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Let # be a family of “large™ (in various senses, ¢.g.. of positive Hausdorff dimen-
sion or Lebesgue measure) subsets of R. We study sets D of real numbers which are
# -densing, namely have the property that, given any set He # and ¢> 0, there
exist an « € & for which the sct «f{ is e-dense modulo 1. In the special case, where
# consists of all subsets of R having a finite accumulations point, # -densing sets
are simply Glasner sets, studied earlier. ¢ 1995 Academic Press, Ine

1. INTRODUCTION

Denote by T =R/Z the circle group. A subset of T is ¢-dense in T if it
meets every interval of length ¢. A subset of R is ¢-dense modulo 1 if its
projection in T 1s ¢-dense in T. Glasner, dealing with some generalizations
of Kronecker’s theorem, proved the following.

ProposITION A [G]. Let A be an infinite subset of T. Then, for any
&> 0 there exists an integer n such that the set nd=1{na:ae A} is e-dense
inT.

In [BP] the notion of a Glasner set of integers was introduced. A set
S<Zis a Glasuner set if, for A and ¢ as in the proposition, an appropriate
n can be chosen from §. With this terminilogy, Proposition A amounts to
the assertion that Z is a Glasner set. It turns out [ BP] that there are many
quite small sets of integers which are Glasner. For example, any set with
positive (Banach) density is such, and so 1s the set of values assumed by
any non-constant integer polynomial. On the other hand, lacunary
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sequences (and finite unions thereof), as well as some other families of sets,
fail to have the property. It will follow from Proposition 3.1 that “most”
sublacunary sequences, however, are Glasner sequences (see the discussion
following Proposition 3.7).

We mention in passing that Proposition A also admits a quantitative
version, which provides ¢-dense dilations for sufficiently large (as a function
of &) finite sets 4. This has been the starting point of [AP], where
analogous results were obtained with low discrepancy replacing small gaps.
This quantitative result was also imperative in proving that a sublacunary
sequence has only a Hausdorfl dimension 0 set of dilations which are not
dense modulo 1 [Bo2, Theorem 1.3] (as opposed to the situation for
lacunary sequences [ M, P1]).

Our goal here is to study the analogue of a Glasner set if we only require
the property of having arbitrarily dense dilations to hold for sets satisfying
some “largeness” property. As dilations of sets and of their closures are
“equally dense”, we shall consider dilations of closed sets only. Denoting by
# the family of all closed subsets of R, we start with the following.

DeFmviTION 1.1, A family % of closed subsets of R is a family of slim
sets, and its complement # in .Z is a family of hefty sets, if it satisfies the
following properties:

{1) If Ae ¥ and B< A then Be.¥.
(2) If Ae ¥ then rd +se ¥ for every r, seR.
(4) If AnJe ¥ for every closed finite interval J< R, then 4 € .7,
4)
)

( % 1s closed under finite unions.
(5

[0Yes R¢S.

The complement in .# of a family of slim sets is a familv of hefty sets.
It will be actually more convenient to state all our results in terms of
families of hefty sets. Throughout the paper, # will denote an arbitrary
family of hefty sets and %" the corresponding family of slim sets. A closed
set A 1s # -hefty (or simply hefty) if Ee # and #-slim if Ee .

We shall now present a few “natural” examples of families of hefty sets;
these will be treated more carefully later.

ExampLE 1.1. The following are families of hefty sets (in each case, only
closed sets are considered):

(1) .+ —the family of all non-discrete sets. This is the largest family
of hefty sets. For, by properties (2) and (5) in Definition 1.1, .¥" must
contain every finite set and therefore, by property (3), every discrete set as
well.
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(2) “—-the family of all uncountable sets.

(3) # 7 _;—the family of all sets whose Hausdorfl dimension exceeds
d (for any fixed 0<d < 1).

(4) # #--the family of all sets intersecting some finite interval on a
set of Hausdorfl dimension 1. (Note that the family of all sets of Hausdordl
dimension 1 is not a family of hefty sets according to our definition.)

(5) .4 _, -the family of all set of positive Lebesgue measure.

(6) Y.the family of all sets containing an interval (of positive
length). This is the smallest family of hefty sets. In fact, if there exists an
Se . containing an interval, then, by properties (1) and (2) in Defini-
tion 1.1, every closed finite interval belongs to /. But then (3) implies that
R €., which is impossible.

DeriNITION 1.2 A set DS R is . -densing if for every He # and ¢ >0
there exists an ¢ € D such that the set «H 1s ¢-dense modulo 1.

With this terminology, Glasner sets are .+ -densing sets (of integers).

In Section 2 we formulate a few equivalent conditions for a set to be
# -densing and some results for general families of hefty sets. It turns out,
for example, that a bounded perturbation of an .#'-densing set is such as
well (Theorem 2.4), and, in particular, the property of being a Glasner set
1s invariant under such perturbations. Section 3 deals with the special
families defined in Example 1.1. Clearly, as these families become smaller
and smaller, a densing set for one of them is necessarily densing for its
successor. We show that for each such pair of families (with the exception
of the last two), there exist sets which are non-densing with respect to the
first family, yet they are densing with respect to the second. Section 4 is
devoted to proving the theorems presented in Section 2 and Section 3. In
Section 5 we deal with sets satisfying a condition even stronger than being
.{"s-densing- -analogous to the quantitative version of Proposition A
mentioned earlier. While this condition is not equivalent to being
# -densing for any family of hefty sets, it 1s nevertheless very related and
turns out to enjoy similar properties.

2. THE MAIN RESULTS

The following two lemmas are routine. The proofs of the other results
will be deferred to Section 4.

Limma 2.1, Every # -densing set is unbounded.
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LEMMA 2.2. If the set DR is #-densing then so is rD+s for any r,
seR, r#0.

Denote by |J| the length of a finite interval J.

THEOREM 2.1.  The following conditions on a set D S R are equivalent:

(1) D is #-densing.
(2)  For every mapping . D — R and every interval J with |J| >0 the
set
V=V, Jy={xeR:ax+y(a)¢J (mod 1), ae D} (2.1)
is slim.
(3)  For every ¢ >0 and every mapping . D — R the set of all xeR,
Jor which the set {ax+y(a):ae D} is not e-dense modulo 1, is slim.

(4)  There exists an interval I with |I| > 0 such that, for every mapping
. D — R and every interval J with |J| >0, the set

W, J,)={xel:ax+y(a)¢J (mod 1), ae D} (

o
o

is slim.

(5)  There exists an interval I with |1 >0 such that, for every ¢ >0 and
every mapping . D — R, the set of all x€ I, for which the set {ax +y(a):
ae D} is not e-dense modulo 1, is slim.

ExaMpLE 2.1. In Theorem 2.1 it is not enough to test conditions
(2)-(5) for ¥y =0. In fact, the set {276" : m, n =0} is not .4"&-densing [ BP,
Theorem 1.5], yet it satisfies the conditions in the theorem for y =0 (as
follows from [F1, Chap. IV]).

A set E<R is a-slim if it is contained in a countable union of slim sets.
The implication (1)=-(3) in Theorem 2.1, applied to ¢ =0, yields the
following.

THEOREM 2.2. If set D <R is #'-densing, then the set of all xeR for
which the set Dx is not dense modulo 1 is o-slim.

As there are many results pertaining to the number of dilations of
various sets which are not dense modulo 1, Theorem 2.2 is particularly
useful for showing that certain sets fail to be .#-densing.

CoroLLARY 2.1. If (a,) is a Glasner sequence, then for every ¢ >0 and
every sequence (f5,) the set of all aeR, for which the sequence a,x—f3, is
not e-dense modulo 1, is finite. Moreover, under the same conditions (or,
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more generally, if (a,) is only assumed to be a #-density sequence), for every
sequence (1)) the set of all xe R, for which the sequence a,x—f, is not
dense modulo 1, is denumerable.

THEOREM 23. Letr D<R an A -densing set, KSR any set, and
F=1f,-ueD} a fumily of functions f,:K—R. Suppose F is equi-
continuous on every hounded subset of K. Then:

(1) For any interval J with }J| >0, the set

U=lyeK:ux+ f(x)¢J (mod 1), ue D] {

89}
W

is slim.
(2} The set E of all xeR for which the set {ax + f(x) 1 ue D} iy not
dense module 1 is a-slim.

A set AR 1s a bounded perturbation of a set B R if there exists a
constant M such that every interval of length M centered at a point of
A w B contains both a point of 4 and a point of B.

THEOREM 24, The property of being A -densing is invariant  under
bounded perturbations.

The theorem follows as special case from Theorem 2.3. It implies in
particular that, in studying # -densing sets, one may restrict his attention
to sets of integers.

The next theorem provides a sufficient condition for a set to be
# -densing. It utilizes the notion of a uniformly distributed modulo 1
(henceforward u.d. mod 1} sequence (for the definition and basic propertics
of uniform distribution modulo 1., in R as well as in R’ see [ KN]).

THEOREM 2.5. Let D={r,:neN}. Denote by E the set of all xeR for
which the sequence (r,2) is not ud. mod 1. Suppose no countable union of
transiates of E contains an # -hefty set. Then D is # -densing.

3. DENSING SETS FOR SPECIFIC FAMILIES

We shall investigate here densing sets for the families of hefty sets
presented in Example 1.1. In particular, it will follow that, for each of the
first four families in that example, there exists a set which is not densing for
that family but is densing for the next family. For the last two familics,
being densing is equivalent.

A sequence (r,) in R is homogencously distributed if the sequence (r,2)
is ud. mod | for every a#0. A sequence (r,) in Z is homogencously
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distributed if the sequence (r,a) is u.d. mod 1 for every irrational a and,
moreover, (r,) is u.d. modulo every integer m#0. (See [Bol], where
different, but equivalent, definitions were given. In general, a sequence in a
locally compact abehan group G is homogencously distributed if it is
uniformly distributed in the Bohr compactification of the group relative to
the Haar measure.)

PrROPOSITION 3.1. A homogeneously distributed sequence of reals or of
integers is A 7-densing.

Given an increasing sequence (#1;),/_, of non-negative integers, consider
the set:

L
D:{Z ik)zk:LeN,§k=0.1}. (3.1)

A=1

(This set is the so-called IP-set generated by the sequence (n,) [F2.
Definition 2.3].)

PROPOSITION 3.2, Suppose ny is a proper divisor of ny , | for each k. Then
D is Ar-densing if and only if the sequence (n, . | /n,) is bounded.

Now if, say, n, =2"% where (m,) is an increasing sequence of integers.
then, according to the proof of Proposition 4.1 in [ BP], the set D defined
in (3.1) i1s not .1"%-densing unless (m,) contains all integers from some
place on. Since, by Proposition 3.2, D is #-densing in this case if and only
if the sequence (n1, , , —n1,) is bounded, this proves the following.

COROLLARY 3.1.  There exists a #-densing set which is not V' &-densing.

The following strengthened version of [ BP, Proposition 4.1] is another
consequence of the “only if” part of Proposition 3.2.

PROPOSITION 3.3, For any sequence (3,) satisfving 0, <1 for each n and
d,— 0, there exists a non-4-densing set P <N such that

# (PN [L.n])=d, n, nz=l.

In fact, let D be again as in (3.1), with n,=2"* and observe that
{m,, , —m,) can be unbounded while »1, —k diverges to infinity arbitrarily
slowly.

PROPOSITION 34. A finitely generated multiplicative  semigroup  of
integers, whose generators have a non-trivial common divisor, is not
U-densing.
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A sequence (r,) of positive numbers is lucunary if r, ., > Ar, for some
A> 1. The sequence is sub-lucunary if r,— oc and r,, /r,— 1. It is super-
lacunary \f r,, | /r,— oo

o 1

PROPOSITION 3.5. A sub-lucunary sequence is # & _ -densing.

In view of [FIl, Lemma IV.1], a multiplicative semigroup of positive
integers, not contained in the set of powers of a single integer, is sub-
lacunary. It follows that the semigroup {276":m, n>=0}, for example,
satisfies the conditions of both Propositions 3.4 and 3.5, which implies the
following.

COROLLARY 3.2, There exists a K densing set which is not
W-densing.

PROPOSITION 3.6, Let (r,) be an increasing  sequence of integers
satisfving v, =On'y for a certain real number =1 Then (r,) is
H s densing,

ProposITION 3.7.  Let (r,) be a finite union of lacunary sequences of
positive numbers. Then (r,) is not H 7 rdensing for any d <1.

Note that the proposition is best possible in the following sense. Given
any sequence growing slower than exponentially, a random “small” pertur-
bation of the sequenced almost surely forms a homogeneously distributed
sequence [ AHK; Bol] (see also [Bou] for a different random construc-
tion) and is, therefore, . " &-densing.

PrROPOSITION 3.8. A sequence (r,) of positive real numbers, satisfying
v, o and r, , | < Cr, for some constant C is A 7-densing.

The proposition follows direct from [ Bo2, Propositions 3.4 and 54].
A straightforward consequence of Propositions 3.7 and 3.8 is the following.

COROLLARY 3.3, There exists a # 7 -densing set which is not # & _ »
densing for any d < 1.

PROPOSITION 3.9.  Super-lucunary sequences are not # &,-densing.

The proposition follows immediately from the following result, which we
prefer to state separately.

ProposiTiON 3.10.  If (r,) is super-lacunary, then for every ¢ >0 the set
lxeR:|r, 2l <& ne N} is of Hausdorff dimension 1.
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The proof is a simple application of [ ET, Theorem A] (see also [ET,
Theorem 8A] for a related result).

PROPOSITION 3.11.  Any unbounded set is £ . _ ,~densing.

The last two propositions yield the following.

COROLLARY 3.4. There exists an L H_ ,-densing set which is not # -
densing.

Also, by Lemma 2.1 and Proposition 3.11 we obtain the following.

CoROLLARY 3.5. Let D<R. The following conditions are equivalent:
() Dis @ #_,
(2) D is £9-densing.
(3) D is unbounded.

-densing.

4. PROOFS

In this section we prove all the results stated, but not proven, in the
preceding two sections.

Proof of Theorem 2.1. We establish the theorem by proving the chain
of implications (1)=(2)=(3)=(5)=(4)=(2)=(1).

(1)=(2) Put ¢=|J|. By the definition of V, for any ¢« € D we have
ax¢J—y(a) (mod 1), xe V. In particular, V' is not ¢-dense modulo 1,
which means that V is slim.

(2)=(3) Follows straightforwardly from the fact that for every &> 0,
T is a finite union of intervals of length ¢/2.

(3)=(5) Obvious.

(5)=(4) Obvious.

(4)=1(2) Let G denote the family of all sets K< R having the
property that, for every mapping : D — R and interval J with [J] > 0. the
set W(, J, K) (defined as in (2.2), except that K is not necessarily an
interval), is slim. We first claim that G is closed under translations. In
fact, let Ke G and ¢ e R. Given ¥: D — R and interval J, we readily observe
that Wy, J, K+c¢)=W(y,.J. K), where ¢,:D—-R is defined by
Yi(a) =y(a) + ca. Consequently, Wiy, J, K+ ¢) is slim, so that K+c¢eG.
Since a finite union of slim sets is itself slim, G is closed under finite unions,
and it is certainly closed under passage to subsets. Thus every finite interval
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belongs to G, and (by the definition of a family of slim sets) R e G, which
means that V(. J)= Wiy, J.R) 1s shm.

{2)={(1) Suppose wec have a set E such that «F is not ¢-dense
modulo 1 for any ¢ € D. Let J be an arbitrary interval of length ¢. Then for
every a € D there exists a yy(«) e R for which the sets «£+ (a) and J+ Z
do not intersect. Let ¥ be as in {2.1). Then V is slim and, since E< V. so
is E. This proves the theorem.

Proof of Theorem 2.3. (1) We may assume K to be bounded. Write
J={(ua. b), and choose ¢ with 0 <& <(b—u)}/2. Putting L =(a+¢, b—¢) we
have |L| > 0. Since F is equi-continuous on K, there exists a ¢ >0 such that
| f.(v)—f.(x} <e¢ for every ae D and ~, ve K with [y — x| <d. Take a
finite set B which 1s d-dense in K. Denote

Viby={xeK:ax+f,(h)¢ L{mod 1), ae L}, heB.

In view of Theorem 2.1, each FV(bh) is slim, whence so is the set
V=1),., Vth). It remains to show that U< V. in other words, that xe K,
y¢lV=x¢Ul.

In fact, choose h,e B with |x—b,| <d. Since x¢ V(h,), there exists an
dype D such that w,x + 1, (hy)e L {mod 1). Then |/, (x)— [, (by)] <& and,
therefore, ¢,x + £, {x)eJ {mod 1). Thus x ¢ U.

(2) The proof of this part is analogous to that of Theorem 2.2,
This completes the proof.

Proof of Theorem 24, We have to show that, it D <R is # -densing
and D, +( —c¢. ¢)2 D for some ¢ >0, then D, is .# -densing as well. In fact,
take a function g: D — D, such that |g(a)—a| <c. ueD. As g(D)> D, it
suffices to show that g( D) 1s # -densing, and we proceed to accomplish this
by using the criterion for being # -densing provided by Theorem 2.1. To
this end, given an arbitrary mapping . D — R, define a family of functions
F=1f aeD} by

o= (gla)—a)x +ylgla)), aeD, xeR.

Obviously, F forms an equi-continuous family of functions from R into
itself, and consequently, applying Theorem 2.2.(1} with K =R, we see that
for every interval J of positive length, the set U defined in (2.3) is slim.
Now ax + f,(x) = gla)x + Yigl«)), whence by Theorem 2.1 the set g(D) is
# -densing. This proves the theorem.

For the proof of Theorem 2.5 we need the following.

Provosmion 4.1, Let (r,,) be « sequence of reals. Denote by E the set of
all xe R for which the sequence (r, o) is not ud. mod 1. Let AR he a set
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not contained in any countable union of translates of E. Then there exists a
sequence (o) in A such that for every [€ N the sequence (r, (o, %, .., %,})
is ud mod 1 in R'.

Proof. We construct the sequence («,) inductively. Take «, as any
element of 4 — E. Suppose «,, %-, .., ®,_, have been chosen in such a way
that (r,(x;, %, ..,a,_,)) is ud. mod 1 in R’ According to Weyl’s equi-
distribution criterion, given any f§€ R, the sequence (r,(x;, %5, ... %,_ 1, f))
is u.d. mod 1 in R’ if and only if for any integers h,, h,, ... h, ;. h. not
all 0, we have

1 z 2rirg(hio +haxa+ - +hp_ 121+ A,

N gl it +hroot o +hi_1ay-1 +hE) s 0. (4.1)
By the induction hypothesis, we only need to find a fe 4 such that (4.1)
is satisfied for /[-tuples (%,.h,, ... h, ,,h) with A£0. For such a fixed
I-tuple, the set of all S A for which (4.1) does not hold is contained in the
set

{BeR MBEE—hjay—hyo,— -+ —h_ya,_,}. (4.2)

Obviously, (1/h) E < E, whence the set in (4.2) is contained in some dilation
of E. Thus, the set of all § which cannot be adjoined to our (/— 1)-tuples
to give an /-tuple as required is contained in a countable union of translates
of E. Hence we can find a ff =a,€ 4 having the property sought for, which
proves the proposition.

Proof of Theorem 2.5. Let H be a hefty set and ¢>0. Take an integer
{>1/e. According to Proposition 4.1, we can find x,, %,, .., a,€ H such
that, denoting @ = («,, «,, .., a,), the sequence (r,a) is u.d. mod 1 in R’ In
particular, the vector r,a can be made arbitrarily close to (0, 1//, 2/I, ...,
(/—1)//) modulo 1 by an appropriate choice of n. Hence r,, A can be made
e-dense modulo 1. This proves the theorem.

Proof of Proposition 3.1. By [N, Theorem 1], if (#,,) is a homogeneously
distributed sequence of reals, then ([r,]) is a homogeneously distributed
sequence of integers. In view of Theorem 2.4 it suffices therefore to deal
with the latter case. Let (r,) be such a sequence and «,, 2., .., %, any
distinct elements of T. Set o =(x,, «,, .., «,) € T. Consider the rotation
R: T — T defined by R(x) = x + @, x € T". According to [ Bol, Theorem 1.9],
for almost every xeT’ the closures of the sets {R™"(x):neN} and
{R"(x):neN} coincide. Consequently, the closures of the sets
{r,a:neN} and {na: ne N} coincide as well. The quantitative version of
Glasner’s theorem [ BP, Theorem 1.1] guarantees that, given ¢ >0, we can
find an » such that the set {na,, na,, ..., na,} is e-dense in T. Hence there

607:115:2-7
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exists an n such that the set {r,x,,r,%,, ... 7,2, is e-dense in T. This
completes the proof.

Proof of Proposition 3.2. Write D={d,, :me N}, where the sequence
{d,) s increasing. If (n,,,/n,) is bounded, then, in view of [Be,
Corollary 4.1], for every irrational « the sequence (d,,a) is ud. mod L.
Hence D is #-densing by Theorem 2.5.

Now suppose (#,,,/n;) 1s unbounded. In view of the proof of
[ Be, Theorem 4.1], the set of all x € R, for which the sequence (d,, ) is not
dense modulo 1, is uncountable, or, in other words, s not o-#-slim.
According to Theorem 2.2, this means that D is not #-densing.

"

Proof of Proposition 3.4.  Let § be a4 semigroup satisfying the conditions
of the theorem. As in the proof of [ BP, Theorem 1.5], we may assume S
to be generated by the numbers pa,. pa,, ... pu,. where p is a prime and
| <a,<a>,< -+ <a, are relatively prime to it. Let (#,) be an increasing
sequence in N. It is readily verified that, choosing (1n,) to grow sufficiently
fast, we can ensure that, if seS and Ak =4k{s) 15 the least integer for
which sp ™ is not an integer, then sp "< 1/p’ ** I>k Put H=
(30, &p ™:&=0,1]. Given se S, letting A =k(s) be as before, we
obtain

’ 1 1
Y e Y s
Ik =k P o

Consequently, for every s€ S the set sH is contained modulo ! in the union
of two intervals of length 1/p” each, whence it is not 1/4-dense. H being
uncountable, this proves the proposition.

Proof of Proposition3.5.  Let (r,) be sub-lacunary. By [ Bo, Theorem 7.71,
for any sequence (5,,), the set of all xe R for which {r,x—b,: neN} is not
dense modulo 1 is of Hausdorlt dimension 0 or, in other words, is
A & -slim. The proposition then follows from Theorem 2.1.

Proof of Proposition 3.6. Denote by E the set of all xe R for which the
sequence (r,a) 18 not ud. modl. According to [ET, Theorem 3],
dim,, £E<1—1/t, and therefore no countable union of translates of £
contains an # 7 | | -hefty set. The proposition follows from Theorem 2.3.

Proof of Proposition 3.7.  Denote by E the set of all points for which the
sequence (r,x} is not dense modulo 1. By [ M: PI], if (r,) is lacunary, then
dim,, £=1. The same is true also if (r,) is only assumed to be a finite
union of lacunary sequences [ P2]. Thus £ is not o-# & _ rslim for any
d < 1. The proposition follows now from Theorem 2.2.

Proof of Proposition 3.11. Let D be an unbounded set and A4 a set with
Ay >0, where u denotes the Lebesgue measure. By the Lebesgue denstty
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theorem, given ¢>0 there exists a finite interval J=[ga, b) =R such that
wAnTy> (1 —eju{J). For teR, put K=[w{tJ)]=[tb—a)] and
J,=[ta, ta + K)). Clearly,

ptAnd)zut(AnN))—=1>({1—e) |t|(b—a)—1.

Subdivide J, into K, disjoint intervals of length 1. For at least one of these
intervals, say J' < J,, we have

It (b—a) 1
_8) -

mtAnNJ)> (1 K K

Denoting by = the natural projection of R onto T we obtain

lim inf p(m(tA)) = liminf u(z(tANJ')) = 1 —¢,

[1] — 7. [t] = =

since y(J') =1 and K, — o as 1 — oo It follows that, if 1€ D is chosen with
[7] sufficiently large, then m(1A4) is 2¢e-dense. This proves the proposition.

5. CONCLUDING REMARKS AND OPEN QUESTIONS
Denote by #(F) the cardinality of a finite set F.

DEerFNITION 5.1. A set D S R is effectively densing (or simply an ED-set)
if for every &£>0 there exists an »n=un(¢) such that, if H=[0, 1] with
#(H) = n, then there exists an « € D such that the set ¢H is e-dense modulo 1.

It turns out that, if in Definition 5.1 the unit interval [0, 1] is replaced
by any interval J of positive length, the ensuing class of ED-sets is
unchanged. Theorems 2.1, 2.3.(1), and 2.4 admit analogous for the family of
ED-sets. For example, an analogue of condition (2) of Theorem 2.1 1s: For
every interval J with |J] > 0 there exists a positive integer n = n(J) such that
for everyh mapping : D — R the set

Ixe[0,1]):ax+yla)¢J (mod 1), ae D}

is of cardinality not exceeding a. (In fact, this is also equivalent to the same
condition with » required to depend only on |J].) Although this family does
not coincide (at least not by its definition) with the family of #-densing
sets for any family # of hefty sets, the proofs are quite similar to those
given for the above-mentioned theorems.
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Some of the results of [BP; AP] can be reformulated to assert that
certain sets of integers are ED-sets. For example, this is the case with sets
of positive upper (Banach) density [ BP, Proposition 2.1 ], images of (non-
constant) polynomials and the set of all primes [ AP, Theorem 6.3]. Also,
homogeneously distributed sequences of reals or of integers form ED-sets
(this strengthens Proposition 3.1; the proof is the same). Moreover, the
quantitative estimates obtained in [AP] for the sequence 1. 2, 3, .. are
valid for general homogeneously distributed sequences.

Somewhat surprisingly, there is no known example of an . | /-densing
set which is not an ED-set. This naturally raises the question whether
in fact the two notions are equivalent. Another question of interest,
mentioned already in [ BP], is whether the family of all Glasner sets has
the Ramsey property, namely whether (D, u D, is . ¥'&-densing) = (either
D, or D, is . ¥"/-densing). Of course, the same question may be asked for
the family of .# -densing sets for any family .# of hefty sets. (Note that, in
view of Corollary 3.5, the answer is trivially affirmative for # = ¥.#_,
and # = Y.
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