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Multi-modal magnetic resonance imaging (MRI) that included high resolution structural imaging, diffusion ten-
sor imaging (DTI), magnetization transfer ratio (MTR) imaging, and magnetic resonance spectroscopic imaging
(MRSI) were performed in mild traumatic brain injury (mTBI) patients with negative computed tomographic
scans and in an orthopedic-injured (OI) group without concomitant injury to the brain. The OI group served as
a comparison group for mTBI. MRI scans were performed both in the acute phase of injury (~24 h) and at
follow-up (~90 days). DTI data was analyzed using tract based spatial statistics (TBSS). Global and regional atro-
phies were calculated using tensor-based morphometry (TBM). MTR values were calculated using the standard
method. MRSI was analyzed using LC Model. At the initial scan, the mean diffusivity (MD) was significantly
higher in the mTBI cohort relative to the comparison group in several white matter (WM) regions that included
internal capsule, external capsule, superior corona radiata, anterior corona radiata, posterior corona radiata, infe-
rior fronto-occipital fasciculus, inferior longitudinal fasciculus, forceps major and forceps minor of the corpus
callosum, superior longitudinal fasciculus, and corticospinal tract in the right hemisphere. TBSS analysis failed
to detect significant differences in any DTI measures between the initial and follow-up scans either in the
mTBI or OI group. No significant differences were found in MRSI, MTR or morphometry between the mTBI and
OI cohorts either at the initial or follow-up scans with or without family wise error (FWE) correction. Our
study suggests that a number ofWMtracts are affected inmTBI in the acute phase of injury and that these chang-
es disappear by 90 days. This study also suggests that none of theMRI-modalities used in this study, with the ex-
ception of DTI, is sensitive in detecting changes in the acute phase of mTBI.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY–NC–SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Traumatic brain injury (TBI) affects about 1.7 million Americans an-
nually (CDC, 2010), with ~80% of the cases categorized as mild (mTBI)
(Faul et al., 2010). Computerized tomography (CT) and conventional
magnetic resonance imaging (MRI) often appear normal without ana-
tomical lesions in mTBI (Hughes et al., 2004; Bazarian et al., 2007) and
have been considered less sensitive than more advanced forms of MRI
lic, anterior limb of internal cap-
icospinal tract; ec, external cap-
iculus; ilf, inferior longitudinal
sterior limb of internal capsule;
occipital fasciculus; slf, superior
erior frontal gyrus; jlc, juxtapo-
te gyrus.

. Narayana).

. This is an open access article under
to diagnose mTBI or monitor the course of injury. Therefore, mTBI is
generally diagnosed on clinical assessment, based upon reported histo-
ry of loss of or impaired consciousness, post-traumatic amnesia, or post-
concussion symptoms (PCS) (e.g., headaches, dizziness, fatigue, irrita-
bility), and cognitive/memory complaints. The underlying pathologic
mechanisms in mTBI are still unclear although it has been postulated
that stretch-induced axonal injuries may be the cause (Blumberg et al.,
1995).

Advances in MRI-based neuroimaging techniques, such as diffusion
tensor imaging (DTI), magnetization transfer ratio (MTR),magnetic res-
onance spectroscopic imaging (MRSI), and perfusion imaging, have
brought new potential to mTBI diagnosis (Shenton et al., 2012). DTI
investigation of mTBI patients has attracted researchers because this
imaging modality is particularly sensitive to microscopic white matter
(WM) changes and may be able to detect diffuse axonal injury in
mTBI (Shenton et al., 2012; Bigler, 2013; Hulkower et al., 2013; Fox
et al., 2013; Ling et al., 2013; Kou et al., 2013; Hasan et al., 2014). DTI
the CC BY–NC–SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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is based on diffusion of tissuewatermolecules and by exploiting the an-
isotropic nature of diffusion it is possible to gain information about the
microstructural organization and integrity ofWM fiber tracts that inter-
connect various brain regions (Mori and Zhang, 2006). The most com-
monly used DTI-derived measures are the fractional anisotropy (FA)
that reflects diffusion anisotropy andmean diffusivity (MD) that repre-
sents average diffusivity and axial diffusivity (AD), and radial diffusivity
(RD). Together, these DTI measures could serve as markers of tissue in-
tegrity (Pierpaoli and Basser, 1996). Previous DTI reports on mTBI have
produced somewhat inconsistent results (see for example, the review
byShenton et al., 2012). Reduced FA and elevatedMD in variousWMre-
gions in the acute and chronic phase of mTBI were reported (see for ex-
ample, Toth et al., 2013). Increased FA and MDwere also reported both
in acute and subacute phases (Bazarian et al., 2007; Wilde et al., 2008;
Mayer et al., 2010; Lipton et al., 2012). Both increased and decreased
FA were reported in the same patients (Kou et al., 2013). A recent
study reported changes only in MD in certain WM tracts (Hasan et al.,
2014). Finally, no changes in FAwere observed in concussed individuals
at about 30 days post-injury (Zhang et al., 2010).

Magnetization transfer ratio is sensitive to themacromolecular pool.
Sincemyelin representsmajormacromolecular pool in brain, it is gener-
ally thought that MTR is sensitive to the state of myelin (see for exam-
ple, McGowan, 1999) and is therefore an indirect measure of myelin
integrity (Pike et al., 2000; Mottershead, 2003). Reduction of MTR was
reported in someWMregions inmTBI and in some cases significant cor-
relations were found between regional MTR and neuropsychological
performance (McGowan et al., 2000). Histogrambased analysis showed
reduced whole brain MTR in moderate TBI and mTBI subjects with per-
sistent PCS (Hofman et al., 2002).

Brain atrophy is generally thought to represent neurodegenera-
tion. MRI is an excellent modality for estimating global and regional
atrophies in mTBI and for following their longitudinal evolution.
There are only a few studies that investigated atrophy in mTBI
(Ling et al., 2013; Cohen et al., 2007; Lannsjö et al., 2013; Ross
et al., 2012; Zhou et al., 2013). These studies suggested measurable
atrophy in mTBI around 1 year after the insult (Zhou et al., 2013).
Regional atrophy was also observed in the anterior cingulate, cin-
gulate gyrus, and the right precuneal gray matter (GM) (Zhou
et al., 2013). These observations are similar to those reported earli-
er (MacKenzie, 2002). In a 2 year follow-up study, progressive atro-
phy was also observed in mTBI (Ross et al., 2012). Most of these
studies, however, were based on relatively small sample size with
variable post-injury scanning times. Also, the earliest time frame
at which atrophy could be detected following mTBI is unknown.

Metabolic disturbance is postulated in regions of contused brain
(Giza and Hovda, 2001). Magnetic resonance spectroscopy (MRS)mea-
sures brain metabolites that reflect local neuronal integrity and cell
membrane turnover (Narayana, 2005). Application of MRS to mTBI
was recently reviewed (Lin et al., 2012; Gardner et al., 2014). Because
mTBI induces a cascade of changes in brain metabolites, including
neuronal and axonal loss, MRS has the potential to improve our under-
standing of the underlying metabolic disturbances in mTBI (Cohen et al.,
2007; Lin et al., 2012; Vagnozzi et al., 2008; Henry et al., 2011). The
major peaks observed in proton MRS of brain include N-acetylaspartate
(NAA) + N-acetyl aspartyl glutamate (NAAG) (it is generally difficult to
resolve these resonances and NAA + NAAG is referred to as NAA), crea-
tine (Cr), choline (Cho), and myoinisotol (mI). NAA is believed to be a
specific neuronal marker. Creatine resonance has contributions
from creatine and phosphocreatine and elevated Cr levels may rep-
resent gliosis. Choline resonance has contributions frommultiplemol-
ecules that include phosphorylcholine, glycerophosphorylcholine, and
choline plasmalogen, and a minor contribution from acetylcholine
and choline. Choline peak reflects cell membrane metabolism and el-
evated Cho concentration represents heightened cell membrane
turnover as seen in demyelination, remyelination, inflammation,
and gliosis. Myoinisitol is thought to be glial specific and is also a
precursor of phospholipid membrane constituents and its concen-
tration is affected by the formation and breakdown of myelin
(reviewed in Sajja et al., 2009). The results for MRS in mTBI, howev-
er, are not always consistent (reviewed by Gardner et al., 2014).

Based on this brief description one may conclude that each of the
MRI modalities is sensitive to different aspects of tissue pathology. It is
possible to improve the pathologic specificity in mTBI by using multi-
modal MRI. While there have been many independent studies using
any one or two of these modalities (reviewed in Shenton et al., 2012;
Lin et al., 2012), we are unaware of the application of all these tech-
niques to the same mTBI cohort.

The main objective of this study was to perform comprehensive
multi-modalMRI inmTBI and orthopedic injured (OI) controls. This cur-
rent study also addresses two shortcomings of many of previously pub-
lished reports. First, in almost all the previously reported studies scans
were acquired days or even weeks post-injury for determining the
acute changes in mTBI. It is not clear what changes occurred in the
first 24 h after the injury. Second, few published studies included both
baseline and follow-up scans.

2. Methods and material

This workwas approved by the Institutional Review Boards (IRBs) at
participating institutions and the Human Research Protection Official3s
(HRPO) Review of Research Protocols for the Department of Defense.
All procedures were compliant with the Health Insurance Portability
and Accountability Act (HIPAA). The project reported here is part of a
larger study of mTBI, supported by the Department of Defense, where
a consecutive series of civilian patients was recruited prospectively
with either mTBI or minor orthopedic/extremity injuries from the
Emergency Departments (EDs) of two Level 1 trauma centers and one
Level 3 community hospital in a large ethnically-diverse southwestern
metropolitan area. Initial and follow-up assessments of the OI subjects
provided comparative data from individuals with demographics and
risk factors similar to the mTBI subjects. The definition of mTBI used in
this study followed the guidelines of the Department of Defense
(Assistant Secretary, 2007) and the American Congress of Rehabilitation
Medicine (Kay, 1993). Subjects were included irrespective of their gen-
der, race, and ethnicity and were recruited by healthcare professionals
(RN,MD, EMT-P)whohad clinical experiencewith brain injury patients,
knowledge of research, and excellent interpersonal and problem-
solving skills. Screening occurred through review of data in the EDs
electronic healthcare system (EHS), consultation with ED staff, and
subject interviews. Special permission was obtained from the institu-
tional IRBs to administer the Galveston Orientation and Amnesia Test
(GOAT) prior to obtaining informed consent to identify cognitive im-
pairment that would preclude provision of informed consent. Subjects
had to score ≥75 on the GOAT (Levin et al., 1979) to provide informed
consent; if a subject3s score was 74 or lower, the plan was to obtain in-
formed consent from a legally authorized representative (LAR). There
have been no scores below 75, so all enrolled subjects have provided
written informed consent.

Inclusion criteria for both groups (mTBI and OI) included age
18–50 years, injury occurring within the preceding 24–48 h, and no
requirement for hospitalization for the injury for which the partici-
pant was enrolled. For mTBI subjects, inclusion criteria also required
the presence of a head injury (documented inmedical records and/or
verified bywitnesses), Glasgow Coma Scale (GCS) score between 13 and
15, loss of consciousness for b30 min (including 0 min), post-traumatic
amnesia b24 h (including 0 min), and a negative head CT scan. Inclusion
criteria for the OI comparison group included an Abbreviated Injury Se-
verity (AIS) score b3 for an extremity or pelvis injury, with no head inju-
ry present. Appropriate candidates with orthopedic/extremity injuries
that also sustained a head injurywere enrolled in themTBI group. Exclu-
sion criteria for both groups included AIS N3 for any body part, history of
significant preexisting disease (e.g., psychotic disorder, bipolar disorder,
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PTSDdiagnosed by a psychiatrist or psychologist, past treatment for alco-
hol dependence or substance abuse), blood alcohol level N80 mg/dL at
the time of consent, documentation of intoxication, left-handedness,
and contraindications forMRI (including claustrophobia andpregnancy).
Previous head injury requiring hospitalization or ED treatment was also
an exclusion criterion for all subjects.

2.1. MRI protocol

All MRI scanswere performed on a Philips 3 T scanner using an eight
channel receive-only head coil. TheMRI protocol included acquisition of
3DT1-weighted images (T1 images for brevity) using themagnetization
prepared rapid acquisition of gradient echoes (MPRAGE) sequence for
spatial normalization andmorphometric measurements, 3D fluid atten-
uation by inversion recovery (FLAIR) for visualizing lesions, if present,
2D T2-weighted gradient echo for visualizing hemorrhage, 3D gradient
echo sequence for MTRmeasurements for assessing the state of myelin,
and 2D MRSI for metabolite mapping, and a single-shot echo-planar
imaging (EPI) for acquiring diffusion weighted imaging (DWI) for cal-
culating the DTI measures. The acquisition parameters for all the se-
quences are summarized in Table 1. All MRI data were automatically
assessed for image quality as described elsewhere (Narayana et al.,
2012; Hasan et al., 2014) and scans with inadequate quality were
discarded from further analysis.

2.2. Quality assurance of the MRI scanner

Consistent performance of the scanner and its temporal stability are
critical for longitudinal studies (Hasan, 2007). The quality assurance
(QA) issues are addressed by implementing the American College of
Radiology (ACR; http://www.acr.org/quality-safety/accreditation/mri)
recommended QA program that measures signal-to-noise ratio, field
uniformity, gradient linearity, image distortions and ghosting using
the vendor provided phantom every morning. The results of the phan-
tom study were automatically analyzed using customwritten software.
In addition, as described elsewhere (Hasan et al., 2014), DTI datawas ac-
quired monthly on a homogenous spherical water phantom that was
kept at a temperature between 18 and 20 °C (temperature in the scan-
ner room), maintained by the central air conditioner. The DTI data was
analyzed using the procedure described elsewhere (Hasan et al., 2014).
Briefly, DTI data was acquired on a spherical water phantom almost
monthly over 4 years (47 time points). The mean FA and MD values
and their standard deviations were automatically calculated from an
ROI of 21 × 21 voxels at the isocenter of the magnet.

2.3. Image processing

2.3.1. Diffusion tensor imaging
TheDWI images in theDICOM formatwere transferred from theMRI

scanner to a local Linux computer (Xeon 2.8 GHz 4-core CPUwith 24GB
memory) andwere converted to Neuroimaging Informatics Technology
Table 1
Summary of MRI acquisition parameters. The in-plane field of view is 256 × 256. TR: repe
quency offset for the off resonance pulse.

Sequence TR/TE (ms) 2D or 3D MTR

Off res frequency Ampl

MPRAGE 8.1/3.7 3D N/A N/A
FLAIR 8000/337 3D
Gradient echo (for MTR) 65/5.9 3D 2100 Hz 2.34 uT or 6200

Dual gradient echo
(T2-weighted)

510/16/32 2D N/A N/A

PRESS (for MRSI) 2000/53a 2D N/A N/A
EPI (DWI) 8000/55 2D N/A N/A

a Minimum echo time allowed on the scanner for the MRSI protocol used in this study.
Initiative (NIfTI) format using dcm2nii file converter from the MRICron
software (http://www.cabiatl.com/mricro/mricron/dcm2nii.html). The
brain was extracted from the images using the brain extraction tool
(BET) software from FSL toolbox (http://www.fmrib.ox.ac.uk/fsl/bet2/
index.html). Eddy-current correction was performed in FSL by aligning
all the DWI images to the b0 volume (images acquired without any dif-
fusion weighting) using affine transformation with 12 degrees of free-
dom. The DTI measures (FA, MD, and the three eigenvalues, λ1, λ2,
and λ3) were then calculated using the FDT software from the FSL tool-
box. TheDTI datawas analyzed using tract based spatial statistics (TBSS)
(Smith et al., 2006). The identification of the individual tracts was veri-
fied using the MRI atlas of human white matter (Oshi et al., 2010).

Standard TBSS analysis steps as recommended by the developer of
TBSS were followed. The FSL-provided FA template (FMRIB58_FA;
Smith et al., 2006), whichwas derived from healthy controls and its de-
rived skeleton in the MNI space were used. A skeleton threshold of 0.2
was used. For group comparison, randomize test on skeletonized DTI
images was conducted with Threshold-Free Cluster Enhancement
(TFCE) option and 5000 runs. Statistical results were generated both
with and without the family-wise error (FWE) correction for multiple
comparisons.

2.3.2. Magnetization transfer ratio
Images acquiredwith (MSAT) andwithout (M0) the off- resonance RF

pulse were stripped of extrameningeal tissues using BET from the
FSL toolbox. Bias field correction was applied using the NT4 module
from Advanced Normalization Tools (ANTs) software package (http://
sourceforge.net/projects/advants). The corrected MSAT and M0 images
were non-linearly co-registered to the MNI152 1 mm T1 template
(included in FSL toolbox) using the symmetric inverse consistent
diffeomorphic registration from the ANTs software. The magnetiza-
tion transfer ratio (MTR) was calculated as:

MTRð%Þ ¼ ðM0−MSAT Þ=M0 � 100:

2.3.3. Morphometry
Tensor based morphometry (TBM) was used for estimating regional

and global atrophy. For TBM analysis, the T1 images were non-linearly
registered to the MNI152 template using symmetric inverse consistent
diffeomorphic registration from theANTs software. The output of the af-
fine and diffeomorphic transformation files was combined to generate
the composed transformation. The Jacobian determinant (JD) maps
were constructed from the composed transformation of the subject-
to-template registration (Leow et al., 2006). The JDs were normalized
to compensate for differences in the brain size and logarithmic transfor-
mation was applied (Tao et al., 2009). For group comparison, statistical
tests were performed on the JDs using two-sample t-test model in
SPM8. Paired t-tests were also performed on the subjects who had
both initial and follow-up scans.
tition time; TE: echo time; MTR: magnetization transfer ratio; off res frequency: fre-

TI (ms) Voxel dimensions
(mm × mm × mm)

Number of gradient
directions

Number of
averages

Acquisition time
(min)

1071 1 × 1 × 1 N/A 1 5:56.1
2400 1 × 1 × 1 N/A 1 8:24.0

1.25 × 1.25 × 3 N/A 1 5:01.9
N/A 1 × 1 × 3 N/A 1 4:33.4

N/A 10 × 10 × 15 N/A 1 8:26.0
N/A 2 × 2 × 3 32 1 5:46.9

http://www.acr.org/quality-safety/accreditation/mri
http://www.cabiatl.com/mricro/mricron/dcm2nii.html
http://www.fmrib.ox.ac.uk/fsl/bet2/index.html
http://www.fmrib.ox.ac.uk/fsl/bet2/index.html
http://sourceforge.net/projects/advants
http://sourceforge.net/projects/advants
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2.3.4. Magnetic resonance spectroscopy
For 2D CSI a slab of 60mm×60mm×15mmwas placed in the cen-

trum semiovale region. Great care was taken in placing the CSI slab
across all subjects and different time points by using various land
marks such as AC–PC plane and location relative the lateral ventricles.
Initially all the individual MRS volumes were reconstructed in the sub-
ject’s native space. For group analysis, each MRSI slab was linearly reg-
istered to the T1 scan using rigid body registration with six degrees of
freedom. Then the MRS volume in the native space was warped to the
MNI space by applying the deformation field obtained from T1-to-
MNI152 non-linear registration. In the group analysis only those voxels
that were common for all the subjects following transformation to the
MNI space, as determined by their spatial coordinates, were included.
The resulting common MRS volume contained both cortical and sub-
cortical regions and contained both GM and WM tissues. In order to
conduct comparison on homogenous structure and tissue types, the
MRS volume was sub-divided into 12 smaller volumes-of-interest
(VOI), 6 in each hemisphere, with each region containing only one brain
structure and tissue type (sfg— superior frontal gyrus,mfg— superior fron-
tal gyrus, jlc — juxtapositional lobule cortex, cg — cingulate gyrus, pcg —

paracingulate gyrus,wm—white matter). Identification of these structures
was based on theHarvard–Oxford cortical & sub-cortical parcellationmap
available from the FSL toolbox. The spectral region between 0.2 and
4.0 ppm was processed. Only the center 6 × 6 voxels (each voxel mea-
sured 10 × 10 × 15 mm3) from the 2D CSI slab were used since they
had the highest spectral quality. Metabolite concentration ratios NAA/
Cr, Cho/Cr, and mI/Cr were automatically estimated with the LC Model
software (http://www.s-provencher.com/pages/lcmodel.shtml). The de-
fault basis set for 35mswas used for the LCModel analysis. Any estimated
ratio with greater than 20% SD (Cramer–Rao lower bounds) were consid-
ered to be unreliable and deleted from the data analysis.

3. Results

3.1. MRI stability

Based on the daily QAmeasurements, the performance of the scanner
eithermet or exceeded theACR recommendations andvendor3s specifica-
tions. The results of the DTI analysis were reported earlier (Hasan et al.,
2014). The temporal changes in FA and MD did not show any systematic
drifts. The average± sd values of MD and FA over the 4 year period were
(1.88±0.16) × 10−3mm2/s and (0.015±0.002), respectively. Linear re-
gression of the temporal changes in MD and FA did not show any trend,
suggesting the absence of systematic drift with time.

3.2. Subject data

The mechanism of injury in both mTBI and OI subjects is summa-
rized in Table 2. Over 90% of mTBI subjects had visible evidence of
head trauma associated with multiple mechanisms, in the form of
bruising/contusions/abrasions to the head, scalp, or face (84%) and
scalp lacerations (44%), of which 54% (24/44) required sutures. None
Table 2
Injury mechanisms for mTBI and ortho subjects.

Mechanism of injury mTBI (%) OI (%)

Assault 16 1
Blow to head 9 0
All falls 21 21
Laceration 0 45
Motor vehicle accidents 51 11
Othera 1 1
Sports-related 2 5
Crush injury 0 16

a mTBI— only blast injury from exploding tire; ortho— jammed finger in scuffle with
brother.
of the OI subjects had any of these signs of TBI. Subjects in the OI
group explicitly stated that to the best of their recollection, they did
not hit their head during the event that caused their injury, they had
no visible signs of injury to the head (i.e. bruising, abrasions, contusion,
tenderness, swelling, or scalp lacerations with or without sutures re-
quired), and they reported no LOC or PTA.

Sixty-two mTBI subjects (30.4 ± 8.8 years age, range 19–50 years;
number of males = 43; education= 13.6 ± 2.4 years) and 59 orthope-
dic controls (age = 29.2 ± 9 years, range 20–51 years; number of
males = 45; education = 13.5 ± 2.9 years) were included in this
study. All subjects were right handed. All but two subjects had a GCS
score in the ED of 15, with the other two having a GCS score of 14.
Among themTBI subjects who lost consciousness after injury, the aver-
age LOC duration was 3.95 ± 5 min (range 1–20 min). The initial post-
injury scan times formTBI and OIwere 25.5±12.26 h (range 5.8–46 h),
and 27.1 ± 13.70 h (range 0.3–56 h), respectively. The corresponding
follow-up scan times were 97.9 ± 17.57 days (range 83.3–202 days)
and 96.7 ± 9.26 days (range 82.9–126.9 days), respectively. It should
be pointed out that the range for the follow-up for mTBI subjects may
have been skewed since one subject was scanned 202 days after injury.
Not all subjects completed both the initial and follow-up scans. The
number of mTBI and OI controls who completed the initial scans was
56 and 54, respectively. The corresponding numbers at the follow-up
were 29 (age 29.94 ± 8.22 years, range +18.9–49.7; number of males
18) and 47 (age 29.48 ± 9.03 years; range 20.25–50.75 years, number
of males = 36). mTBI subjects had the option to participate in a phase
II drug trial (21/65 or 32%) or enroll only in the testing/imaging portion
of the study (44/65 or 68%). Those mTBI subjects in the drug trial were
not included in the analysis of the follow-up scans, as the investigators
are still blinded to which subjects were receiving active drug treatment
and which subjects were receiving placebo treatment. This was done to
ensure that any observations from this analysis would not be due to or
influenced by the study drug. Therefore, the number of mTBI subjects
that were included in the final analysis was approximately 50% of the
OI subjects.

There were no significant female/male ratio (p = 0.45; χ2 test) and
age differences between the mTBI (56 subjects) and OI (54 subjects)
control groups (p = 0.72; t-test) at the initial study. The follow-up
mTBI (29 subjects) andOI (47 subjects) cohorts also did not differ either
in the gender ratio (p = 0.3) or age (p = 0. 78).

Two T1, twoMTR and one DTI image volumes were excluded due to
poor image quality that include poor SNR and motion related artifacts.
Fourteen MTR image volumes were excluded due to motion between
acquisition of MSAT and M0 images. MTR is based on subtraction of
two images and is therefore more prone to motion artifacts. Four MRSI
examinations were excluded due to poor shimming. Three DTI image
volumes were excluded due to inconsistent protocol used in the early
stage of the study. The final number of mTBI and OI subjects included
in the analysis for each MRI modality is summarized in Table 3.

3.3. Diffusion tensor imaging

3.3.1. Comparison between mTBI and OI controls at initial scan

3.3.1.1. Significant differences with FWE correction. Fig. 1 shows the t
maps of MD that shows significant differences between the mTBI and
OI groups at the initial scan (FWE corrected; p b 0.05) superimposed
on theWMFA skeleton. As can be seen from this figure, MD was signif-
icantly higher in the mTBI relative to OI subjects in several WM regions
that include internal capsule (ic), external capsule (ec), superior corona
radiata (scr), anterior corona radiata (acr), posterior corona radiata
(pcr), inferior fronto-occipital fasciculus (ifo), inferior longitudinal fas-
ciculus (ilf), forceps major and forceps minor of the corpus callosum
(cc), superior longitudinal fasciculus (slf), and cortical spinal tract
(cst). These significant differences were confined only to the right
hemisphere.

http://www.s-provencher.com/pages/lcmodel.shtml


Table 3
Summaryof subjects included in thefinal analysis in the initial and follow-up scans for eachMRImodality. Thenumbers in theparentheses indicate thenumber of rejected scans for reason
indicated in the footnotes.

Initial scan Follow-up scan

Morphometry DTI MTR MRSI Morphometry DTI MTR MRSI

mTBI 55 (1)a 55 (1)b 51 (5)c 55 (1)d 29 29 27 (2)c 28 (1)d

OI 53 (1)a 53 (2)b 44 (9)c 55 (1)d 47 46 (1)a 46 (1)c 46 (1)d

a Motion and poor image quality.
b Inconsistent protocol.
c Motion between Mo and Msat images.
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3.3.1.2. Differences without correcting for multiple comparisons. A number
structures showed differences in the DTI measures at p b 0.05 but did
not survive the FWE correction. For example, MD was observed to be
higher in the mTBI relative to OI in the ic, ec, scr, acr, pcr, ifo, ilf, forceps
major and forceps minor of the cc, slf, and cst in both hemispheres. In-
creased MDwas also seen in the genu, body and splenium of the cc. In-
creased AD (λ1) and RD ((λ2 + λ3) / 2) were observed in some of the
regions where increased MD was also found (scr/pcr, plic, ifo and acr;
p b 0.05).

d Poor shimming.
Fig. 1. Color coded t-maps superimposed on the FA skeleton demonstrating increasedMD inmT
are the skeletonized tracts drawn on the mean FA image obtained by averaging all FA maps re
yellow corresponding to the highest confidence level (same in all the following figures).
3.3.1.3. Longitudinal comparison (initial vs. follow-up scan). On the TBSS
analysis none of the MRI measures on the follow-up scans, either in
the mTBI or OI group, showed significant changes from baseline with
FWE correction. Without FWE correction in the mTBI group MD de-
creased at follow-up in the WM regions that included plic, ec, slf, acr,
pcr, scr, ifo and cc (p b 0.05). AD also decreased in regions that included
ec, slf, acr, scr and cc) and RD decreased in plic and ifo(p b 0.05). As in the
case of initial scan, the effects appeared to be significant andmorewide-
spread in the right hemisphere.
BI relative to OI controls at the initial scan (p b 0.05 with FWE correction). The green lines
gistered to the MNI 152 template. p-Values are color-coded in the red-yellow scale, with
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In the OI controls, TBSS analysis found no significant difference in
any of the DTI measures between baseline and follow-up even without
the FWE correction.

3.4. Magnetization transfer ratio

After registering all the subjects3 MTR image volumes in the MNI
space, voxel based analysis was conducted to detect differences be-
tween mTBI and controls at the initial scan and also between the initial
and follow-up scans in both mTBI and OI controls. No clusters with sig-
nificant difference were found in either comparison in either group.

3.5. Tensor based morphometry

The Jacobiandeterminant (JD)maps constructed from the T1 images
were used for measuring the regional volumetric changes in the brain.
As in other analyses, we investigated the baseline volumetric differ-
ences between mTBI and control subjects and volumetric changes in
the mTBI and OI subjects between initial and follow-up scans. With
FWE correction statistically significant clusters (≥10 voxels) were not
observed in any region of the brain.

3.6. Magnetic resonance spectroscopy imaging

The 2DCSI slab was placed about 1 cm above the lateral ventricles,
and parallel to the anterior–posterior commissure line (Fig. 2). The ten
saturation bands for outer volume suppression are shown in blue in
Fig. 2. The individual voxels (10 × 10 × 15 mm) are shown in red in
this figure. The line width for the water peak from the entire spectro-
scopic VOI was (11 ± 2.4) Hz. The line width of NAA, for example,
from individual voxels was (7 ± 1.1) Hz. The SNR in the water sup-
pressed spectrum in each voxel was 45 ± 7. The spectra from the
whole slab (average spectrum) along with representative spectra from
four different voxels from one patient are also shown in this figure,
The minimal lipid contamination and excellent spectral resolution can
also be seen on this figure.

Parcellation of various cortical and subcortical structures was based
on the Harvard–Oxford atlas as described in the methods. Fig. 3 shows
the common MRS voxels in all the subjects (Fig. 3A) along with the
parcellation of the common MRS volume into 12 regions (Fig. 3B), with
each region containing only one brain structure and tissue type (sfg —

superior frontal gyrus, mfg — superior frontal gyrus, jlc — juxtapositional
lobule cortex, cg — cingulate gyrus, pcg — paracingulate gyrus, wm —

white matter). The results of the metabolite ratios at the baseline and
follow-up for both cohorts are summarized in Fig. 4. Cho/Cr ratio did
not show significant differences between themTBI and the control sub-
jects on the initial scan in any of the voxels, nor did this ratio significant-
ly differ between initial and follow-up scans in the mTBI group. mI/Cr
ratio, on the other hand, showed lower values in the mTBI than in the
comparison subjects on the initial scan in jlc, cg, and pcg, all in the
right hemisphere (p b 0.05). None of these differences, however, sur-
vived FWE correction. In the mTBI cohort NAA/Cr showed lower value
on the initial scan compared to follow-up in jlc in the right hemisphere
(p b 0.05). However, this difference also did not survive FWE correction.
We also analyzed the longitudinal changes by considering the ratio of
the follow-up scans and the corresponding initial scans for each subject
(data not shown). This strategy eliminates the inter-subject variation in
the metabolite ratios and improves the statistical power. These ratios
did not show statistically significant changes. We did not include the
analysis of the glutamate + glutamine peaks in this analysis because
their CRLB was greater than 20 in majority of the patients.

4. Discussion

To the best of our knowledge, this is the first multi-modalMRI study
on mTBI subjects. A novel feature that distinguishes this study from
others is that the scans were performed at approximately 24 h after
injury in CT-negative mTBI patients. In addition, the same cohort was
rescanned at about 3 months post-injury. Furthermore, great care was
taken to eliminate confounding factors such as alcohol and drug abuse,
history of hospitalization for previous TBI, and pre-injury neuropsychiat-
ric disorders. This assured relatively uncomplicated and homogeneous
mTBI cohort.

4.1. MRI stability

Scanner stability is critical in longitudinal studies. The lack of any
systematic drift either in the FA or MD values along with the relatively
small variances suggests the stability of the scanner over the period of
time the data was acquired for this study. As reported elsewhere the
possible sources of the observed variance are the temperature fluctua-
tions and scanner table vibrations (Hunsche et al., 2001; Chenevert
et al., 2011). Ideally, the FA value of water phantom should be zero.
However, the noise and phase fluctuations result in a small nonzero
FA value.

4.2. Diffusion tensor imaging

Overall, many of our DTI findings such as increased MD in mTBI
in WM structures are in agreement with previous studies (Yuh et al.,
2013; Inglese et al., 2005; Lipton et al., 2008; Miles et al., 2008;
Rutgers et al., 2008; Kraus et al., 2007; Lo et al., 2009). However, it
should be pointed out that strict comparison of our DTI results with
other similar studies is somewhat difficult due to differences in the eli-
gibility criteria for subject recruitment, study population, sample size,
and choice of post-injury scan periods. Patients with brain lesions on
CT performed within 24 h post-injury were excluded in our study,
whereas this approach varied across other recent studies (Hulkower
et al., 2013; Lo et al., 2009; Kim et al., 2013). In the present study, pa-
tientswith lesions onMRI thatwere diagnosed as “incidental” by the se-
nior neuroradiologistwho participated in this studywere also excluded.
In those cases the lesion appearance did not change from the initial to
the follow-up MRI. Instead of imaging uninjured subjects for compari-
son, we recruited patients who suffered orthopedic injury as controls
who had similar chronicity of injury and demographic characteristics
as themTBI group. Recruitment of OI subjects accounts, to some extent,
for the risk factors that predispose to injury and for the traumatic stress
experienced by the mTBI subjects (Levin et al., 2013). Although the cri-
terion for GCS score was 13–15, patients who met all of our eligibility
criteria and consented to participate had GCS scores of 15, with the ex-
ception of two who had a score of 14, indicating normal consciousness
or confusion when the patients were evaluated in the ED. Our mTBI co-
hort had less severe injuries than in other mTBI studies (see for exam-
ple, Kou et al., 2013; Mayer et al., 2010).

As described in the results, except forMD in certain structures in the
right hemisphere, none of the otherMRI-basedmeasures survivedmul-
tiple comparison correction based on FWE. The FWE correction is
known to be conservative and could lead to Type II errors (false nega-
tives). Another commonly used and less conservative approach is the
false discovery rate (FDR; Chumbley, 2009). Unfortunately, FDR is cur-
rently not an option in the TBSS analysis. Therefore, we presented our
results without the FWE correction when the correction led to results
that are statistically not significant. We observed significant differences
inMD betweenmTBI and OI at the initial scan that were confined to the
right hemisphere. Possible hemispheric asymmetry based on different
MRI measures was also indicated by others (Ling et al., 2013; Niogi
et al., 2008, 2008a; Koerte et al., 2012, 2012a). One possibility for this
asymmetry is that the left hemisphere has more densely packed axon
branching (Klingberg et al., 1999), presumablymaking it more resistant
to shock-induced damage. However, caution should be exercised in
interpreting the finding of the asymmetric increases in diffusivity in
the right hemisphere regions.
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4.3. Magnetization transfer ratio

Wedid not observe any significant differences in theMTR values be-
tween mTBI and OI subjects either at the initial or follow-up scans. In
one of the earliest MTR studies on mTBI reduced MTR in the splenium
of the cc was reported (McGowan, 2000). However, that study was
based on a small sample size with unspecified post-injury scan periods.
In addition, few details about the patient demographics were provided.
Therefore it is very difficult to compare their results with ours. Whole
Fig. 2. Placement of the 2D CSI slab in the axial, sagittal and coronal orientations (top). The ten s
shown in red. The “average spectrum” shown below represents the spectrum from whole slab
indicated in the top figure.
brain reduction in MTR was reported earlier (Hofman et al., 2002).
However, these authors included both moderate and mTBI subjects in
their cohort with the GCS in the range of 9–15. The post injury scan pe-
riod varied from 1 to 12 years. From their studies it is unclear if mTBI is
associated with reduced MTR in the acute or subacute phases.

Quantifying magnetization transfer by a simple measure like MTR
limits the potentially useful information about the pathophysiological
processes (see for example, Garcia et al., 2012). In contrast, quantitative
magnetization transfer (qMT) measures such as concentration of
aturation bands for outer volume suppression are shown in blue. The individual voxels are
. The individual spectra (A, B, C, D) shown at the bottom of the figure are from the voxels



Fig. 3.MRSI and the commonMRS voxels in all the subjects. A) The commonMRS volume was constructed so that for any given voxel in this volume, at least 80% of all the subjects must
have a valid value. B) Parcellation of the common MRS volume into 12 regions, with each region containing only one brain structure and tissue type (sfg — superior frontal gyrus, mfg —

superior frontal gyrus, jlc — juxtapositional lobule cortex, cg — cingulate gyrus, pcg— paracingulate gyrus, wm — white matter).
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Fig. 4.Metabolite concentration ratios (relative to Cr) in 12 regions parcelled from the common MRS volume in mTBI and OI cohorts at initial and follow-up scans.
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macromolecular pool and exchange rates between the pools could pro-
vide more robust information about pathology. Another method that
appears to hold some promise is the macromolecular proton fraction
(MPF) that is based on MTR effect (Yarnykh et al., 2012). In fact, this
technique was applied to blast mTBI subjects to probe thewhite matter
integrity with promising results (Petrie et al., 2014). Unfortunately we
did not acquire the necessary data for qMT andMPF analyses in the cur-
rent study.
4.4. Morphometry

Atrophy is thought to represent neurodegeneration that is the result
of axonal/myelin loss. Given themild and uncomplicated nature of inju-
ry and relatively short duration of 3 months for follow-up scans, lack of
either cross-sectional or longitudinal changes in global and regional
volumes in ourmTBI cohort is not very surprising. Reduced cerebral vol-
ume with time does not necessarily mean atrophy. For example, re-
duced cerebral volume is expected with the resolution of edema that
may be present in the acute phase of injury. The fact that we did not ob-
serve any volume changes at the initial or follow-up scan in mTBI rela-
tive to OI suggests that significant edemawas not present in our cohort.
It is difficult to compare our results on atrophy with the published re-
sults because of differences in the mTBI and control cohorts, methodol-
ogy, and post-injury scan periods. For example, atrophywas reported in
mTBI after 6months post-injury (Hofman et al., 2001). In another study
on 19mTBI subjects, atrophy was observed in 4 patients at 3–7 months
post-injury (Ross et al., 2012). In a comprehensive study on atrophy in
mTBI global and regional atrophy in the anterior cingulate, left cingulate
gyrus, istmus, and precuneus were reported at 1 year after the injury
(Zhou et al., 2013). It is possible that we would have observed atrophy
in our cohort if we scanned them over longer post-injury time period.
4.5. Magnetic resonance spectroscopy

Our MRSI analysis showed differences in NAA/Cr and mI/Cr ratios
between the mTBI and OI subjects at the initial scan and between the
initial and follow-up scans within the mTBI cohort. However, these
differences did not survive multiple comparison correction, indicating
that any changes in the metabolite concentrations are very subtle.
Most of the published studies on mTBI that reported metabolic changes
in the acute phase were performed after post-injury day 3. It is possible
that metabolic changes may not be apparent until day 3 post-injury
(Vagnozzi et al., 2013). It is also likely that biochemical changes could
have disappeared at the 90 day follow-up scan (Vagnozzi et al., 2008,
2013).

The results of the previously published MRS studies in mTBI are not
always consistent. While some studies found decreased NAA (Vagnozzi
et al., 2008; Henry et al., 2011; Govindaraju et al., 2004; Cimatti, 2006;
Vagnozzi et al., 2010; Henry et al., 2010; Johnson et al., 2012) in regions
such as parietal lobe, motor cortex, prefrontal cortex, and cc, other stud-
ies did not report any changes in NAA (Maugans et al., 2012; Yeo et al.,
2011). Some of these studies used single voxel MRS and this difference
in methods could be a contributing factor for the discrepant results. In
one report where similar 2DCSI method was used as in our study, no
change was found in NAA concentration, but Cr concentration was
found to increase in WM in the mTBI patients (Vagnozzi et al., 2010).
Another study using single voxel spectroscopy also detected increased
Cr level in white matter (Gasparovic et al., 2009). Since all the above
studies that reported decreased NAA were based on the NAA/Cr ratio,
including the trends observed in our study, and since increased Cr was
found in mTBI, it is not clear that decreased NAA/Cr necessarily implies
reduced NAA. Moreover, changes in the metabolite levels vary greatly
depending on the brain area (Gardner et al., 2014; Govindaraju et al.,
2004). In addition, the differences in the patient cohort, use of healthy
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controls, and different post-injury scan times could have contributed to
the discrepant results that were reported in the literature.

4.6. Limitations of previous studies

Aproblemwithmost of the publishedMRI studies inmTBI is the lack
of standardization in patient selection criteria, post-injury scan times,
methodology, and control subjects. These differencesmake an objective
comparison across different studies virtually impossible. Classification
of TBI as mild, moderate, or severe, based on GCS score which is global
and relatively insensitive to mTBI, fails to incorporate newer insights
and findings from neuroimaging (Manley and Maas, 2013). There is a
need to implement more precise disease classification.

5. Study limitations

Our study also has a few limitations. It investigated longitudinal
changes only at two time points. Acquiring data at multiple points
that span longer post-injury periods could have provided a better trajec-
tory of pathologic changes, particularly chronic effects. In this study we
did not stratify our results based on the neuropsychological scores or
PCS. Another limitation is that themetabolite concentrationsweremea-
sured relative to Cr. Absolute measurements would have been prefera-
ble. However, this requires the acquisition of unsuppressed water data
that was not part of our protocol. While the TE used for acquiring
MRSI was 53 ms, the default basis set of 35 ms was used for the LC
model analysis. While NAA, Cr, Cho, and Ins are expected to be less
sensitive to the TE of the basis set, Glx with its relatively short TE and
j-coupling coupling is more sensitive to the choice of the basis set.
This results in poor fitting and relatively large SD. In most cases, both
mTBI and OI subjects had received/been prescribed pain medications
during their ED visit and which might be in their system for the initial
MRI. We have not considered the effect of medication on the MRI mea-
sures. To the best of our knowledge there are no studies that link pain
medication and brainMRImeasures. Finally,we did not attempt to com-
bine all the MRI measures for improved detection of neural changes. A
major problem with combining the multi-modal data is assigning ap-
propriate weight for each measure. We are currently working with
our statistician to come up with an algorithm. We plan to address this
issue in a future study.
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