

An example. Consider again the user hierarchy shown in
Fig. 1. The public polynomials for the security classes con-
structed in Step 5 are as follows:

SC1 : F1ðxÞ ¼ x� gs01ð Þ þ sk1 ðmod qÞ; where s0 is given by CA

SC2 : F2ðxÞ ¼ x� gs12ð Þ þ sk2 ðmod qÞ
SC3 : F3ðxÞ ¼ x� gs13ð Þ þ sk3 ðmod qÞ
SC4 : F4ðxÞ ¼ x� gs14ð Þðx� gs34 Þ þ sk4 ðmod qÞ
SC5 : F5ðxÞ ¼ x� gs15ð Þðx� gs35 Þ þ sk5 ðmod qÞ

3.2.2. Delegation phase

In order to delegate the signing capability to a proxy signer,
the original signer A executes the following steps:

Step 1. The original signer A selects a random or pseudoran-

dom integer XA(1 < XA < p � 1) and computes a
public key Y A ¼ gX A ðmod pÞ, where g is the genera-
tor in Z�p.
Step 2. A selects a random or pseudorandom integer k 2 Z�q
and computes r= gk (mod p).

Step 3. Suppose the documents to be signed belonging to a
security class in the hierarchy is known to the original

signer A. However, as pointed out earlier in this paper
that the original signer A is not any user of any secu-
rity classes in the user hierarchy and the user hierar-
chy consists of only the security classes of proxy

signers. A then selects a set P of designated proxy
signers who are the users in security classes of the
hierarchy. Since the document class is known to the

original signer A, so the set P is also known to the ori-
ginal signer A. A can choose a user in a security class
from P for which the user is available during that time

period and also that user is not overloaded with other
works. Let the proxy signer be a user in a security
class SCi 2 P and we call that user as the proxy
signer, B in our scheme. For example, in Fig. 1, if

the documents of SC5 need to be signed, then A can
select any one of the users in SC1, SC3 and SC5 as
a proxy signer.

Step 4. A then calculates s= XAr+ k Mw (mod q), where
Mw is a warrant message which includes the identities
of the original signer and the proxy signer, and also

an expiration date.
Step 5. The original signer A selects a proxy signer B from the

set P of designated proxy signers and sends the mes-

sage Ær, s,Mwæ to B via a secure channel.

3.2.3. Proxy signature generation phase

In order to generate signature on documents belonging to a
security class SCc 2 P, the proxy signer B who is a user in secu-
rity class SCi 2 P (SCc 6 SCi) proceeds with the following

steps:

Step 1. On receiving the tuple (r, s,Mw) from the original
signer A, the proxy signer B verifies whether

gs ¼ rMw Y r
A ðmod pÞ holds or not. If it holds, B

accepts the tuple (r, s,Mw) as a valid tuple. Note
that
gs ¼ gXA�rþk�Mw ðmod qÞ ðmod pÞ
¼ ðgXAÞr � ðgkÞMw ðmod pÞ ¼ rMwYr

A ðmod pÞ:
Step 2. In order to compute the secret key skc of the security
class SCc, B first computes u ¼ gsi

c ðmod qÞ using the
public generator gc of SCc and its own class SCi’s

partial secret key si. B then computes the full secret
key skc as skc ¼ F cðuÞ ðmod qÞ ¼ F c gsi

c ðmod qÞ
� �

ðmod qÞ by evaluating the public polynomial Fc(x)

of the security class SCc at the point u.
Step 3. B selects a random or pseudorandom integer

XB(1 < XB < q � 1) and computes a public key

Y B ¼ gX B ðmod pÞ, where g is the generator in Z�p.
Step 4. Let M be the message (document of SCc) to be signed

by B. B computes H(MiMwiskcisi), s0 = s +
H(MiMwiskcisi)XB (mod q) and t ¼ gs0 ðmod pÞ.

Step 5. B then computes the hash value H(MiMwit).
The proxy signature on the message M is considered
as the tuple (M,Mw,H(MiMwiskcisi), r,H(Mi
Mwit)).
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Step 6. B finally sends the message ÆM,Mw,H(Mi Mwiskci-
si), r,H(MiMwit)æ to the verifier or receiver V via a
public channel.

3.2.4. Proxy signature verification phase

In order to verify the proxy signature on the message M, the
verifier V does the following steps:

Step 1. V first computes t0 ¼ rMw � Y r
A � Y

HðMkMwkskcksiÞ
B ðmod pÞ,

using the received r, H(MiMwiskcisi), Mw, and the
public keys YA and YB.

Step 2. V then computes the hash value H(MiMwi t0) using
the computed value of t0 and the received message M.

Step 3. Finally, V verifies whether the computed hash value

H(MiMwit0) matches with the received hash value
H(M iMwit). If there is a match, V accepts B’s signa-
ture as a valid signature; otherwise, V rejects the sig-

nature of B.

We have summarized the delegation, proxy signature gener-

ation and proxy signature verification phases of our scheme in
Table 2.

3.2.5. Addition of new security classes in hierarchy

Some times we require to add/remove security classes into the
hierarchy. Therefore, dynamic access control must be pro-
vided. In this phase, we show how a new security class can

be added to the hierarchy. Suppose a new security class SCk

will be inserted into the hierarchy such that SCi P SCk P SCj.
CA renews the secret keys skj of successors SCj of the newly
added security class SCk. CA also changes the public polyno-

mial Fj(x) with F0jðxÞ of SCj. CA needs the following steps:

Step 1: CA updates the partial relationships that follow when

the security class SCk joins the hierarchy.
Step 2: CA selects the full secret key skk 2 Z�q, the partial

secret key sk 2 Z�q randomly and generator gk 2 Z�q
for SCk.
Table 2 Different phases of the proposed scheme.

Original signer (A) Proxy signer (B)

Delegation phase

Sends via a secure channel: �!hr;s;Mwi

Proxy signature generation phase

Verifies if gs ¼ rMwYr
A ðmod pÞ.

If it holds, B accepts (r, s,Mw) as va

Computes skc ¼ Fcðgsic Þ ðmod qÞ;Hð
s0 ¼ sþHðMkMwkskcksiÞXB ðmod q

t ¼ gs
0 ðmod pÞ and H(MiMwit).

Sends via a public channel:

!hM;Mw ;HðMkMwkskcksiÞ;r;HðMkMwktÞi

Proxy signature verification phase
Step 3: For all SCi that satisfies the relationship SCi P SCk

when the new class SCk is inserted in the hierarchy,
CA computes gsi

k ðmod qÞ.
Step 4: CA then computes the public polynomial Fk(x) for

SCk as F kðxÞ ¼
Q

SCi>SCk
x� gsi

kð Þ þ skk ðmod qÞ
Step 5: For all SCi such that SCi P SCk and for all SCj such

that SCi P SCk P SCj when the new class SCk is
inserted in the hierarchy, CA replaces the secret key

skj with sk0j and computes the updated public

polynomial F 0jðxÞ as F 0jðxÞ ¼
Q

SCi>SCk>SCj
x� gsi

j

� �

x� gsk
j

� �
þ sk0j ðmod qÞ.

Step 6: Finally, CA replaces Fj(x) with F 0jðxÞ, and sends sk0j to
SCj via a secure channel, and announces publicly

F 0jðxÞ. CA also sends skk and sk to SCk via a secure
channel, and announces publicly Fk(x).

Note that in order to resist the exterior root finding attack,
we have replaced skj by sk

0
j in the updated polynomial F0jðxÞ for

SCj.

An example. Consider the user hierarchy shown in Fig. 2, in
which the new security class SC6 is added to the existing hier-
archy shown in Fig. 1. Then, the public polynomials for the

security classes will be as follows:

SC1 : F1ðxÞ ¼ x� gs01ð Þ þ sk1 ðmod qÞ; where s0 is given by CA

SC2 : F2ðxÞ ¼ x� gs12ð Þ þ sk2 ðmod qÞ
SC3 : F3ðxÞ ¼ x� gs13ð Þ þ sk3 ðmod qÞ
SC4 : F4ðxÞ ¼ x� gs14ð Þ x� gs34ð Þ þ sk4 ðmod qÞ
SC5 : F05ðxÞ ¼ x� gs15ð Þ x� gs35ð Þ x� gs65ð Þ þ sk05 ðmod qÞ
SC6 : F6ðxÞ ¼ x� gs16ð Þ þ sk6 ðmod qÞ
3.2.6. Removal of existing security classes in hierarchy

This phase remains similar to that as in Chung et al. (2008).
Now, if an existing security class SCk, such that the relation-

ship SCi P SCk P SCj breaks up, wants to leave from a user
hierarchy, CA not only directly revokes information related
to SCk, but also it needs to alter the accessing relationship be-
Verifier (V)

lid tuple.

MkMwkskcksiÞ;
Þ;

Computes t0 ¼ rMwYr
AY

HðMkMwkskcksiÞ
B ðmod pÞ

and H(MiMwit0).
Verifies if H(MiMwit0) = H(MiMwit).
If above holds, V accepts B’s signature; otherwise,

V rejects B’s signature.
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Figure 2 An example of a poset in a user hierarchy: when a new

security class SC6 is added to the existing hierarchy in Fig. 1.

role originalsigner (A, B, V   : agent,
                SKab: symmetric_key,
                H : hash_func,
                F : hash_func,
           Snd, Rcv: channel(dy))
played_by A
def=
         local State  : nat,
         K, G, P, Q, XA, YA, Mw :  text
         const alice_bob_na,  bob_alice_nb, bob_verifier_nc, 
         verifier_bob_nd, subs1, subs2 : protocol_id

  init  State := 0

  transition
   1. State   = 0 /\ Rcv(start) =|>
      State’ := 1 /\ K’ := new()
                  /\ secret({K’, XA}, subs1, A)
                  /\ Snd({exp(G, K’).F(XA.exp(G, K’).K’.Mw)}_SKab
                         .P.Q) 
                  /\ witness(A, B, bob_alice_nb, K’)
end role

Table 3 Notations used for computational costs in the

proposed scheme.

Symbol Description

tmul Time taken by one modular multiplication operation

texp Time taken by one modular exponentiation operation

th Time taken to compute one hash value

tadd Time taken for one modular addition operation

tpoly Time taken for evaluating Fi(x) at a point in GF(q)
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tween the involved ex-predecessor SCi and ex-successor SCj of
SCk. CA requires the following steps for this purpose.

Step 1: CA needs to update the partial relationship that fol-
lows when SCk is removed.

Step 2: For all SCk such that the relationship SCk P SCj

holds, CA renews the secret key skj as sk0j and the gen-

erator gj as g0j of SCj. Then, for all SCi such that the
relationship SCi P SCj holds, CA renews the rela-
tionship SCi P SCj after removing SCk, computes

the public polynomial F 0jðxÞ as F 0jðxÞ ¼
Q

SCi>SCj

ðx� g0si
j Þ þ sk0j ðmod qÞ and replaces Fj(x) with F 0jðxÞ.

Step 3: CA finally sends sk0j to SCj via a secret channel and

announces g0j and F 0jðxÞ as public.
Figure 3 Role specification in HLPSL for the original signer, A

of our scheme.

role proxysigner (A,B,V   : agent,
                SKab: symmetric_key,
         H : hash_func,
                F : hash_func,
                Snd, Rcv: channel(dy))
played_by B
4. Analysis of the proposed scheme

In this section, we first show the correctness of our proposed

scheme. We then analyze the computational overhead required
for our scheme. Finally, we show that our scheme can tolerate
different security attacks.

4.1. Correctness of the proposed scheme

def=
         local State  : nat,
         K, G, P, Q, XA, YA, Gc, Si, SKc, XB, YB, M, Mw :  text
         const alice_bob_na,  bob_alice_nb, bob_verifier_nc, 
               verifier_bob_nd, subs1, subs2 : protocol_id

   init  State := 0

  transition
   1. State   = 0 /\ Rcv({exp(G, K’).F(XA.exp(G, K’).K’.Mw)}_SKab
                         .P.Q) =|>  
      State’ := 1 /\ M’ := new()
                  /\ secret({K’, XA}, subs1, A)
                  /\ secret({Si, SKc, XB}, subs2, B)
                  /\ Snd(M’.Mw.exp(G, K’).H(M’.Mw.exp(G, (F(XA.exp(G, K’)
                         .K’.Mw)).H(M’.Mw.SKc.Si).XB)).H(M’.Mw.SKc.Si).P.Q)
                  /\ witness(B, V, verifier_bob_nd, SKc)
end role

Figure 4 Role specification in HLPSL for the proxy signer, B of

our scheme.
Theorem 1. If all the entities follow the scheme described in
Section 3, the verification equation H(MiMwit0) =H(MiMwit)
holds, where t0 ¼ rMwYr

AY
HðMkMwkskcksiÞ
B ðmod pÞ.

Proof. In order to prove H(MiMwit0) = H(MiMwit), it suf-
fices to show that t0 = t. Now,

t ¼ gs
0 ðmodpÞ ¼ gsþXBHðMkMwkskcksiÞ ðmod qÞðmod pÞ

¼ gsgXBHðMkMwkskcksiÞ ðmod pÞ

¼ gXArþkMwðgXBÞHðMkMwkskcksiÞ ðmod pÞ

¼ ðgXAÞrðgkÞMwY
HðMkMwkskcksiÞ
B ðmod pÞ

¼ rMw � Yr
A � Y

HðMkMwkskcksiÞ
B ðmod pÞ ¼ t0:

Hence, the theorem is proved. h
4.2. Computational overhead

For analyzing the computational costs, we use the notations
described in Table 3.
From the delegation phase described in Section 3.2.2, it is
clear that the original signer requires the computational
complexity 2texp + 2tmul + tadd during this phase. The proxy

signature generation phase described in Section 3.2.3 requires



role verifier  (A, B, V   : agent,
          H : hash_func,
                  F : hash_func,
             Snd, Rcv: channel(dy))
played_by V
def=
         local State  : nat,
         K, G, P, Q, XA, YA, Gc, Si, SKc, XB, YB, M, Mw :  text
         const alice_bob_na,  bob_alice_nb, bob_verifier_nc, 
               verifier_bob_nd, subs1, subs2 : protocol_id

   init  State := 0

  transition
   1. State   = 0 /\ Rcv(M’.Mw.exp(G, K’).H(M’.Mw.exp(G, (F(XA.
                         exp(G, K’).K’.Mw)).H(M’.Mw.SKc.Si).XB)).
                         H(M’.Mw.SKc.Si).P.Q) =|> 
      State’ := 1 /\ secret({K’, XA}, subs1, A)
                  /\ secret({Si, SKc, XB}, subs2, B)
                  
end role

Figure 5 Role specification in HLPSL for the verifier, V of our

scheme.

% OFMC
% Version of 2006/02/13
SUMMARY
  SAFE
DETAILS
  BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL
  C:\progra~1\SPAN\testsuite\results\proxy_signature.if
GOAL
  as_specified
BACKEND
  OFMC
COMMENTS
STATISTICS
  parseTime: 0.00s

  visitedNodes: 0 nodes
  depth: 15 plies       

  searchTime: 8.28s

Figure 6 Result of the analysis using OFMC of our scheme.

SUMMARY
  SAFE

DETAILS
  BOUNDED_NUMBER_OF_SESSIONS
  TYPED_MODEL

PROTOCOL
 C:\progra~1\SPAN\testsuite\results\proxy_signature.if

GOAL
  As Specified

BACKEND
  CL−AtSe

STATISTICS

  Analysed   : 981 states
  Reachable  : 978 states
  Translation: 0.02 seconds
  Computation: 0.08 seconds

Figure 7 Result of the analysis using CL-AtSe of our scheme.

SUMMARY
  SAFE
DETAILS
  STRONGLY_TYPED_MODEL
  BOUNDED_NUMBER_OF_SESSIONS
  BOUNDED_SEARCH_DEPTH
  BOUNDED_MESSAGE_DEPTH

PROTOCOL

GOAL
  %% see the HLPSL specification..
BACKEND
  SATMC
COMMENTS
STATISTICS
  attackFound               false     boolean
  upperBoundReached         true      boolean
  graphLeveledOff           3         steps
  satSolver                 zchaff    solver
  maxStepsNumber            11        steps
  stepsNumber               3         steps
  atomsNumber               0         atoms
  clausesNumber             0         clauses
  encodingTime              0.24      seconds
  solvingTime               0         seconds
  if2sateCompilationTime    102.32    seconds
ATTACK TRACE
  %% no attacks have been found..

  proxy_signature.if

Figure 8 Result of the analysis using SATMC of our scheme.
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the computational complexity 6texp + tpoly + tadd + 2t-

mul + 2th, whereas the proxy signature verification phase de-

scribed in Section 3.2.4 requires the computational
complexity 3texp + 2tmul + th.

4.3. Security analysis

In this section, we show that our scheme satisfies all the secu-
rity requirements of a proxy signature. The security require-

ments are discussed in the following subsections.

4.3.1. Unforgeability

Let an original signer being an attacker try to forge a proxy

signature on any arbitrary message M0. Suppose the attacker
chooses M0;M0

w;H M0kM0
wkskcksi

� �0
and tries to find s0 such

that t ¼ gs
0 ðmod pÞ, where s0 = s + H(MiMwi skcisi)XB

(mod q). The attacker knows the values M, Mw, p, q, s, YA

and YB. It is noted that the original signer, who is an attacker
in this case, is not any user of the hierarchy. Therefore, to
retrieve skc of the document class SCc of the hierarchy, the
attacker needs to know the partial secret keys si of designated

proxy signers’ security classes. But then computing the secret
key skc of the document class SCc of the hierarchy from the
hash value H(MiMwiskcisi) knowing M and Mw is computa-

tionally infeasible due to one-way property of the hash func-
tion H(Æ). Moreover, in order to compute s0 the attacker
needs to know the private key XB of the proxy signer B, which

is again a computationally infeasible problem because XB is
embedded with H(MiMwit) in s0. Also to determine directly
XB from YB ¼ gXB ðmod pÞ is a computationally infeasible
problem due to the difficulty of solving DLP (discussed in



Table 5 Functionality comparison between the proposed

scheme and Giri et al.’s scheme.

Giri et al. (2009) Ours

I1
p p

I2
p p

I3
p p

I4
p p

I5
p p

I6
p p

I7 ·
p

Table 4 Performance comparison for computational costs between the proposed scheme and Giri et al.’s scheme.

Phase Giri et al. (2009) Ours

Delegation 4texp + 6tmul + 2tadd 2texp + 2tmul + tadd
Proxy signature generation 2texp + th + tmul + 2tadd 6 texp + tpoly + tadd + 2tmul + 2th
Proxy signature verification 3texp + th + 5tmul 3texp + 2tmul + th
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Section 2). Hence, the attacker does not have any ability to

recompute HðM0kM0
wktÞ and as a result, the attacker, who is

the original signer, cannot forge a proxy signature.
Consider the case where the attacker is one of the users in

the set P of designated signers chosen by the original signer
A. Now, other security classes in the set P can also derive
the secret key skc of the document class SCc of the hierarchy
if those security classes have higher security clearances than

that for SCc. However, the original signer sends the delegation
message Ær, s,Mwæ to the proxy signer via a secure channel. As a
result, the attacker does not have any ability to recreate a valid

proxy signature on behalf of the delegated proxy signer B and
he/she cannot forge a proxy signature.

4.3.2. Identifiability

Any verifier can easily determine the relationship of the delega-
tion between the original signer and a proxy signer due to the
following reason. In our scheme, in order to verify a proxy sig-

nature the verifier requires the verification condition H(MiM-

wit0) = H(Mi Mwit), where t0 ¼ rMwYr
AY

HðMkMwkskcksiÞ
B ðmod pÞ;

s0 ¼ sþHðMkMwkskcksiÞXB ðmod qÞ and t ¼ gs
0 ðmod pÞ.

Recall that the warrant message Mw contains the identities
of the original signer and a proxy signer along with an expira-
tion date. Thus, the verifier can determine whether the signa-

ture was generated by a proxy signer on behalf of the
original signer or not.

4.3.3. Undeniability

In signature generation of our scheme, the proxy signer com-
putes first s0 = s+ H(MiMwiskcisi)XB (mod q) and then
t ¼ gs

0 ðmod pÞ. Thus, s0 is computed using the private key
XB and the partial secret key si of the proxy signer and hence,

t contains the private key XB and the partial secret key si of
that proxy signer. Due to usages of XB and si in the proxy sig-
nature creation, the proxy signer has no way to deny later

about this proxy signature creation by himself/herself on be-
half of the original signer.
4.3.4. Verifiability

In the proxy signature generation phase of our scheme, after
receiving the tuple (r, s,Mw) from the original signer A, the
proxy signer B verifies the condition gs ¼ rMwYr

A ðmod pÞ
using the public key YA of A, and other information such as
g, s, r, Mw and p. Thus, the proxy signer can verify the delega-
tion power of the original signer, and as a result our proposed

scheme is verifiable.

4.3.5. Distinguishability

From our proxy signature verification phase described in Sec-

tion 3.2.4, we note that the verifier V needs to compute
t0 ¼ rMwYr

AY
HðMkMwkskcksiÞ
B ðmod pÞ and then to check the verifi-

cation condition H(MiMwit0) =H(MiMw it). Here t is gener-
ated by the proxy signer as t ¼ gs

0 ðmod pÞ;
s0 ¼ sþHðMkMwkskcksiÞXB ðmod qÞ, and r= gk (mod p)
and s = XA r + k Mw (mod q) are generated by the original
signer. Thus, the verifier can distinguish the signature of the

proxy signer from the normal signatures.

4.3.6. Secrecy

Note that during the delegation phase of our scheme, the ori-

ginal signer generates a private key XA(1 < XA < p � 1) and
computes the public key YA ¼ gXA ðmod pÞ. After that the ori-
ginal signer selects a random integer k 2 Z�q and computes the

public value r= gk (mod p). Finally, the original signer com-
putes s = XA r+ k Mw (mod q) and sends the message Ær, s,M-

wæ to the proxy signer via a secure channel. Now, deriving k

from r= gk (mod p) and XA from YA ¼ gXA ð mod pÞ is com-
putationally infeasible due to the difficulty of solving DLP.
Consequently, deriving XA from s = XAr+ k Mw (mod q) be-

comes a computationally infeasible problem. Thus, the origi-
nal signer’s private key XA cannot be derived from any
public information by an attacker, and as a result the secrecy
property is also preserved by our scheme.

5. Simulation results for formal security analysis

In this section, we have implemented our scheme under the

AVISPA model checkers for formal security analysis to verify
whether there is any attack on our scheme or not. Crypto-
graphic protocols are analyzed by the AVISPA tool and re-

quire to be specified in a language called HLPSL (High
Level Protocol Specification Language), which is a role based
language. In HLPSL, basic roles represent each participant’s

role, and the composition of roles for representing scenarios
of basic roles. AVISPA supports four model checkers, called
the back-ends. The On-the-fly Model-Checker (OFMC) is a

back-end which is responsible for performing several symbolic
techniques to explore the state space in a demand-driven way.
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The CL-AtSe (Constraint-Logic-based Attack Searcher) is the
second back-end which provides a translation from any secu-
rity protocol specification written as transition relation in an

intermediate format into a set of constraints which are effec-
tively used to check whether there are possible attacks on pro-
tocols. Third back-end called the SAT-based Model-Checker

(SATMC), and the fourth back-end called TA4SP (Tree Auto-
mata based on Automatic Approximations for the Analysis of
Security Protocols) approximate the intruder knowledge by

using the propositional formula and regular tree languages
respectively.

The backends produce the output in the following formats.
The first printed section is called the SUMMARY which indi-

cates whether the protocol is safe, unsafe, or whether the anal-
ysis is inconclusive. The second section called DETAILS,
which explains under what condition the protocol is declared

safe, or what conditions have been used for finding an attack,
or finally why the analysis was inconclusive. The other sections
called PROTOCOL, GOAL and BACKEND are the name of

the protocol, the goal of the analysis and the name of the back-
end used, respectively. After comments and statistics, the trace
of the attack (if any) is finally displayed in the usual Alice-Bob

notation. More details on AVISPA tool can be found in von
Oheimb (2005) and Automated Validation of Internet Security
Protocols and Applications (2011).

Fig. 3 shows the specification in HLPSL language for the

role of the initiator, the original signer A. A sends the message
Æ r, s,Mwæ to proxy signer B via a secure channel, who is a user
in the security class SCi in the set P.

Fig. 4 shows the specification in HLPSL language for the
role of the proxy signer B. After receiving the message
Ær, s,Mwæ from A, it sends the message ÆM,Mw,H(MiMw iskci
si), r,H(MiMwit)æ to the verifier or receiver V via a public
channel.

In Fig. 5, we have implemented the role of the verifier, V in

HLPSL. The verifier receives the message ÆM,Mw,H(MiMw

iskcisi), r,H(MiMwit)æ from B via a public channel.
We assume that the intruder has knowledge of all public

parameters. We have simulated our scheme using the Security

Protocol ANimator for AVISPA (SPAN). The results are
tested using OFMC, CL-AtSe and SATMC backends. The re-
sults of the analysis using OFMC, CL-AtSe and SATMC of

our scheme are shown in Figs. 6–8. The summary of simula-
tion results are as follows:

� OFMC reports the protocol is safe.
� CL-AtSe reports the protocol is safe.
� SATMC reports the protocol is safe.

From the detailed results of simulation, it is found that
there are no possible passive and active attacks on our scheme.
6. Performance comparison with related schemes

In this section, we compare the performance and security of
our scheme with other related schemes. To best of our knowl-

edge, Giri et al.’s proxy signature scheme is only based on the
hierarchical access control so far in the literature. For this rea-
son, we thus compare the performance of our scheme with Giri

et al.’s scheme only. For comparing the computational costs
between Giri et al.’s scheme and our scheme, we have used
the same notations described in Table 3. Performance compar-
ison in terms of computational complexity between our scheme
and Giri et al.’s scheme is shown in Table 4. Note that Giri

et al.’s scheme requires more computational time during the
delegation and proxy signature verification phases as com-
pared to those for our scheme. However, our scheme requires

more computational complexity during the proxy signature
generation phase as compared to that for Giri et al.’s scheme.
Overall, our scheme is comparable with Giri et al.’s scheme

from the computational complexity point of view.
In Table 5, we have shown the functionality comparison

between our scheme and Giri et al.’s scheme. In this table,
we have used the following notations. I1: Whether satisfies

unforgeability security requirement or not; I2: Whether satis-
fies identifiability security requirement or not; I3: Whether sat-
isfies undeniability security requirement or not; I4: Whether

satisfies verifiability security requirement or not; I5: Whether
satisfies distinguishability security requirement or not; I6:
Whether satisfies secrecy security requirement or not; I7:

Whether flexible in choosing the proxy signer or not. We note
that our scheme is secure against the possible attacks which are
demonstrated through the analytical and simulation results

discussed in Sections 4.3 and 5, respectively. In addition, our
scheme has the flexibility in choosing the proxy signers from
a designated set of proxy signers based on their availability
and work load, whereas Giri et al.’s scheme does not have that

criteria.

7. Conclusion

We have proposed a new proxy signature scheme based on hier-
archical access control. In our scheme the documents of a user
belonging to a security class in the hierarchy can be signed by a

proxy signer who is either that user or any user belonging to
some security class in a set of designated proxy signers selected
by the original signer. Our scheme satisfies all the security

requirements needed by a proxy signature. The proposed
scheme is also efficient in terms of computational complexity
as compared with the existing related proxy signature schemes.

In addition, dynamic access control such as addition of new
security classes into the hierarchy and removal of existing secu-
rity classes from the hierarchy is supported efficiently.
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