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Summary

Objective: Osteoarthritis of the knee (KOA) is a common, age-related, joint disorder associated with loss of articular cartilage, osteophyte
formation, subchodral bone change and synovitis. Recent studies have shown that reactive oxygen species (ROS) may participate in the
initiation and progression of KOA. This study examines potential changes in the activities of antioxidant enzymes (superoxide dismutase,
both isoenzymes zinc-copper superoxide dismutase and manganese superoxide dismutase) and glutathione transformation enzymes (glu-
tathione peroxidase, glutathione reductase and glutathione-S-transferase) in synovial fluid of KOA patients, and estimates their relationship
to the degree of lipid peroxidation in synovial fluid evaluated by malondialdehyde concentration, synovial fluid viscosity, type and duration of
KOA.

Design: Synovial fluid samples obtained by transdermal arthrocentesis from 41 patients with KOA (23 had primary KOA and 18 had secondary
KOA) and 22 control subjects were analyzed. Activities of antioxidant enzymes were analysed with the use of kinetic method, MDA concen-
tration was measured fluorometrically by the Ohkawa method, and synovial fluid viscosity was measured using a cone-late viscometer Brook-
field DV-IIC and a test by Ropes.

Results: Patients with KOA had significantly increased activities of all enzymes when compared to the control subjects for both KOA sub-
groups. The synovial fluid viscosity was significantly decreased and the synovial fluid test by Ropes was abnormal in KOA patients, mainly
in the secondary KOA subgroup. The activities of all antioxidant enzymes were significantly negatively correlated with synovial fluid viscosity
and duration of KOA.

Conclusions: Patients with KOA display abnormal antioxidant status of synovial fluid with increased activities of antioxidant enzymes and de-
creased synovial fluid viscosity. Furthermore, synovial fluid viscosity, and activity of GR can be used to distinguish the primary from the sec-
ondary type of KOA.
ª 2005 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Osteoarthritis, also known as degenerative joint disease, is
found more commonly in the knee (osteoarthritis of the
knee joint, KOA) than in any other weightbearing joint in
the human body1,2. The principal pathologic features of
this disease include progressive focal degradation of the ar-
ticular cartilage, which is associated with chronic pain and
loss of knee function3,4. The underlying mechanism of carti-
lage matrix degradation in KOA is poorly understood but the
reactive oxygen species (ROS) are implicated as the main
causative factors5e8. The initially formed radical is generally
superoxide radical (O2

c�); however, it may be converted to
more harmful species, hydroxyl radical (cOH) and hydrogen
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peroxide (H2O2) by interaction with intracellular free metals.
These reactive oxygen species are capable of oxidising and,
subsequently, damaging numerous components of the joint,
including collagen, proteoglycans and hyaluronan9e11.
Fortunately, several lines of antioxidant defence exist

both intra- and extracellulary to protect tissues against
damage from ROS and other prooxidants. For example,
there exists a complicated system of defence against
ROS which is provided by antioxidant enzymes: superoxide
dismutase (SOD), both isoenzymes zincecopper superox-
ide dismutase (ZnCuSOD) and manganese superoxide dis-
mutase (MnSOD), catalase (CAT) and glutathione
transformation enzymes, including glutathione peroxidase
(GPX), glutathione reductase (GR) and glutathione-S-trans-
ferase (GST)12,13.
It was our hypothesis that if ROS are increased in in-

volved joints of KOA patients, then products resulting from
oxidative modification of synovial fluid (SF) components
would increase and antioxidant status of the SF would
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decrease. This study was designed with the following objec-
tives: (1) to examine potential changes in antioxidant en-
zymes activities e SOD, both isoenzymes ZnCuSOD and
MnSOD, and glutathione transformation enzymes GPX,
GR and GST in osteoarthritic SF of the knee joints, and
(2) to estimate their relationships to degree of lipid peroxida-
tion in SF evaluated by malondialdehyde (MDA) concentra-
tion, SF viscosity, type and duration of KOA.

Materials and methods

PATIENT CHARACTERISTICS

SF samples were obtained from 64 patients with the knee
joints exudates treated in the Department of Rheumatology,
Silesian Hospital of Rheumatology and Rehabilitation in Us-
tron and in the Department of Orthopaedic Surgery, Special
Hospital No 4 in Bytom.
Forty-two of these patients had been diagnosed as having

KOA based on clinical, laboratory, and radiologic findings
(mean age, 54 years; mean disease duration, 4 years).
Twenty-four patients had the primary KOA, whereas 18 pa-
tients had the secondary KOA. All patients from the second-
ary KOA subgroup had a history of knee joint injuries.
Twenty-two patients selected from these who had atrau-
matic and asymptomatic normal knees (mean age, 40 years)
were classified as controls. In addition, this group consisted
of patients without obesity (body mass index (BMI) less than
30), who did not work in professions related to excessive
load of the knee joints (e.g., drivers of trucks), and did not
practise injurious sports (e.g., soccer, skiing), and so far
not diagnosed and not treated for osteoarthritis, post-trau-
matic, inflammatory or another knee joint pathology. The fi-
nal verification of the study groups was carried out after
preliminary analysis of SF, including a visual examination
of color, turbidity, viscosity, test by Ropes, volume and bio-
chemical parameters. SF samples collected from the control
subjects demonstrated characteristic features of physiologi-
cal SF. Patients with signs of rheumatoid arthritis, malignant
tumours, diabetes, serious liver, kidney or heart insufficiency
or other systemic diseases that might cause an increase in
oxidations were also excluded.
The study was approved by Medical Ethics Committee of

the Medical University of Silesia (NN-013-283/03).

SAMPLE PREPARATION

SF samples were obtained with needle aspiration or dur-
ing knee arthroscopy, and next divided into two equal por-
tions. The first SF sample was drawn into a test tube
without an anticoagulant, and the second SF sample was
collected into a test tube containing tripotassium ethylenedi-
amine tetra-acetate (K3EDTA) as an anticoagulant, imme-
diately placed on ice and centrifuged at 3000 g for 30 min.
Supernatant was separated and stored at �76(C until anal-
ysis but no longer than 4 weeks. Activities of antioxidant en-
zymes, MDA concentration, and SF viscosity in the study
groups were determined.

ASSAY

In the test tube without an anticoagulant, volume, clarity
and colour of SF were examined before centrifugation.

Execution test by ropes (the mucin clot test)

Concentration of hyaluronic acid (HA) inSFwasdetermined
indirectly by measurement of precipitation knocked out by
acidification with acetic acid (addition of five drops of 5% ace-
tic acid into 3 ml of SF). Data are shown as: 0 e compact re-
action, 1 e compact/floccular reaction, 2 e floccular
reaction, 3e floccular/turbidity reaction, 4e turbidity reaction.

Assay for SF viscosity

In the test tube containing K3EDTA e before centrifuga-
tion e the SF viscosity was measured using a cone-late
viscometer Brookfield DV-IIC at 37(C. Data are shown as
cP (N�s�m�2).

Determination of SOD activity

The activity of SOD was indicated by the Oyanagui14

method. Superoxide anion radical (O2
c�), produced in the re-

action of xanthine with O2 catalysed by xanthine oxidase, re-
acts with hydroxylamine producing nitric ion. Nitric ion
combines with naphthalene diamine and sulfaniline acid pro-
ducing a coloured product; concentration of this mixture is
proportional to the amount of O2

c� produced. Enzymatic activ-
ity is expressed in nitric unit (NU) in each millilitre of SF (NU/
ml). OneNUmeans 50%of inhibition by SODof nitric ion pro-
duction in this method. SOD activity was indicated in SF. In
synovial fluid SOD isoenzymes, MnSOD and ZnCuSOD,
were also indicated using potassium cyanide (KCN) as the
inhibitor of the ZnCuSOD by the Oyanagui method.

Determination of CAT activity

CAT was analysed with the use of Aebi15 kinetic method.
Before CAT was marked, the SF was diluted 100 times with
Tris/HCl buffer, pH 7.4. Kinetic designation was carried out
in a quartz tank. 2.5 ml of substrate was mixed consisting of
50 mM Tris/HCl buffer with pHZ 7.4 and perhydrol with
50 ml of SF. After 10 s, absorbance was measured at 240
nm and the kinetic changes of absorbance were marked ev-
ery 30 s for 2 min. Enzymatic activity was not present in SF.

Determination of GPX activity

GPX activity in SF was assayed by the Paglia and Valen-
tine16 kinetic method. GPX catalyses reaction between re-
duced glutathione (GSH) and H2O2. The product of this
reactione oxidized glutathione (GSSG)e is recovered back
to GST using nicotinamide adenine dinucleotide phosphate
(NADPH C HC) catalysed by GR. Decrease in absorbance
is measured at 340 nm. Activity of GPX was determined as
the quantity of micromoles of NADPHCHC used to recover
GSH in 1 min converted to 1 l of SF (IU/l).

Determination of GR activity

GR activity was also assayed by the kinetic method17.
The decrease of the concentration of NADPHCHC after re-
duction of GSSG back to GSH was measured. Activity of
GR was determined as the quantity of micromoles of
NADPHCHC used to recover GSH in 1 min converted to
1 l of SF (IU/l).

Determination of GST activity

GST was analysed by the Habig and Jakoby18 kinetic
method using 1-chloro-2,3-dinitrobenzene. GST reacts
with 1-chloro-2,3-dinitrobenzene producing thioether. In-
crease in absorbance is measured at 340 nm. Activity of
GST was determined as the quantity of micromoles of thio-
ether produced in 1 min in 1 l of SF (IU/l).
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Table I
Age, sex, duration of osteoarthritis of the knee (KOA), and degree of lipid peroxidation in synovial fluid evaluated by malondialdehyde (MDA)

concentration in the KOA group, and separately in the primary KOA subgroup and the secondary KOA subgroup

Control group KOA group P level when
compared
to control

Primary KOA
subgroup

P level when
compared
to control

Secondary
KOA

subgroup

P level
when

compared
to control

P level when
compared
primary to
secondary

KOAMeanG S.E.M. MeanG S.E.M. MeanG S.E.M. MeanG S.E.M.

Age (years) 41.0G 3.5 53.4G 2.3 !0.001 58.2G 2.5 !0.001 46.9G 3.8 0.091 0.015
Number of
men/women

19/3 29/11 0.351 16/7 0.319 13/4 0.350 0.454

Duration of
KOA (years)

e 4.04G 0.81 e 5.48G 1.12 e 1.75G 0.80 e 0.007

MDA
concentration
(mmol/l)

1.33G 0.09 1.49G 0.08 0.264 1.48G 0.10 0.233 1.50G 0.12 0.497 0.773
Determination of MDA concentration

MDA concentration was measured fluorometrically as 2-
thiobarbituric acid-reactive substance (TBARS) in SF by
the Ohkawa19 method. SF sample was mixed with 8.1% so-
dium dodecyl sulfate, 20% acetic acid and 0.8% 2-thiobar-
bituric acid. The method was modified by adding sodium
sulphate (100 mmol/l) and 3,5-diisobutylo-4-hydroxytoluen
(2.5 mmol/l). After vortexing, SF sample was incubated for
1 h in 95(C and butanolepyridine 15:1 (v/v) was added.
The mixture was shaken 10 min and then centrifuged. Buta-
nolepyridine layer was measured fluorometrically at
552 nm (515 nm excitation). TBARS value is expressed
as malonyldialdehyde equivalent. Tetraethoxypropane
was used as the standard. Data are shown as micromole
MDA/l SF (mmol/l).

STATISTICAL ANALYSIS

Statistical analysis was performed with Statistica 6.0 PL
software. Statistical methods included mean and standard
error of mean (S.E.M.). ShapiroeWilk’s test was used to ver-
ify normality and Levene’s test to verify homogeneity of var-
iances. Statistical comparisons were made by t-test, t-test
with separate variance estimates or ManneWhitney U
test. Chi-square or Fisher test was used to analyse sex.
Yates’ correction for continuity was used if needed. Spear-
man non-parametric correlation was calculated. A value of
P! 0.05 was considered to be significant.

Results

Table I depicts characteristics of the study population.
The study population did not differ in sex. The primary
KOA subgroup was the oldest and the control subjects
were the youngest. The average duration of KOA was
higher in the primary than in the secondary type of KOA
(PZ 0.007).
The SF activities of total SOD and both isoenzymes

ZnCuSOD and MnSOD were significantly higher in KOA pa-
tients (C103%, C249% and C63%, respectively,
P! 0.001) as well as for both the primary (C101%,
C275% and C57%, respectively, P! 0.001), and the sec-
ondary (C105%, C216% and C71%, respectively,
P! 0.001) type of KOA than in the control subjects
(Fig. 1). The SF activities of total SOD, ZnCuSOD and
MnSOD did not differ between the primary and the second-
ary KOA subgroup.
Also activities of GPX, GST and GR in SF were signifi-
cantly higher in KOA patients than in the control subjects
for both the primary and the secondary type of KOA
(Fig. 2). In patients with KOA, the SF activities of above en-
zymes were significantly higher (C722%, C404% and
C154%, respectively, P! 0.001), in the primary KOA sub-
group about C659%, C349% and C105%, respectively
(P! 0.001), and in the secondary KOA subgroup about
C795%, C469% and C212%, respectively (P! 0.001).
The mean synovial fluid GR activity was significantly higher
in the secondary than in the primary type of KOA
(22.6G 2.66 IU/l vs 17.6G 2.60 IU/l, P! 0.001), and the
mean SF activities of GPX and GST were higher in the sec-
ondary than in the primary type of KOA but not statistically
significant.
Also the mean concentration of synovial fluid MDA in

KOA patients was higher than that in the control subjects
but not statistically significant (1.49G 0.08 mmol/l vs
1.33G 0.09 mmol/l, PZ 0.264) (Table I).
The SF viscosity was significantly lower in KOA group

and the secondary KOA subgroup compared with the con-
trol subjects (�39% in KOA group, PZ 0.003, and �62%
in the secondary KOA subgroup, P! 0.001) (Fig. 3). The
SF viscosity was lower by about �52% in the secondary
than in the primary type of KOA (14.4G 2.65 cP vs
9.0G 1.89 cP, PZ 0.040). The SF test by Ropes was in-
correct in KOA patients, mainly the most incorrect in the
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secondary KOA subgroup (1.70G 0.20 in the primary, and
2.47G 0.30 in the secondary type of KOA vs 0.62G 0.13,
P! 0.001) (Fig. 3).
The SF activities of all antioxidant enzymes significantly

positively correlated with test by Ropes (RZ 0.37 with
SOD, 0.28 with ZnCuSOD, 0.55 with GPX, 0.59 with GR,
and 0.47 with GST) and negatively correlated with the SF
viscosity (RZ�0.46 with SOD, �0.37 with MnSOD,
�0.57 with GPX, �0.43 with GR, and �0.43 with GST)
and duration of KOA (RZ�0.36 with GPX and �0.44
with GR). No relationships between patients age and all an-
tioxidant enzymes activities, MDA concentration or SF vis-
cosity level were observed in KOA patients in the study
population. (Table II).

Discussion

KOA is a slowly progressing chronic disease, primary or
secondary, which causes disturbance in cartilage metabo-
lism, leading to cartilage destruction, and subsequently
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knee damage. ROS, including superoxide anion, hydrogen
peroxide and hydroxyl radical, mediate articular cartilage
and joint damage in patients with KOA and these patients
often exhibit much higher levels of oxidants in SF20,21.
In the current study, patients with KOA were grouped ac-

cording to their osteoarthritis types as patients with the pri-
mary KOA and the secondary KOA. All patients with KOA
had significantly increased all study antioxidant enzymes
activities and MDA concentration in SF, and decreased
SF viscosity when compared to the control subjects. How-
ever, patients with the secondary type of KOA had signifi-
cantly increased activity of GR in SF and significantly
decreased SF viscosity when compared to the primary
type of KOA.
The decrease of SF viscosity level present in the osteoar-

thritic knee joints as compared to control joints supports our
hypothesis that O2

� and the rest of ROS are elevated in in-
volved joints. For the production of O2

� in SF several theo-
ries have been proposed. Edmonds et al.22 and
Grisham23 found that movement of the osteoarthritic joint
with exudates, generates sufficient pressure to cause tran-
sient ischaemia of the superficial synovial membrane. This
raises possibility that the joint is subjected to ischaemia and
reperfusion injury that involves O2

� products by the xanthine
dehydrogenase enzyme24. Studies by Wientjes and Se-
gal25, and other researchers7,8,26,27 using in vitro models
on cell cultures revealed that under unstressed conditions
articular cartilage cells produce O2

� in SF, probably through
the activation of NADPH oxidase28,29. Dahlgren and Karls-
son30 and Borsiczky et al.31 found that phagocytosis is
a source of O2

� in involved joints containing neutrophils,
monocytes, and macrophages as activated phagocytes.
Disruption of components of joint through knee injury can
lead to an increase of O2

� production, partially due to re-
lease and oxidation of haemoglobin from erythrocytes with
activation of NADPH oxidase32e34.
Formed O2

� can be converted to H2O2 or
cOH. In vivo hy-

drogen peroxide is detoxified and metabolized by the anti-
oxidant enzymes CAT and GPX. However, in the
presence of transition metals, hydrogen peroxide can be
further degraded to powerful oxidant hydroxyl radical.
Damage caused by ROS has been suggested as the

cause of the decrease of SF viscosity. Whilst it is unknown,
which mechanisms are responsible for this change, it might
result in fragmentation of link proteins, loss of ability of
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Table II
Correlations between age, duration of KOA, test by Ropes, SF viscosity and antioxidant enzymes e total SOD, MnSOD and ZnCuSOD, GPX,
GR and GSTactivities and degree of lipid peroxidation in SF evaluated by MDA concentration in the study population (Spearman correlation e

R, P! 0.05)

MDA SOD MnSOD ZnCuSOD GPX GR GST

Age NS NS NS NS NS NS NS
Duration of KOA NS NS NS NS �0.36 �0.44 NS
Test by Ropes NS 0.37 NS 0.28 0.55 0.59 0.47
Viscosity NS �0.46 �0.37 NS �0.57 �0.43 �0.43

NS e no statistical significance.
proteoglycan monomers to associate with HA, fragmenta-
tion of HA35, chemical modification of link proteins, and oth-
er changes by excessive ROS36e38. Takahasi et al.39 and
Bates et al.40 found that exposition of hyaluronan on
ROS, especially cOH, potentially results in decreased high
molecular weight hyaluronan. Indeed, cOH may inhibit carti-
lage proteoglycan synthesis, e.g., by interfering with adeno-
sine triphosphate synthesis aggravating the effects of free-
radical-mediated cartilage degradation8,40,41.
In addition, high molecular weight hyaluronan can inhibit

phagocytosis by polymorphonuclear lymphocytes. This
function results in the inhibition of superoxide anion and hy-
pochlorous acid production by phagocytes42. When hyalur-
onan is broken down into chain of lower molecular weight
by ROS, it can no longer inhibit phagocytosis or the associ-
ated free-radical production; and even more free radicals
will be produced within the joint.
However, we also hypothesised that the lipid peroxidation

would significantly increase in association with an increase
of ROS, which was not the case in this study. Lipid peroxi-
dation, measured by MDA concentration, was found to be
higher, although not significantly, in the SF from patients
with KOA in this study. Grigolo et al.43 found that chondro-
cytes, from osteoarthritic knees, activated in vitro produced
ROS and significantly accelerated lipid peroxidation com-
pared to those activated in vivo. This would suggest that
SF with hyaluronan effectively protects from oxidative dam-
age. Grigolo et al.43. found that intraarticular use of hyalur-
onan in the treatment of KOA, significantly decreased
concentration of TBARS in SF. This would suggest that
membrane lipids are only one of the possible targets of ox-
idative damage, and SF compounds such as HA would be
more susceptible to oxidative stress.
Under normal circumstances, ROS are eliminated by

scavengers and detoxifying reactions, catalysed mainly by
antioxidant enzymes: SOD, CAT and glutathione transfor-
mation enzymes, including GPX, GR and GST. The first
line of defence against ROS is SOD, which removes O2

c�

by catalysing the dismutation reaction. CAT protects cells
and tissues by directly decomposing hydrogen peroxide.
The glutathione transformation enzymes eliminate H2O2 in
reaction catalysed by GPX. In SF, these antioxidant en-
zymes often coexist44.
The absence or dysfunction of some of these defence

systems make the cells and tissues vulnerable to oxidative
damage45.
We also hypothesised that the antioxidant status would

decrease in association with an increase in ROS. Antioxi-
dant status, measured by activities of antioxidant enzymes,
was found to be significantly higher in SF from patients with
KOA compared to control subjects. In addition to being in
contrast to our hypothesis, it is also in contrast to many re-
ports of human osteoarthritis, which have found decreased
antioxidant enzyme activities in SF from involved joints.
Ivanova and Ivanova46 found that there was no SOD, no
or low CAT in SF from osteoarthritic joints. Schumacher47

found similar results as well as decreased SOD, CAT and
GPX activities in SF from KOA patients, as compared to
normal SF. The results reported in these papers are not sur-
prising because these antioxidant enzymes are rarely pres-
ent in extracellular fluids, which contain little or no CAT
activity, and only low activities of SOD and GPX. There is
also very little GR and GST45. In contrast, Terčič and
Božič48 found that high levels of ROS in SF can induce
high activity of SOD locally to protect articular cartilage
from the harmful effects of the ROS24,33,49,50.
It is possible that difference between our study and stud-

ies by other investigators, regarding antioxidant status, is
due to differences in the stage of the disease. Chronic joint
disease may deplete antioxidant defences, whereas acute
inflammation may upregulate them44. The samples used
in the present study represent KOA with inflammatory exu-
dates in the knee joints, especially in the secondary type of
KOA. Besides, the negative correlation of SF antioxidant
enzymes activities with duration of KOA may suggest that
with longer disease duration, induction of antioxidant en-
zymes and consequently their activities in SF progressively
decrease.
In conclusion, the SF viscosity level was decreased, and

lipid peroxidation measured by MDA concentration was in-
creased in osteoarthritic joints as compared to control joints,
indicating greater oxidative modification of SF components
by ROS in association with KOA. Concurrent with the in-
creased presence of ROS in the osteoarthritic joints, was
a tendency for changed antioxidant status with increased
antioxidant enzymes activities, suggesting a potential adap-
tation to the increased ROS in SF from osteoarthritic knee
joints.
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