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Warburg proposed that cancer originates from irreversible injury to mitochondrial oxidative phosphorylation
(mtOXPHOS), which leads to an increase rate of aerobic glycolysis in most cancers. However, despite several
decades of research related to Warburg effect, very little is known about the underlying genetic cause(s) of
mtOXPHOS impairment in cancers. Proteins that participate in mtOXPHOS are encoded by bothmitochondrial
DNA (mtDNA) as well as nuclear DNA. This review describes mutations in mtDNA and reduced mtDNA copy
number, which contribute to OXPHOS defects in cancer cells. Maternally inherited mtDNA renders
susceptibility to cancer, and mutation in the nuclear encoded genes causes defects in mtOXPHOS system.
Mitochondria damage checkpoint (mitocheckpoint) induces epigenomic changes in the nucleus, which can
reverse injury to OXPHOS. However, irreversible injury to OXPHOS can lead to persistent mitochondrial
dysfunction inducing genetic instability in the nuclear genome. Together, we propose that “mitocheckpoint”
led epigenomic and genomic changes must play a key role in reversible and irreversible injury to OXPHOS
described by Warburg. These epigenetic and genetic changes underlie the Warburg phenotype, which
contributes to the development of cancer. This article is part of a Special Issue entitled: Bioenergetics of Cancer.
ergetics of Cancer.
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1. Introduction

Mitochondria perform multiple cellular functions. Mitochondria
produce ATP through oxidative phosphorylation (OXPHOS). Studies
suggest that the OXPHOS system is severely compromised in cancer.
Indeed, defect in OXPHOS is described as one of themost common and
profound phenotypes of most cancers [1–19]. In 1930, Otto Warburg
proposed that cancer was caused by defects in OXPHOS or respiration
in the mitochondria, forcing cells to shift to an energy generation
process through glycolysis despite aerobic conditions [16,20–22]. This
characteristic of cancers is described as “Warburg effect.” During the
past few years Warburg effect is being reconsidered and is the subject
of increasing interest in cancer research [20,22–25]. Warburg effect
plays an important role in tumor development by remodeling the
metabolic profile of tumor cells, which allows cell survival under
adverse conditions [23,26–29].

Since the description of theWarburg effect, studies have shown that
cancer cell mitochondria have a characteristic shape and size [6–8].
Studies indicate that cancer cell mitochondria are small, possess few
cristae, altered membrane composition, as well as altered membrane
potential [6–8]. Other types of mitochondrial abnormalities in cancers
have also been described [3,10,14,30]. These include mitochondrial
hyperplasia [3,4,10,30,31], differential expression of mitochondrial
cytochrome c oxidase subunit II in benign and malignant tissues
[10,32], and mammary adenocarcinoma with fewer mitochondria [33].

2. The OXPHOS system

OXPHOS system consists of five major protein complexes called
complex I (NADH dehydrogenase or NADH:ubiquinone oxidoreduc-
tase), complex II (succinate dehydrogenase or succinate:ubiquinone
oxidoreductase), complex III (the bc1 complex or ubiquinone:cyto-
chrome c oxidoreductase), complex IV (cytochrome c oxidase, cycloox-
ygenase or reduced cytochrome c:oxygen oxidoreductase), and
complex V (ATP synthase); which are localized on the inner
mitochondrial membrane. Additionally, OXPHOS system also involves
two electron transport carriers, ubiquinone or coenzyme Q10 and
cytochrome c [34]. The main function of OXPHOS is to transport two
electrons from NADH or FADH2 to oxygenmolecules to generate water
as a byproduct [34]. During electron transport, complexes I, III, and IV
pump protons from the mitochondrial matrix to the intermembrane
space resulting into increase in membrane potential across the inner
mitochondrial membrane. In the presence of ADP, complex V actively
allows flow of protons back to the matrix resulting into generation of
energy in the form of ATP [34].
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OXPHOS proteins are encoded by both nuclear as well as
mitochondrial DNA (mtDNA). The most important biological function
of mtDNA is to encode enzyme subunits of the respiratory chain.
Remarkably, human mtDNA is very small (16,569 bp). mtDNA is also
extremely vulnerable to oxidative damage by reactive oxygen species
(ROS) produced within mitochondria as a byproduct of OXPHOS. Of
~85 subunits as components of various OXPHOS complexes, 13 are
encoded by mtDNA [35]. These 13 proteins constitute various
subunits that make up four OXPHOS complexes (Complex I, III, IV,
V). The rest of the subunits (N35 for Complex I, 10 subunits for protein
Complex III and IV and 14 subunits for Complex V) are encoded by the
nucleus, translated in the cytosol and imported into themitochondrial
compartment [5,36]. It is noteworthy that all four subunits constitut-
ing Complex II are entirely encoded by nuclear DNA. The mtDNA also
encodes 22 tRNAs and two rRNAs involved in the synthesis of OXPHOS
subunits. The D-loop region present in the mitochondrial genome
controls both mitochondrial transcription and replication. Mutations
in the D-loop regions, therefore, can result into inhibition of
mitochondrial transcription and replication. mtDNA requires trans-
acting nuclear encoded factors for its transcription and replication. To
date genetic insights into OXPHOS defects in cancer are lacking, and
very little is known about the genetic defects in DNA encoding various
OXPHOS proteins or proteins involved in regulation and assembly of
the OXPHOS system.
3. Nuclear genes involved in OXPHOS defect in cancer

The renewed interest in theWarburg effect has revealed that some
mtOXPHOS proteins act as tumor suppressors. For example mtOX-
PHOS enzyme succinate dehydrogenase (SDHD, Complex II) is shown
to be mutated in hereditary paragangliomas and phaeochromocyto-
mas [27,37,38]. SDHD oxidizes succinate to fumarate in the Krebs
cycle and is involved in the mitochondrial electron transport chain.
Mutations in three of the four subunits of succinate dehydrogenase,
namely, SDHB, SDHC, and SDHD, have been involved in tumorigenesis
[27,37,38]. Recently, mutations in SDHD5 gene encoding proteins
involved in assembly of SDHD complex that contribute to hereditary
paragangliomas have been described [25,39]. Interestingly, hereditary
mutation in SDHA leads to typical mitochondrial disease such as Leigh
syndrome characterized by severe progressive neurodegenerative
disorder causing epilepsy, psychomotor retardation, and tetraspasti-
city [40]. However, recent evidence reveals that SDHA is also a tumor
suppressor gene [41]. Mutation in SDHA gene causes paraganglioma
and pheochromocytoma [41].

Paraganglioma and pheochromocytoma are rare benign tumors of
chromafin tissues and arise in the adrenal medulla (pheochromocy-
toma proper). Paraganglioma can also arise in extra-adrenal regions of
the head and neck, thorax, abdomen or pelvis. Mutation in SDH genes
led to tumorigenesis, and thus, should be considered as tumor
suppressor genes [37,38,41,42]. In addition, hereditary mutations in
the Krebs's cycle enzyme fumarate hydratase (FH) lead to leiomyo-
mas, uterine fibroids, and renal cell carcinoma [43]. Inhibition of FH
activity stabilizes hypoxia-inducing factor, which induces angiogen-
esis in cancer, and thus, promotes tumorigenesis [44].

In addition to hereditary mutations, somatic mutations involving
genes in OXPHOS metabolism have been described. Indeed both
germline and somatic mutations in NDUFA13/GRIM-19, a subunit of
Complex I involved in mtOXPHOS, are linked to Hürthle cell tumors of
the thyroid [45]. NDUFA13/GRIM19 is an indispensable component of
complex I. NDUFA13/GRIM19 is essential for the assembly and
enzymatic activity of complex I [46]. Loss of NDUFA13/GRIM19 in
mice leads to embryonic lethality [46]. Down-regulation or loss of
NDUFA13/GRIM19 expression has been reported in renal cell
carcinomas (RCC) and colorectal carcinoma [45,47,48]. Altogether,
these findings suggest a role for mtOXPHOS in tumorigenesis.
Somatic mutations affecting isocitrate dehydrogenase 1 and 2
(IDH1 and IDH2), which catalyse the conversion of isocitrate to the
Krebs cycle-intermediate α-ketoglutarate, have been identified in
brain tumors [49,50]. Recent studies also indicate the presence of
IDH1 and IDH2 mutations in other type of cancers such as prostate
and B-acute lymphoblastic leukemias [51]. Mutation in IDH1 genes
impairs its affinity for substrate and dominantly inhibits wild-type
IDH1 activity through the formation of catalytically inactive hetero-
dimers, which leads to the expression of hypoxia-inducing factor with
subsequent promotion of tumorigenesis [52]. Singh's group [53]
describe that tumor suppressor p53 regulates mtOXPHOS [53]. p53
also regulates glycolysis through TIGAR (TP53-induced glycolysis and
apoptosis regulator) [54] or PGM (phosphoglycerate mutase) [55].
The p53 gene is mutated in a large number of human cancers.
Interestingly, our study suggests that p53 also regulates mtDNA
content via regulation of the RNR2 gene [56]. These findings suggest
that p53 canmodulate the balance betweenmtOXPHOS and glycolytic
pathways in cancer cells.

Polymerase-gamma (POLG) is the only DNA polymerase known to
function in human mitochondria [19,57]. POLG gene was mutated in
63% of breast tumors [19,58,59]. Mutations were found in all three
domains of the POLG protein, including T251I (the exonuclease
domain), P587L (the linker region) and E1143G (the polymerase
domain). We have identified two novel mutations that include one
silent (A703A) and one missense (R628Q) mutation in the evolu-
tionarily conserved POLG linker region. Mutant POLG, when
expressed in cancer cells, induced a depletion of mtDNA, decreased
mitochondrial activity, decreased mitochondrial membrane potential,
increased levels of reactive oxygen species and increased matrigel
invasion. These studies suggest a role for POLG in OXPHOS
dysfunction in cancers and in promoting tumorigenicity [19,57].

4. Mitochondrial genes involved in OXPHOS dysfunction in cancer

4.1. Somatic mutations in mtDNA

Mitochondrial DNAmutations have been increasingly identified in
various types of cancer [60,61]. A number of mtDNA rearrangements
and amplifications have been reported in acute myeloid leukemia
[62]. Point mutations in mtDNA mutation have been reported in
human colorectal cancer cells [60], esophageal, ovarian, thyroid, head,
neck, lung, bladder, renal, and breast cancer cells [61,63–69]. These
reports led to a suggestion that mutations in mtDNA D-loop can
function as an independent prognostic marker for breast cancer
[70,71]. Mutations in mtDNA have been described in tRNAs, rRNA, and
protein encoding regions. Since these mutations affects the synthesis
of peptides that are important components of various complexes, the
ultimate outcome is likely to be defective OXPHOS [60,61,72].

There are various factors that contribute to mutations in mtDNA.
For example lack of protective histones, limited DNA repair capability,
lack of introns, and continuous exposure to ROS [73,74] are associated
with increased rate of mutations inmtDNA. The AAA+protein ATAD3,
a component of mitochondrial nucleoids, has been shown to bind
mtDNA but this process is transiently required only for nucleoid
formation and segregation [75]. Therefore, ATAD3 may not play a role
in protection of mtDNA like histones do for nuclear DNA. Other
proteins such as mitochondrial transcription factor A (Tfam), the
major mtDNA packaging protein [76], and Twinkle, a mtDNA helicase
[77], mitochondrial single-strand binding protein, and DNA polymer-
ase γ [78] have been associated with mtDNA, but their role in
providing protection is not clearly defined [79].

4.2. Reduced mtDNA content (copy number)

Human mtDNA contains one single control region called the D-
loop that controls mtDNA replication and transcription of mtDNA-
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encoded OXPHOS genes. Mutation in the D-loop region is an
important feature and has been reported in variety of tumors
examined to date [15,16,80]. Mutations in the D-loop region result
in altered binding affinities of the nuclear proteins involved in mtDNA
replication and transcription leading to the depletion of mtDNA
content [81,82]. Consistent with this notion, our laboratory recently
reported a near absence of mtDNA-encoded cytochrome c oxidase
subunit II expression in more than 40% of breast and ovarian tumors
[32]. Other laboratories have alsomeasuredmtDNA content in tumors
and report a decrease in mtDNA content in breast [71,83] renal [84]
hepatocellular [83,85] gastric [86] and prostate tumors [87]. Depletion
of mtDNA is also supported by a decrease in OXPHOS levels in renal
tumors [88].

Reduced mtDNA leads to increased invasiveness and aggressive
disease [88,89]. Reduced mtDNA has also been associated with liver
cancer [85] as well as with higher histological grade of breast cancer in
patients [71,90]. In order to establish the copy number of mtDNA as a
marker for breast tumorigenesis, Shen et al. examined the copy
number of mtDNA of noncancerous cells such as whole blood and
observed high copy number in noncancerous blood cells of breast
cancer patients as compare to healthy subjects [91]. Notably, mtDNA
copy number was inversely proportional to several important
endogenous antioxidant entities such as total glutathione, Cu-Zn
SOD, and catalase. Interestingly, estrogen receptor (ER) positive
normal breast tissues harbor higher level of mtDNA as compared to ER
negative breast tissues [92], and ER localizes to mitochondria
suggesting that ER presence in mitochondria regulates OXPHOS
function [93–95]. Similar to ER, p53 also localizes to mitochondria
and regulates mtDNA copy number [56,96]. Reduced mtDNA copy
number has been associated with resistance to apoptosis and
increased metastasis [73,88,97,98]. Reduced mtDNA represents a
credible diagnostic or prognostic marker for breast cancer.

5. Maternally inherited predisposition to cancer

mtDNA is inherited maternally and genetic differences in mtDNA
modulate the assembly of OXPHOS complexes [99] and its function
[100]. Several studies have explored whether there is maternally
inherited predisposition to cancer (101–109). Tanaka's group ana-
lyzed a population with 1503 autopsied cases. The genotypes for 149
polymorphisms in the coding region of the mitochondrial genome
were determined. The haplogroups were classified into 30 haplotypes.
Subjects with the haplogroup M7b2 showed an increased risk for
hematopoietic cancer. Results also indicated that haplogroup M7b2 is
a risk factor for leukemia [101,102].

Booker and colleagues determined an association of U haplogroup
with prostate and renal cancers [103]. They found that patients
carrying U haplogroup had an increased risk of renal and prostate
cancer. Bai and colleagues analyzed mtDNA polymorphism in
European–American females and reported that A10398G and
T16519C increase breast cancer risk [104]. In contrast, T3197C and
G13708A were found to decrease breast cancer risk. Wang's group
[105] evaluated polymorphisms in mtDNA associated with increased
risk of pancreatic cancer. They screened Caucasian cases and found no
significant associations with pancreatic cancer [105].

The 10398A allele localized in NADH dehydrogenase-3 locus
(ND3) of mtDNA is associated with increased risk for invasive breast
cancer in African–American women [106,107]. Similarly, 10398A
mutation is also associated with breast and esophageal cancer in
Indian women, whereas 10398G had been shown to increase the risk
of breast cancer in European–American women [104,108]. G10398A
along with other germline mutation such as G9055GA, T16519C,
G13708A, T3197C, and A10398G also result in increased susceptibility
to breast cancer in women [104,106]. Using cybrid approach, Singh's
group analyzed tumorigenic potential of 10398A found in African–
American woman [109] and found that 10398A induces complex I
activity resulting in increased ROS production. The 10398A also
conferred resistance to apoptosis mediated by Akt activation.
Additionally, Kulawiec and colleagues demonstrated that the
G10398A leads to an increased tumorigenesis and metastases in
mice [56,109].

6. Mitochondrial and nuclear intergenomic cross talk and its role
in cancer

A highly coordinated retrograde cross-talk between mitochondria
and the nucleus exists in eukaryotic cells [15,110–113]. Studies
suggest that retrograde cross talk involves epigenetic and genetic
changes, which play a key role in tumorigenesis.

6.1. OXPHOS induced epigenetic changes in the nucleus

Epigenetic modification in the nuclear genome plays a key role in
human tumorigenesis. Smiraglia et al. [114] performed Restriction
Landmark Genome Scanning (RLGS) with the methylation-sensitive
enzyme NotI, which recognizes the sequence GCGGCCGC, and showed
that 64 sites were hypomethylated and 50 sites were hypermethy-
lated when mtDNA was depleted from four different cell lines [114].
The methylation changes affected more than 9% of the CpG regions
tested. In one set of experiment, Smiraglia et al. [114] transferred the
original mtDNA into the p0 cells (devoid of mtDNA) to create a cybrid
line and then determined the reversibility of the 22 epigenetic
changes that were found after the removal of mtDNA. Interestingly,
when mtDNA was depleted, hypomethylation events outnumbered
hypermethylation events 3-to-1, strikingly similar to the loss of
imprinting events associated with increased tumorigenesis [115]. In
p0 cells, 17 sites became hypomethylated, and 5 sites were
methylated. After transfer of mtDNA, all 5 newly methylated sites
remained methylated, and 12 of 17 (70%) of the hypomethylated sites
remained hypomethylated. Only 5 of the 17 hypomethylated sites
(30%) were remethylated after the reintroduction of mtDNA. These
data suggest that OXPHOS impairment plays an important role in the
aberrant methylation of CpG islands found in nearly all cancers. The
identity of signal(s) that triggers epigenetic changes in the nucleus is
not known at this time. Since OXPHOS defect leads to changes in
redox status, membrane potential and the level of ATP, it is plausible
that either a single intracellular change or a combination of these
changes signal epigenetic changes [114].

6.2. OXPHOS induced genetic changes in the nucleus

In addition to epigenetic changes described above, studies indicate
that the OXPHOS defect results in genetic changes in the nuclear
genome [109,112,116]. This effect was due to an imbalance in
nucleotide pools induced by depletion of mtDNA [117]. We found
that nuclear genome instability was increased by injury to OXPHOS
[109,112,117]. We also demonstrated that OXPHOS dysfunction
activates an evolutionary-conserved error-prone DNA repair pathway
involving Rev1, Rev3 and Rev7 proteins [116]. We determined gene
expression changes associated with OXPHOS defect [110,113]. The
DNA repair proteins APE1, p53 and SMC4 [56,112] were down-
regulated in response to OXPHOS defective cells [112]. Importantly,
expression of these genes was reversed if OXPHOS function is
restored. These studies provide evidence for OXPHOS control of
genetic changes in the nucleus.

7. Mitocheckpoint in cancer

We previously described a conceptual framework of mitocheck-
point that monitors the functional state of mitochondria and responds
to spontaneous or induced injury to mitochondria [15,18,56,80,112,
118,119]. The mitocheckpoint coordinates and maintains the proper
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balance between apoptotic and antiapoptotic signals. Upon injury to
mitochondria, mitocheckpoint is activated to help repair injury to
mitochondria, restore normal mitochondrial function, and avoid
induction of mitochondria-defective cells. Early response to restore
normal mitochondrial function includes epigenomic changes in the
nucleus [120]. Thus, mitocheckpoint controls gene expression and
helps restore the incurred damage (Fig. 1) [56,110,121].

If mitochondria are severely injured, such an event will trigger
apoptosis (Fig. 1). If injury to mitochondria is persistent and defective
mitochondria accumulate in a cell, it would lead to nuclear genome
instability [109,112,116,117]. Accumulated nuclear genome instabil-
ity can help cells acquire new functions such as resistance to apoptosis
[109,121], migration, and invasive characteristics, which in turn, can
induce tumorigenesis [109,113] (Fig. 1).

Recent studies suggest that cellular senescence provides an
important barrier to tumorigenesis. Studies conducted in various cell
types provide in vivo evidence that senescence is a defining feature in
premalignant tumors [122–125]. Cellular senescence limits the capacity
to replicate, thuspreventing theproliferation of cells. Senescencebypass
appears to be an important step in the development of cancer [126]. Our
study suggests that injury to OXPHOS leads to cellular senescence [121]
and a bypass induces genetic instability in the nucleus [56,117]. We
propose that OXPHOS-induced cellular senescence may act as an
additional checkpoint mechanism that suppresses tumorigenesis
Fig. 1. Role of mitocheckpoint in reversible and irreversible injury to OXPHOS and in
development of cancer (see text for details).
(Fig. 1). In summary, we suggest that injured mitochondria activate
mitocheckpoint to restore normal mitochondrial function. When
mitochondria are 1) injured severely or 2) damage is persistent (for
example, mutation in mtDNA), mitocheckpoint can trigger cellular
senescence. Accumulation ofmutations inmitochondrial and/or nuclear
genomeof cells containing severely damagedmitochondriamay bypass
cellular senescence leading to resistance against apoptosis and
development of tumors. The mitocheckpoint shares the characteristics
of a signal-transduction pathway andmay contain components, such as
mitochondrial injury sensors, mediators, signal-transducers and effec-
tors [55]. Sensor protein(s) recognizes injury to mitochondria and
mediators signal the presence of injured mitochondria and initiate a
biochemical cascade(s). Transducers are likely to beprotein kinases that
relay and amplify the signal. Effectorsmay include a transcription factor
(such as p53; [55]), involved in regulation of DNA repair, cell
proliferation, apoptosis, and tumorigenesis.

8. Conclusions

This review provides a genetic insight into the Warburg's observa-
tionsofOXPHOSdefect and its role in cancer.Warburg stated that cancer
cells originate in two phases: 1: “The first phase is the irreversible injury
to (OXPHOS) respiration.” 2: “The irreversible injury to respiration
(OXPHOS) is followed, by a long struggle for existence by the injured
cells to maintain their structure, in which a part of the cells perish
(apoptosis) for lack of energy, while another part succeed in replacing
the lost respiration energy by aerobic glycolysis” [2]. We propose that
injury to OXPHOS induces mitocheckpoint response, which regulates
reversible epigenetic modification (such as DNA methylation) and
irreversible genetic changes in the nuclear genome. The genetic basis of
underlying “irreversible injury” to OXPHOS includes mutations in
mtDNA, reduced mtDNA content, and mutations in nuclear genes
affecting OXPHOS. Altogether, the available evidences suggest that
injury to OXPHOS may underlie development of cancer.
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