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Abstract 

We introduce the study of designs in a coset of a binary code which can be held by vectors of 
a fixed weight. If C is a binary [2n, n, d] code with n odd and the words of weights n - 1 and 
n + 1 hold complementary t-designs, then we show that the vectors of weight n in a coset of 
weight 1 also hold a t-design. We also show how to “extend” these designs. We then consider 
designs in cosets of type I self-dual codes, in particular in the shadow. If the vectors of a fixed 
weight in the code hold t-designs then so do the vectors of a fixed weight in the shadow. For 
[24k - 2,12k - 1,2 + 4/c] type I codes, these designs extend to designs in the type II parent 
code. 

1. Introduction 

A key problem in the theory of designs is the existence of a design with parameters t, 
v, k, and 1, denoted t-(v, k, A), when the necessary arithmetic conditions are satisfied. 
We are interested in the subsequent problem of extending an existing design and how 
this extension might be realized. We recall that a (t + 1)-(v + 1, k + 1, I,, 1) design is 
an extension of a t-(u, k, A,) design if when we remove some point from the extended 
design and look at those blocks which contain that point, then we obtain the t-(v, k, A,) 
design, also called the derived design. Clearly, certain arithmetic conditions must be 
satisfied for an extension of a design to exist. 

Lemma 1.1. A necessary condition for a t-(v, k, A) design to be extendible is that k + 1 
divide (v + 1)b where b is the number of blocks in the original design. 
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Coding theory has made many contributions to the theory of combinatorial 
designs. Codes generated by the incidence matrix of a design have been useful in either 
constructing the design or showing that the design does not exist, such as the 
projective plane of order 10. Designs have been found in the words of a fixed weight in 
a code. A method to determine if the words of a fixed weight “hold” a design is via the 
Assmus-Mattson theorem [ll, Chap. 61, which we give below. As we are only 
concerned with binary codes in this paper, we give the following version of this 
theorem. 

For brevity if all vectors of a fixed weight in either a code or a coset hold a t-design, 
we all them t-vectors. When we say the vectors in a code are t-vectors, we mean the 
vectors of each fixed weight are r-vectors. 

Theorem 1.1. Let C be an [n, k, d] binary code. Let t be a positive integer < d. Let 
s = 1 (i: Bi # 0, 0 < i < n - t} ( where Bi is the number of vectors of weight i in Cl. If 
s d d - t, then the vectors in C are t-vectors and the vectors in C’ are also t-vectors. 

We are interested in how coding theory might be used in order to extend designs. 
A natural place to look for vectors to extend a design held by the vectors in a code is in 
a coset of the code. This leads to two distinct problems. The weaker problem is to 
determine when vectors in a coset are t-vectors. The stronger problem is given 
a design in a coset, to determine when it can be used to extend a design in the code. 

In Section 2 we look at the problem of when a coset holds a design. When the length 
of the code is 2n with n odd, then under certain conditions the words of weight n in 
a coset of weight 1 hold a t-design. This design can be used, in conjunction with 
a design in the code, to construct a t-design on (v + 1) and (v + 2) points. We give 
many examples of codes where these designs occur. 

In the final section we find t-designs in a special coset, the shadow, of type I self-dual 
codes whenever vectors in the code are t-vectors. Based on parameters related to the 
shadow, we get conditions stronger than a generic application of the Assmus-Mattson 
theorem, determining that vectors in the code are t-vectors. We show that the baby 
Golay code Gz2 holds 3-designs without recourse to its automorphism group. We 
show how to extend these 3-designs to the Sdesigns in the Golay code Gz4, without 
resort to group theory. This procedure extends to the general class of extremal type II 
codes of length 24k. 

2. Codes, cosets and designs 

We introduce some terminology associated with the parameters of a t-design. Let 
P 1, . . . , Pi be points associated with the design. Recall that a t-design is also a (t - i) 
design for 0 < i < t - 1 and that the number of blocks containing i points is denoted 
by li. For t > i > j we define the block intersection numbers ~ij to be the number of 
blocks containing the points PI, . . . , Pj but which do not contain Pj+ 1, . . . , Pi. It is 
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known that the lij are independent of the points chosen [13, Theorem 863. If j = 0, 
then lie is the number of blocks that do not contain the points Pi, . . . , Pi. One sees 
that ~ii = 1i, but more generally we have that 

as well as 

Formula (1) follows from the inclusionexclusion principle. Formula (3) is the usual 
condition relating the parameters of a design. 

The block intersection numbers fit together to form a Pascal triangle. In other 
words the following relation holds: 

Aij = I-i+l,j + li+l,j+l. 

The entries of a Pascal triangle can be the block intersection numbers of a design if 
and only if the Lii satisfy formula (3). Also, note that the Pascal triangle associated to 
the derived design sits within the Pascal triangle of the original design and has its apex 
at the node A1 1. 

To say that one can extend the parameters of a design means that the associated 
Pascal triangle for the extension has the original Pascal triangle embedded with its 
apex at 1i 1. A Pascal triangle is symmetric if Aij = Li,i_j for all i, j. Our main result is 
a consequence of properties of the block intersection numbers of t-(2n, n, A,) designs. 
We show first that the associated Pascal triangle is symmetric. 

Recall that the complements of the blocks of a r-design constitute the blocks of 
a t-design called the complementary design [13, Theorem 913. 

Lemma 2.1. Let D be a t-(2n,n,A,) design. Then the associated Pascal triangle is 
symmetric. 

Proof. Since the complementary design of a t-(2n,n, A,) design is also a t-(2n, n, A,) 
design [13, Theorem 913, the Pascal triangle of a t-(2n, n, A.,) design is symmetric. Cl 

It is interesting that we are able to derive an equation among certain block 
intersection numbers from the symmetry of a Pascal subtriangle. 

Theorem 2.1. Let D be a t-(2n, n - 1, A,) design. Then thefollowing relation holds among 
the block intersection numbers: Ai, i _ 1 = Ai + I,0 + lli+ 1, i for 1 < i < t. 
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Proof. It suffices to show that the Pascal subtriangle with apex at AZ0 is symmetric. 
This is the Pascal triangle of the second derived design of the complements of the 
blocks and is a (t - 2)-(2n - 2, n - 1, A,_,) design which is symmetric by Lemma 
2.1. 0 

If all the weights occurring in the code are divisible by 2 then the code is called even. 
We consider only binary even codes which contain the all-one vector. We suppose 
that the vectors of a fixed weight in a code C hold a t-design. Clearly, when we 
puncture these vectors on the coordinate given by the coset leader, then these vectors 
constitute the blocks of the derived design. However, we are interested in extending 
designs, so we ask when cosets of weight one hold t-designs. We will need the 
following theorem due to Alltop [l] for our construction. 

Theorem 2.2. A 2t-(2n,n,Azt) self-complementary design is necessarily a (2t + l)- 
(2n, n, lz, + 1) design. 

The following theorem tells us when the “middle” weight vectors in a coset of weight 
one are t-vectors. Block intersection numbers in Theorems 2.4 and 2.6 refer to the 
t-(2n,n - l,J,) design and not to its complementary design. 

Theorem 2.3. Let C be a [2n, k] even code with n odd such that the vectors of weights 
n - 1 and n + 1 hold complementary t-designs. Then the vectors of weight n in a coset of 
weight 1 hold a t-design when t is odd and they hold a (t - 1)-design when t is even. 

Proof. Let E be a coset of weight one in C. Without loss of generality, we can say that 
the weight one vector in E has a one in the first coordinate. Note that vectors of weight 
n in E arise from vectors of weight n - 1 in C which have a 0 in their first position or 
from vectors of weight n + 1 in C which have a 1 in their first position. We will first 
show that these vectors hold a t - l-design. If a set of size t - 1 contains the first 
coordinate then A,_ 1, 1_2 vectors in C of weight n - 1 cover all but the first of these 
positions, hence A, _ 1, f _ 2 vectors of weight n in E cover it. If the t - 1 ones do not 
cover the first position then there are A,,,_ I vectors of weight n - 1 in C which cover 
these t - 1 positions but not the first position and there also are A,.0 vectors of weight 
n + 1 in C which cover these t - 1 positions and the first position. By Theorem 2.1 we 
know that A,_ l,t_2 = & + A,,,_ Ir so that these sums are the same and the vectors of 
weight n in E are t - 1 vectors. If t is odd, then t - 1 is even and Alltop’s theorem 
applies because the vectors of weight n are self-complementary so that we may 
conclude that these vectors are actually t-vectors. ??

There are two kinds of binary self-dual codes; those of type I contain vectors whose 
weights are = 2 (mod 4). All vectors in a type II code have weights divisible by 4. 
There are bounds on the largest minimum weight possible for both types of codes [13, 
Corollary to Theorem 841. A self-dual code whose minimum weight attains this 
bound is called extremal. 
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Consider the unique, extremal [22,11,6] self-dual code which we refer to as the 
baby Golay code. We will show later that all vectors in this code are 3-vectors. 
Therefore by Theorem 2.3 the words of weight 11 in a coset of weight 1 hold 
a 3-(22,11,72) design. 

We now show that the t-design that we have constructed on 2n points can be 
combined with the original design to contruct a t-design on 2n + 1 points. We have 
not extended the design in the traditional sense as then we would have a t + 1 design 
on 2n + 1 points. In these constructions the L in the designs is given in terms of the 
parameters of the original t-(2n, n - 1, A,) design. 

Theorem 2.4. Let C be a [2n, k] code with n odd such that the vectors of weights n - 1 
and n + 1 hold complementary t-designs. Adjoin an additional coordinate equal to one to 
the vectors of weight n - 1 in C and add a zero coordinate to the vectors of weight n in 
a coset of weight 1. Then the vectors of weight n - 1 in C extended in this way together 
with the extended vectors of weight n in a coset of weight 1 hold a t-(2n + l,n,?.,_,) 
design when t is odd and a (t - l)-(2n + 1, n, ll_ 2) design when t is even. 

Proof. If t is odd, then Theorem 2.3 gives a t-(2n, n, I,- 1 - A,) design along with the 
design with parameters t-(2n, n - 1, 1,) that come from the words of weight n - 1 in 
the code. We must show that the extended design is a t-design, that is that any t points 
are contained in the same number of vectors of weight n. Call the new point cc . If the 
t points are among the original points then AI + il- 1 - At = A,_ 1 blocks contain 
them. If one of the points is cx), then the only blocks containing them are the 
1, _ 1 blocks arising from vectors of weight n - 1. 

If t is even, then Theorem 2.3 gives only a (t - l)-(2n, n, Ar_ 2 - At_ 1) design. 
Therefore, when we extend we only get a (t - l)-(2n + 1, n, A,_,) design. 0 

To extend the design further we need the following result of Alltop [l]. 

Theorem 2.5. Any t-(2n + 1, n,&) design with t even is extendible to a t + l- 
(2n + 2, n + 1, A,+ 1) design by extending the blocks and adjoining complemenrs. 

We now extend the design to 2n + 2 points. 

Theorem 2.6. Under the assumptions of Theorems 2.3 and 2.4, if t is odd there exists 
a t-(2n + 2, n + 1,1,_,) design; if t is even there exists a (t - l)-(2n + 2, n + l,&3) 
design. 

Proof. If t is even, then Theorem 2.4 gives a t - 1 design on 2n + 1 points. Then t - 2 
is even and applying Theorem 2.5 we get a (t - l)-(2n + 2, n + 1, ;1,_ 3) design. If t is 
odd, then Theorem 2.4 yields a t-design. Then t - 1 is even and we can apply Theorem 
2.5 to get a t-(2n + 2, n + 1, A,_ 2) design. ??



160 G.T. Kennedy. V. Plessl Discrete Mathemalics 142 (1995) 155-168 

The above construction uses a coset of weight one to extend designs which are held 
by the support of words of a fixed weight in a code. However, we can apply these 
theorems to designs contained in vectors of a fixed weight in C u C’ when C is 
a formally self-dual code. A code C is called formally self-dual (jIs.d.) if C and Cl have 
the same weight distribution. Here we use cosets of weight one in the code and the 
corresponding coset in the dual. This construction is quite formal and we can restate 
the previous theorem without relying on properties of codes and cosets. 

Corollary 2.1. Let D be a t-(2n, n - 1, A,) design. It t is even then the following three 
designs exist. 
1. a (t - l)-(2n,n,A,_, - A,_,) design, 
2. a (t - l)-(2n + 1, n, A,_ 2) design and 
3. a (t - l)-(2n + 2,n + 1,1t-3) design. 
Zf t is odd then the following three designs exist 
1. a t-(2n, n, I,_ 1 - A,) design, 
2. a t-(2n + 1, n, A,_ 1 ) design and 
3. a t-(2n + 2,n + 1,A1_2) design. 

Some of our most interesting examples occur in formally self-dual even codes. If 
n = 1 (mod 4), then the union of words of any fixed weight in extrema1jIs.d. even codes 
C and C’ hold 3-designs [lo]. These occur at lengths 10 and 18. Hence the above 
theorems apply and we get new 3-designs. 

As stated previously the words of any fixed weight in the baby Golay code hold 
3-designs so that our theorems give new 3-designs on 22, 23 and 24 points. There is 
a known 3-(22,11,72) design which is a twice derived design from the Steiner system 
S(5,12,24). However, this design is not isomorphic to the design constructed above 
which will be shown in the next section. 

Magliveras and Leavitt [12] have constructed a 6-(20,9,112) design. This leads to 
new 5-designs on 20,21 and 22 points. Also, generalized quadratic residue codes often 
hold 3-designs because of the action of a 3-homogeneous group [14]. If the length of 
the code is = 2 (mod 4), then the above theorems apply and we obtain additional 
3-designs. In particular, there is a jIs.d. even [26,13,6] code that is a generalized 
quadratic residue code that has PGL(2,25) acting on it. The weight enumerator is 
1 + 65x6 + 325x8 + 1430~‘~ + 2275~‘~ + ... . This yields 3-designs on 26,27 and 28 
points. 

We give a small table of designs (see Table 1) constructed as above: 

Table 1 
Designs from cosets 

(2n, n - 1,A) (2h n, 2) (2n + l,n,l) (2n + 2,n + LA) Comments 

6-(20,9,112) 
3-(18,8,21) 
3-(26,12,385) 
3-(22,10,48) 

S-(20,10,924) 
3-(18,9,35) 
3-(26,13,539) 
3-(22,11,72) 

5-(21,20,1344) 
3-(19,9,56) 
3-(27,13,924) 
3-(23,101,120) 

S-(22,11,3808) 
3-(20,10,136) 
3-(28,14,2100) 
3-(24,12,280) 

Magliveras [ 123 
f.s.d. code [lo] 
f.s.d. code [lo] 
Baby Golay 143 
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3. Designs in cosets of self-dual codes 

In the first section we found t-designs held by vectors of weight n in a coset of weight 
1 of a code of length 2n (n odd) whenever vectors of weights n - 1 and n + 1 in the 
code held t-designs. We noted that this was particularly applicable to formally 
self-dual codes. In this section we will determine when cosets of type I self-dual codes 
hold designs. These codes have the property that a certain coset is distinguished. 

If C is a type I code, we let Co denote the unique subcode consisting of all vectors in 
C whose weights are divisible by 4. Clearly, Co has codimension one in C. Further- 
more, C = Co u Cz where C3 is a coset of Co in Ci. The distinguished coset of C in 
the whole space called the shadow is S = C1 u C3 where C& = Co u C1 u Cz u C3 
with Ci and C3 cosets of Co in Ck [7,9]. If C has length 2n then it is known that all the 
weights in the shadow are congruent to n (mod 4). The following theorem allows us to 
find designs in C. 

Theorem 3.1. Let C be a type I [2n, n, d] code where n = 0, 1,3 (mod4). Let t be 
a positive integer with t < d. Assume that Co has s distinct non-zero weights d 2n - t. 
Let d= wt(S) and let d’ = minimum( Zf s < d’ - t, then the vectors in C are 
t-vectors. 

If n is odd, then the vectors in Co are t-vectors as are the vectors in C2 u S. 

Proof. We apply the Assmus-Mattson theorem to the code C,’ = C u S. As d’ is the 
minimum weight of CA, the Assmus-Mattson theorem states that the vectors of any fixed 
weight in Co hold t-designs as well as the vectors of a fixed weight in C$. As n is not 
congruent to 2 (mod 4), the vectors in C2 are the only vectors in Ck of weight E 2 (mod 4) 
and so hold t-designs. If n is odd, then the vectors in Ci = Co u Cz u S are t-vectors 
by the Assmus-Mattson theorem, but Co n (C, u S) = 0, so the result follows. 0 

The restriction on n in the previous theorem is necessary as there exists a [28,14,6] 
self-dual code with weight enumerator 

1 + 42x6 + 378x8 + 1624x” + 3717~‘~ + 4680~‘~ + ... 

such that the words in Co are 2-vectors but the words in C2 hold only a l-design, even 
though the words in C2 u S hold a 2-design. Also, the previous proof leads to the 
following theorem about designs held in the words of a fixed weight in the shadow. 

Theorem 3.2. Let C be a type I [2n, n, d] code whose vectors are t-vectors. Then the 
vectors in the shadow are also t-vectors. 

Proof. As Co is the unique subcode of C consisting of vectors whose weights are 
E 0 (mod 4), the vectors in Co are t-vectors. Hence, by the Assmus-Mattson theorem 

the vectors in Ch are also t-vectors. Recall that C,’ = Co u C2 u S. We consider 
separately the three cases; n is odd, n E 0 (mod 4) and n G 2 (mod 4). If n is odd, then 
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the vectors in S are t-vectors as these are the only odd weight vectors in Ck. If 
n E O(mod 4), then both vectors in C,, and vectors in S have weights E O(mod 4). 
Since vectors in C,, hold t-designs and vectors in Ch hold t-designs, the vectors in 
S hold t-designs. If n E 2 (mod 4), a similar argument holds as we can show that the 
vectors in C2 must hold t-designs. 0 

Often when vectors in the shadow hold a t-design, then so do the vectors in Cr and 
C3 separately. 

Theorem 3.3. Let C be a type I [2n, n, d] code and let t be a positive integer with t < d. 
Assume that the vectors in Co are t-vectors. Let di be the minimum weight of Ci, i = I,3 
and let si be the number of weights < 2n - t in Ci. If n is odd and either s1 < ds - t or 
s3 6 dI - t then the vectors in either C1 or C3 are t-vectors. If n is even and si < di - t, 
i = 1,3, then the vectors in either C1 or C3 are t-vectors. 

Proof. As the vectors in Co are t-vectors, so are the vectors in Cij = 
C,, v C2 v C1 v C3. If n is odd, we note that C,, u C1 and Cc, v C3 are dual codes. 
Suppose s3 6 dI - t. Let D be the [2n - t, n,dI - t] code obtained by puncturing 
Co u Ci on a fixed set T of t coordinate positions. Then D’ is the [2n - t, n - t, d3] 
code gotten by cutting t coordinates off the subcode of Cc, u C3 which is zero on these 
t coordinates. Since vectors in C,, contain t-designs and the only weights E 0 (mod 4) 
in D’ arise from vectors in Co with zeros on these t positions, all weights in 
D’ s O(mod4) are uniquely determined. As s3 < dI - t, using the power moment 
identities [13, Section 8.31 we can determine all the remaining weights in D’, hence in 
D. Thus the vectors of a fixed weight in Ci hold a t-design. If s1 < d3 - t, then we 
interchange the roles of Co u C1 and Co u C3. 

If n is even, then Cc, u Ci and C,, u C3 are each self-dual and the conditions that 
si < di - t tells us that vectors in either C1 or C3 are t-vectors as this known for 
vectors in Co. 0 

Theorem 3.4. Let n G 0 (mod 4) and suppose that C satisjes all the other assumptions of 
Theorem 3.1. If one of the type II codes Co v C1 or Co v C3 hold t-designs, then the 
vectors in C1 and in C3 hold t-designs. 

Proof. By assumption the vectors in C,, are t-vectors. By Theorem 3.2 we know that 
the shadow also holds t-designs. If either Co u C1 or Co u C3 hold a t-design, then so 
must Cr and C3 separately. 0 

Consider the “odd Golay code” which is a [24,12,6] self-dual code [9]. Its weight 
distribution W(x) = 1 + 64x6 + 375x” + 960x” + ... and the weight distribution of 
the shadow S(x) = 6x4 + 744x’ + 2596~‘~ + ... . Since s = 3 and d’ = 4, Theorem 3.1 
shows that C holds a l-design. Theorem 3.2 says that the vectors in the shadow also are 
l-vectors. As Co u C3 is the Golay code, by Theorem 3.4, C1 and C3 hold l-designs. 
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Table 2 
The distribution of weights in the cosets of the [22,1 I.61 bary Golay code 

Weight 01234 5 6 I 8 9 10 11 Number 

0 1 11 330 616 I 
I I 21 176 490 612 22 
2 1 5 12 320 626 231 
3 2 24 168 488 684 770 
4 8 72 312 632 110 
5 32 160 480 704 231 
6 112 240 612 22 
I 352 1344 1 

We will apply these theorems to the baby Golay code which actually inspired them. 
By Theorem 3.1 the vectors in any [22,11,6] self-dual code are 3-vectors. This was 
known previously since the baby Golay code GZ2 is the unique [22,11,6] self-dual 
code and the three design property follows from its triply transitive automorphism 
group. However, our proof is independent of any group action. By Theorem 3.2, we 
get the new result that the vectors in the shadow are 3-vectors. We show that these 
pieces of information about the baby Golay code determine its complete coset weight 
distribution, and these cosets exhibit a remarkable structure [4] (see Table 2). 

We note first that there is a unique coset weight distribution for each coset of 
a given weight. The fact that the vectors of each weight in GZ2 hold 3-designs 
determines the weight distributions of any coset of GZ2 of weight one, two or three. 
The number of cosets of these weights is also determined. The argument for the other 
cosets is more subtle. Consider the coset of weight 7. By Corollary 1 of [3], the weight 
distribution of a coset of weight 7 is uniquely determined. Any coset with these gaps in 
its weight distribution must be orthogonal to the unique codimension one subcode 
whose weights are all divisible by four. Hence, the only weight 7 coset is the shadow. 
As the vectors of weight 7 in the shadow hold 3-designs, there are 112 vectors of 
weight 6 in a coset of weight 6 with a zero in a fixed position. The vectors of weight 8 in 
such a coset arise from vectors of weight 7 in the shadow with a zero in that position, 
of which there are 240. This determines the weight distribution of the 22 cosets of 
weight 6. The 2-designs held by the vectors of weight 7 in the shadow determine 
(‘2) = 23 1 cosets of weight 5 with 32 vectors of weight 5. These vectors all have zeros 
in two fixed positions. As all other vectors in a weight 5 coset have odd weight and all 
other odd weight vectors in the space have been determined, the entire weight 
distribution of a weight 5 coset can be calculated. There are 8 weight 7 vectors in the 
shadow which have zeros in 3 fixed positions. This gives 8 for the number of vectors of 
weight 4 in a coset of weight 4. The number of such cosets is 770 as there is no room 
for anymore. In this case weight 4 vectors (which are covered by a weight 7 vector in 
the shadow) with O’s on 3 different positions can be in one coset if the two sets of 
3 positions constitute a weight 6 vector in G22. The rest of the weight distribution of 
a weight 4 coset is now completely determined as all other even weight vectors have 
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Table 3 
The distribution of weights in the cosets of the [6,3,2] self-dual code 

Weight 0 1 2 3 4 5 6 Number 

0 1 3 3 1 1 
1 2 4 2 3 
2 4 4 3 
3 6 1 

been accounted for. We note the pairing between weight i and weight 7 - i cosets for 
i = 1,2,3. The leaders in paired cosets have ones (weight i) where the leaders in the 
corresponding pair have zeros (weight 7 - i). 

As in [S], we define a partial ordering on the cosets of a binary code. If Ci and C2 
are cosets of C, we say that Ci < Cz if there exists a coset leader of Ci which is covered 
by a coset leader of Cz. In other words the support of one is contained in the support 
of the other. The set of all cosets of a code form a partially ordered set under this 
order. An orphan is a maximal element in a chain. We note that the shadow is the 
unique orphan of Gz2. Thus, every coset of Gz2 is < the shadow. We can define the 
rank of a coset to be its weight. One can show that the cosets of a binary code form 
a ranked coset under this rank function [2]. 

Let Ni denote the number of cosets of a given rank, i.e. weight. Then for Gz2 the Ni 
are unimodal[2] and symmetric, i.e. Ni = N7 -i. We know of only one other example 
of this phenomenon, namely a [6,3,2] self-dual code, which is a child of the [8,4,4] 
Hamming code. Both of these codes are children of distinguished type II self-dual 
codes, the Golay code Gz4 and the Hamming code E,. We give the complete coset 
weight distribution of this child of Es (see Table 3). 

Once again there is a unique orphan, the maximal weight coset. By Theorem 3.2, 
vectors in this coset hold a l-design. 

Proposition 3.1. Let C be a binary code with minimum distance at least 3. If the minimum 
weight vectors in any coset of C hold a l-design, then that coset is an orphan. 

Proof. By [S] a coset of a code as described above is an orphan if and only if the 
coset leaders of weight w or vectors of weight w + 1 cover all the coordinate 
positions. Cl 

Under the conditions of the next proposition if a coset of weight s exists, the code 
has covering radius s and so this coset must be an orphan. 

Proposition 3.2. Suppose C is an even weight binary code and C’ has s distinct non-zero 
weights, then the vectors in a coset of weights s (if it exists) are l-vectors. 
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Proof. We suppose that a coset of weight s exists. Then, the theorem follows as 
a corollary of Delsarte’s theorem which says that the weight distribution of a coset of 
weight s - 1 is unique. See [3]. 0 

If C is a type II code of length 2n z O(mod 8) then a type I child [S] C’ of C has 
length 2n - 2 z 6(mod 8). The vectors in C’ are those vectors in C with 11 or 00 in 
two fixed positions with those positions removed. Every type I code of length 
z 6 (mod 8) is a child of a type II code. 

Let C be a type II code of length 2n = O(mod 8) and let C’ be its type I child of 
length 2n - 2 = 6(mod 8). If C’ = Co u C2 has shadow S = C, u C3, then its parent 
can be constructed by adjoining 00 to vectors in C,,, 11 to vectors in CZ, 01 to vectors 
in Ci and 10 to vectors in CJ. If the parent, C is an extremal type II code, then the 
vectors of any fixed weight in C hold a l-design. Hence, the weight distribution W, of 
Ci and W, of C3 must be the same. We have demonstrated the following theorem. 

Theorem 3.5. If C is a type I child of an extrema! type II parent with shadow 
S = Cl u C3, then WI = W,. 

By Theorem 3.4, we get that WI = W, for the type I [54,27, lo] code with shadow 
of weight 11, and for the type I [38,19,8] code with shadow of weight 7. These 
decompositions are not listed in [9]. 

One of our interests in finding designs in cosets is in order to extend designs. We 
show first how to construct the 5-designs associated to the [24,12, S] Golay code, GZ4, 
from the 3-designs in GZ2 and its cosets without relying on its automorphism group. 
One reason for doing this is that a similar situation occurs for [24k, 12k, 4k + 41 
extremal type II codes where such highly transitive automorphism groups do not 
exist. 

We construct a [23,12,7] self-orthogonal code D from GZ2 as follows: the vectors in 
D are of the following type: 
1. (c,O) where c is in Co u C,, 
2. (c, 1) where c is in C2 u C3. 
Here Ci refers to the decomposition of G 22 and its shadow. By Theorem 3.5 we know 
that WI = W,. By the Assmus-Mattson theorem the vectors in D or D* are 4-vectors. 
Hence D is the well-known [23,12,7] Golay code GZ3. 

By Theorem 2.3 we know that the 672 vectors of weight 11 in a coset of weight 1 of 
GZ2 hold a 3-design. Call this set E. By Theorem 3.3 we know that the 672 vectors of 
weight 11 in either Ci or C3 hold 3-designs. We note that even though these 3-designs 
have the same parameters they cannot be equivalent as they have different automor- 
phism groups. The group of E is the stabilizer of a point in Mz2 while the group of 
C1 or C3 is all of Mz2. We cannot use E to extend the 3-designs held by vectors of 
weight 10 in GZ2 to 4-designs held by vectors of length 23 and weight 11. 

Extending GZ3 to a [24,12, S] code C by adding an overall parity check gives the 
same code as adjoining the all-one vector to G i3 extended. This amounts to adjoining 
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complements to the vectors of weight 11 in Gi3 extended, which is the content of 
Theorem 2.5. By the Assmus-Mattson theorem, the vectors of any weight in C hold 
5-designs. Hence C is the well-known extended Golay Gz4. We can treat the general 
case in an analogous way. 

Theorem 3.6. Let C be a [24k - 2,12k - 1,2 + 4k) self-dual binary code whose 
shadow has minimum weight 3 + 4k. Then C is a child of an extremal type II 
[24k, 12k, 4 + 4k] code. Furthermore, the vectors ofany weight in C and its shadow hold 
3-designs and these 3-designs can be extended to S-designs in its extremal parent as 
described above. 

Proof. The general proof is similar to the proof for the last example. 0 

There exists a [46,23, lo] self-dual type I code C whose shadow has weight 11 [9]. 
By the last theorem the vectors of any weight in C and its shadow hold 3-designs and 
these designs can be extended to the 5-designs in an extremal [48,24,12] type II code. 
A long-standing open problem is the existence of an extremal [72,36,16] code. If it 
exists, so must its children, in particular a [70,35,14] self-dual code whose shadow has 
weight 15. We conclude by giving the weight enumerator of this code and its shadow 
since its existence is unknown. Unfortunately, the weight enumerator of the shadow 
has the necessary divisibility properties for holding 3-designs. 

Recall that the weight enumerator of any self-dual binary code can be represented 
as an integral combination of Gleason polynomials and that the coefficients in this 
combination also determine the weight distribution of the shadow. See [9] for a proof 
of the following. 

Theorem 3.7. Let C be a binary self-dual code such that 

b/81 
W(Y) = C Uj’(1 + y2)n’2-4j{4,2(1 - Y2)2}2j 

j=O 

then 

s(Y) = C (_ l)jaj.2n/2-6jyn/2-4j(l _ y4)2j 

i=o 

If C is a [70,35,14] self-dual code, then to compute its weight distribution we need 
to determine aI, a2, . . . , as, as a0 = 1. Since d = 14, aI, . . . ,a6 are determined and a7 
and a8 are arbitrary. Since C is a child of an extremal[72,36,16] type II code, then its 
shadow must have minimum weight 15, which implies that a6 = a7 = a8 = 0. Thus 
a child of a [72,36,16] code has a unique weight distribution. We give the weight 
distribution of this [70,35,14] code along with the weight distribution of its shadow 
see Tables 4 and 5. 
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Table 4 
Weight distribution of a [70,35,14] child of an extremal [72,36,16] code 

Weight Number Factorization 

2 3 5 7 11 13 17 19 23 31 43 47 281 863 7853 

14 11730 1 1 1 1 1 
16 15035 11 1 1 1 
18 1345 960 3 11 1 1 1 
20 9 393 384 31 1111 I 
22 49 991305 1 1 1 1 1 1 
24 204312290 1 1 1 1 1 1 1 
26 650311200 5321 1 1 1 
28 1627 498 400 5 2 2 1 1 1 
30 3221810284 2 1 1 1 1 1 1 
32 5 066 556 495 1111 11 1 1 
34 6 348 487 600 4 2 1 1 1 1 

Table 5 
Weight distribution of its shadow 

Weight Number Factorization 

2 3 5 7 11 13 17 23 281 503 863 1201 

15 87 584 5 1 1 I 
19 2 524 480 6 1 3 1 
23 208 659 360 5 111 1 1 1 
27 1762 190080 8 1 1 1 1 1 
31 8314349400 6 11 I 1 1 I 
35 12 728 678 400 11 2 2 1 1 
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