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Abstract

We consider an in!nite interacting particle system in which individuals choose neighbors
according to evolving sets of probabilities. If x chooses y at some time, the e1ect is to increase
the probability that y chooses x at later times. We characterize the extremal invariant measures
for this process. In an extremal equilibrium, the set of individuals is partitioned into !nite sets
called stars, each of which includes a “center” that is always chosen by the other individuals in
that set.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A number of recent papers have provided a rigorous analysis of stochastic
models of social networks based on some form of behavior reinforcement. Examples are
Bonacich and Liggett (2003); Skyrms and Pemantle (2000) and Pemantle and Skyrms
(2003, 2004). In the !rst of these, the model involves exchanges of gifts or rewards
among !nitely many individuals. When individual i rewards individual j, that action
makes it more likely that j will reward i at some later time. The main result is that
the system converges into an equilibrium that consists of randomly chosen collections
of stars. A star has a center who rewards the other individuals in its star, while these
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other individuals reward only their center. The model in Skyrms and Pemantle (2000)
is quite di1erent, yet the conclusions are virtually the same.

To be more speci!c, the model analyzed in Bonacich and Liggett (2003) is a discrete
time Markov chain whose (uncountable) state space is the set of all N × N stochastic
matrices p= (p(i; j)) with zero diagonal entries. The rows and columns correspond to
N individuals and p(i; j) represents the current probability that individual i decides to
give a gift to individual j. If such a gift is made, then p(j; i) is increased, and the other
entries of the jth row of the matrix are decreased by a factor to retain the stochasticity
of the matrix. At each time, i is chosen randomly and uniformly from {1; : : : ; N}, and
then the gift is made by i to a recipient chosen with probabilities given by the ith row
of the matrix. Then the matrix is updated.

Initially, this model was studied by Sociologist P. Bonacich via computer simulations.
He observed that there were typically many di1erent limiting states for the chain,
and asked what all possible limiting states are. The rigorous answer was provided in
Bonacich and Liggett (2003). We will give precise statements of the main results from
that paper in Section 2 of the current paper in a form that facilitates their application
here. As discussed in Bonacich and Liggett (2003), this model is closely related to
stochastic learning models, processes of randomly chosen maps, and random systems
with complete connections.

In the present paper, we formulate a version of the Bonacich and Liggett (2003)
model with in!nitely many individuals. Its form puts it in the general class of models
studied in the area of interacting particle systems (Liggett, 1985). As is common in
this subject, the uniform choice of individuals in discrete time is replaced by choices
of individuals in continuous time at event times of independent Poisson processes. We
determine the structure of the set of extremal invariant measures for the system. As in
the !nite case considered in Bonacich and Liggett (2003), such a measure consists of
a collection of !nite stars. We borrow some tools from the !nite case, but a number
of aspects of the proof require modi!cations due to the presence of in!nitely many
individuals. We describe the model in the next section, and carry out its analysis in
Sections 3 and 4.

2. Description of the model and result

2.1. In5nitely many individuals

Let G= (V; E) be a simple graph with vertex set V and edge set E, i.e. we assume
that there are no parallel edges with the same orientation and that every edge has two
distinct endpoints. The graph G can be !nite or in!nite. All edges are directed. We
assume that the vertices have uniformly bounded degree. If (u; v) ∈E, we require that
the reversed edge (v; u) ∈E as well. For a vertex v∈V , let Ev denote the set of edges
with tail v, and let Nv be the set of neighbors of v:

Ev := {(v; u) ∈E};
Nv := {u∈V : (v; u) ∈E}:
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For v∈V , we de!ne the simplex

�v :=

{
(x(e))e∈Ev ∈ [0; 1]Ev :

∑
e∈Ev
x(e) = 1

}
:

The state space of our process (�t)t¿0 is X=
∏
v∈V �v, which is compact in the product

topology. We have �t = (�t(v))v∈V and �t(v) = (�t(e))e∈Ev with
∑
e∈Ev �t(e) = 1.

For e = (u; v) ∈E and �∈X , we de!ne �e ∈X as follows:

�e(e′) :=




1 + �(e′)
2

if e′ = (v; u);

�(e′)
2

if e′ ∈Ev \ {(v; u)};
�(e′) otherwise:

(2.1)

Our process makes the transition �→ �e at rate �(e). We can think of the process as
follows: attached to all sites are independent exponential clocks with rate 1. If the clock
at site u rings, the individual at u randomly picks a neighbor v∈Nu with probability
�(u; v) and the current con!guration � is changed to �e with e = (u; v). We denote
the distribution of the process started in the deterministic con!guration � by P�. The
in!nitesimal generator of the process is given by

�f(�) :=
∑
e∈E
�(e)[f(�e) − f(�)] (2.2)

for continuous functions f depending on only !nitely many coordinates �(e). The
fact that the Markov process with this generator is well de!ned is a consequence of
Theorem 3.9 of Chapter I of Liggett (1985).

The extremal invariant measures for this process will be described in terms of “stars”
and “constellations”. This leads us to the following de!nitions.

De�nition 2.1. We call a !nite subset A ⊂ V a star with center a if A = {a} ∪ @A
for some non-empty set @A ⊆ Na. Sometimes we denote the star A by (A; a). A
constellation (Ak ; ak)k∈K is a partition of the vertex set V into stars Ak with center ak .

De�nition 2.2. Let A be a star with center a, and let �∈X . We write � = A if the
following hold:∑

b∈@A
�(a; b) = 1; (2.3)

�(b; a) = 1 for all b∈ @A; (2.4)

�(v; b) = 0 for all b∈ @A; v∈Nb \ {a} (2.5)

and

�(v; a) = 0 for all v∈Na \ @A: (2.6)

We write �t → A if (2.3)–(2.6) hold as t → ∞ with � replaced by �t and “=” replaced
by “→”.
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Let (Ak ; ak)k∈K be a constellation. We write � = (Ak ; ak)k∈K if � = (Ak ; ak) for all
k ∈K . Similarly, we write �t → (Ak ; ak)k∈K if �t → (Ak ; ak) for all k ∈K .

2.2. Finitely many individuals

Before we state our main result, we describe results for a similar model which was
studied in Bonacich and Liggett (2003).

In this subsection, let G = (V; E) be the complete graph without loops on N points,
i.e., V = {1; 2; : : : ; N} and E = {(i; j) ∈V 2 : i �= j}. Let N0 := {0; 1; 2; : : :} denote the
set of non-negative integers. The model considered in Bonacich and Liggett (2003)
is a discrete time Markov chain (pn)n∈N0 whose state space is

∏
v∈V �v. We have

pn=(pn(i; j))16i; j6N with
∑N
j=1 pn(i; j)=1 for all i. In other words, pn is a stochastic

N × N -matrix. Given the state pn = p of the chain at time n, pn+1 is obtained as
follows: choose i∈ {1; 2; : : : ; N} with probability 1=N and then choose j∈ {1; 2; : : : ; N}
with probability pn(i; j). Then, using the notation (2.1), pn+1 = p(i; j).

Bonacich and Liggett studied a more general model. We describe only the case where
their parameters ci; j are all equal to 1

2 . Below, we will need some of their results for
this special case.

Let Pp denote the distribution of the Markov chain (pn)n∈N0 with initial state p.
The following convergence results were proved in Bonacich and Liggett (2003):

Theorem 2.3 (Theorem 1.1, Bonacich and Liggett, 2003).

(a) We have

Pp(pn → (Ak ; ak)k=1; :::; l for some constellation (Ak ; ak)k=1; :::; l) = 1:

(b) A.s. on the event {pn → (Ak ; ak)k=1; :::; l}, pn converges in distribution to a limit
p∞, where

Ep∞(ak ; i) =
1

|@Ak | ; i∈ @Ak :

(c) For each constellation (Ak ; ak)k=1; :::; l,

Pp(pn → (Ak ; ak)k=1; :::; l)¿ 0

if and only if p(i; ak) + p(ak ; i)¿ 0 for all i∈ @Ak , k = 1; : : : ; l.

For an edge (b; a), we denote by !(b;a) the probability measure on �b which gives
mass 1 to the point �(b; a) = 1, �(b; v) = 0 for all v∈Nb \ {a}.

Let (Ak ; ak)k=1; :::; l be a constellation, and consider the process (pn)n∈N0 restricted to
the set of con!gurations � satisfying � = (Ak ; ak)k=1; :::; l. Bonacich and Liggett proved
the following about the stationary distribution of this restricted process:

Proposition 2.4 (Proposition 2.1, Bonacich and Liggett, 2003). Let (Ak ; ak)k=1; :::; l be
a constellation. The Markov chain (pn)n∈N0 restricted to {pn = (Ak ; ak)k=1; :::; l for
all n} has a unique stationary distribution, and pn converges weakly to it for any
initial state p satisfying p= (Ak ; ak)k=1; :::; l. For the limiting distribution p∞,

Ep∞(ak ; i) =
1

|@Ak | ; i∈ @Ak :
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For a star (A; a), let

"A;a(d�(a)) ⊗
⊗
b∈@A
!(b;a)(d�(b))

be the stationary distribution for the Markov chain (pn)n∈N0 in the case where the un-
derlying graph has the vertex set A and the edge set {(a; v) : v∈ @A}∪{(v; a) : v∈ @A}.
For mb ∈N0, let M (mb; b∈ @A) :=

∫ ∏
b∈@A �(a; b)

mb"A;a(d�(a)). Let Mb0 ;j(mb;
b∈ @A) := M (m′

b; b∈ @A) where m′
b0

:= j and m′
b := mb for all b �= b0. Then, the

moments of "A;a satisfy the following equations:

|@A|M (mb; b∈ @A) =
∑
b∈@A

1
2m

mb∑
i=0

(
mb

i

)
Mb;i(mb′ ; b′ ∈ @A) (2.7)

for all mb ∈N0; here m :=
∑
b∈@A mb.

In case |@A| = 2, "A;a is the uniform distribution on �a as observed in Bonacich and
Liggett (2003). For larger @A there appears to be no similar description of "A;a.

2.3. Result

In this subsection, we state our main result for the process (�t)t¿0 with in!nitely
many individuals.

De�nition 2.5. For a constellation C = (An; an)n¿1, we de!ne

%C(d�) :=
∞⊗
n=1


"An;an(d�(an)) ⊗


⊗
b∈@An
!(b;an)


 (d�(b))


 :

Under %C, the coordinates �(v), v∈V , are independent. Our main result is the fol-
lowing:

Theorem 2.6. The set Ie of extremal invariant measures for the process (�t)t¿0 is
given by

Ie = {%C :C is a constellation}:

It would be interesting to study the convergence of the process (�t)t¿0.

3. Convergence to a star with positive probability

Throughout this section, we !x a star A= {a} ∪ @A with center a. In the following,
usually b denotes a point of the boundary @A. The aim of this section is to prove the
following proposition which states that P�(�t → A)¿ 0 under appropriate conditions
on �.



70 T.M. Liggett, S.W.W. Rolles / Stochastic Processes and their Applications 113 (2004) 65–80

Proposition 3.1. If �∈X satis5es

�(b; a)¿ 0 for all b∈ @A (3.1)

and ∑
b∈A
�(v; b)¡ 1 for all v �∈ A; (3.2)

then P�(�t → A)¿ 0. Hence, for all �∈X , there exists c(�)¿ 0 such that the
following inequality holds:

P�(�t → A)¿ c(�)

[∏
b∈@A
�(b; a)

] ∏
v∈V\A

[
1 −

∑
b∈A
�(v; b)

]
: (3.3)

In order to prove Proposition 3.1, we compare the Markov process (�t)t¿0 with a
Markov process ()t)t¿0 with slightly di1erent rates.

De�nition 3.2. The Markov process ()t)t¿0 makes the following transitions:

)→ )(v;b) at rate 0 instead of rate )(v; b) for all b∈ @A; v∈Nb \ {a};
)→ )(v;a) at rate 0 instead of rate )(v; a) for all v∈Na \ @A;

all other transitions occur at the same rates as for the process (�t)t¿0. We denote the
distribution of ()t)t¿0 started in the deterministic con!guration ) by Q).

The e1ect of this choice is described by the following lemma:

Lemma 3.3. The process ()t(v); v∈A) is Markovian. Also, some of the coordinates
are monotone in time:

)t(b; v) ↓ for b∈ @A; v∈Nb \ {a}; (3.4)

)t(a; v) ↓ for v∈Na \ @A; (3.5)

)t(b; a) ↑ for b∈ @A: (3.6)

Proof. We note that by the de!nition of the process ()t)t¿0, the following hold:

)(a; b) → )(a; b)
2

at rate
∑

b′∈@A\{b}
)(b′; a) for all b∈ @A;

)(a; v) → )(a; v)
2

at rate
∑
b∈@A
)(b; a) for all v∈Na \ @A; and

)(b; v) → )(b; v)
2

at rate )(a; b) for all b∈ @A and all v∈Nb \ {a}:
Hence, ()t(v); v∈A) is Markovian.
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Statements (3.4) and (3.5) follow immediately from the de!nition of the process
()t)t¿0. Monotonicity (3.6) follows from (3.4).

Lemmas 3.4–3.6 below will show that Q�()t → A) = 1 if � satis!es (3.1) and (3.2).
Later we will use an absolute continuity argument to deduce Proposition 3.1 from this
fact.

Lemma 3.4. If (3.1) holds, then Q�-a.s.

lim
t→∞

∑
b∈@A
)t(a; b) = 1 exponentially rapidly:

Proof. The sum S(t)=
∑
v∈Na\@A )t(a; v) can only decrease. It decreases by an amount

1
2S(t) at rate

∑
b∈@A )t(b; a). Therefore

d
dt
E�S(t) = −1

2
E�
[
S(t)

∑
b∈@A
)t(b; a)

]
;

here E� denotes the expectation with respect to Q�. On the other hand, )t(b; a) can
only increase for b∈ @A, so that

d
dt
E�S(t)6− 1

2

[∑
b∈@A
�(b; a)

]
E�S(t):

Solving this di1erential inequality yields

E�S(t)6


 ∑
v∈Na\@A

�(a; v)


 exp

(
− t

2

[∑
b∈@A
�(b; a)

])
:

Therefore, since S(t) is monotone, S(t) → 0 exponentially rapidly Q�-a.s., so∑
b∈@A
)t(a; b) = 1 − S(t) → 1

exponentially rapidly Q�-a.s.

Lemma 3.5. If (3.1) holds, then Q�-a.s.

lim
t→∞ )t(b; a) = 1 exponentially rapidly for all b∈ @A:

Proof. Fix a b∈ @A. Then

)t(b; a) → 1 + )t(b; a)
2

at rate )t(a; b);

and

)t(a; b) →




1
2
)t(a; b) at rate

∑
b′∈@A\{b}

)t(b′; a);

1 + )t(a; b)
2

at rate )t(b; a):
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Therefore, we may couple ()t(b; a); )t(a; b)) with a process (Xt; Yt) so that X0 =�(b; a),
Y0 = �(a; b);

)t(b; a)¿Xt; )t(a; b)¿Yt;

and

Xt → 1 + Xt
2

at rate Yt; Yt →



0 at rate |@A| − 1;

1
2

at rate �(b; a):

The fact that this is possible follows from∑
b′∈@A\{b}

)t(b′; a)6 |@A| − 1 and )t(b; a)¿ �(b; a):

Note that Yt is a two state Markov chain. Also, since (1−Xt) → (1−Xt)=2 at rate Yt ,
the conditional distribution of 1 − Xt given the process (Ys)s¿0 is that of (1 − X0)=2N ,
where N is Poisson with parameter "=

∫ t
0 Ys ds. Therefore,

E(1 − Xt) = (1 − X0)E exp
[
−1

2

∫ t
0
Ys ds

]
:

The right-hand side above tends to 0 exponentially rapidly, so since Xt is monotone,
Xt → 1 exponentially rapidly a.s. The same is true for )t(b; a), since it is bounded
below by Xt .

Lemma 3.6. If (3.1) and (3.2) hold, then Q�-a.s.∫ ∞

0
)t(v; b) dt ¡∞ for all b∈ @A; v∈Nb \ {a} (3.7)

and ∫ ∞

0
)t(v; a) dt ¡∞ for all v∈Na \ @A:

Proof. If v∈ @A, (3.7) is immediate from Lemma 3.5 and the fact that
∑
w )t(v; w)=1.

So, we may assume that v �∈ A. Fix such a v. Let b1; : : : ; bk be the members of A such
that (v; bi) ∈E. We need to show that∫ ∞

0
)t(v; bi) dt ¡∞ Q�-a:s:

for all i∈ {1; 2; : : : ; k}. Recall that ()t(u); u∈A) is Markov by Lemma 3.3, so we
can and will consider the process obtained by conditioning on ()t(u); u∈A)t¿0. For
16 i6 k, let Mit be (conditionally) independent temporally inhomogeneous Poisson
processes with rates )t(bi; v) at time t. By Lemmas 3.4 and 3.5, M =

∑k
i=1 M

i
∞¡∞

a.s. In what follows, we will also condition on the processes Mit for 16 i6 k.
Now we proceed somewhat like we did in the proof of Lemma 3.5. There are a few

extra complications resulting from the fact that all processes corresponding to Xt and
Yt can increase and decrease. Let

K =
∑
v′∈Nv\A

|Nv′ |:
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Now let (X 1
t ; : : : ; X

k
t ; Yt) be coupled to the process ()t(u); u �∈ A) so that X i0 = �(v; bi),

Y0 = 0,

)t(v; bi)6X it ;
∑
v′∈Nv\A

)t(v′; v)¿Yt;

X it → 1
2
X it together at rate Yt;

and

Yt →




0 at rate K;

1
2

at rate

(
1 −

k∑
i=1

�(v; bi)

)
2−M :

In addition, X it → (1 + X it )=2 at the event times of the process Mit . The fact that this
coupling is possible comes from the following considerations:

(a) the rate at which the )t(v; bi)’s decrease (together) is∑
v′∈Nv\A

)t(v′; v)¿Yt;

(b) the rate at which
∑
v′∈Nv\A )t(v

′; v) decreases is at most K , and
(c) the rate at which

∑
v′∈Nv\A )t(v

′; v) increases is∑
v′∈Nv\A

)t(v; v′) = 1 −
k∑
i=1

)t(v; bi)¿

(
1 −

k∑
i=1

�(v; bi)

)
2−M ; (3.8)

and if it does increase, its new value is at least 1
2 .

Let us explain why inequality (3.8) holds: Clearly, Q�-a.s., 1 − ∑k
i=1 )0(v; bi) =

1 −∑ki=1 �(v; bi). The quantity

1 −
k∑
i=1

)t(v; bi)

decreases by a factor of 1
2 each time there is an event time for one of the processes

Mi. All other transitions only decrease the values of the )t(v; bi)’s.
The proof that X it → 0 exponentially rapidly is essentially the same as in the proof

of Lemma 3.5. The main point is that the transition X it → (1 + X it )=2 occurs only
!nitely many times a.s. since Mi∞¡∞ a.s., while the transition X it → X it =2 occurs
at rate 1

2 a positive fraction of the time. The !nitely many increases in X it does not
change its exponential decay to 0. Since )t(v; bi)6X it , it follows that )t(v; bi) → 0
exponentially rapidly as well.

The main property of Q) that we will need is its absolute continuity with respect to
the distribution P) of the process (�t)t¿0 starting at ). This issue has been studied in
various contexts—primarily di1usion processes in Euclidean spaces. (See Chapter 4 of
Skorokhod, 1965, for example.) Since none of them quite !t our situation, we provide
a proof of the result we need. Let Q)t and P)t be the distributions of the two processes
up to time t.
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Lemma 3.7. For any t ¿ 0, Q)t�P)t and

log

(
dQ)t
dP)t

()•)

)
=
∫ t

0


∑
b∈@A

∑
v∈Nb\{a}

)s(v; b) +
∑
v∈Na\@A

)s(v; a)


 ds Q)t -a:s: (3.9)

Proof. Note that the right-hand side of (3.9) is a continuous function of the path )•,
and depends on the values of )s(e) for only !nitely many edges e. Therefore, as we
will see, it is enough to prove the lemma for the processes obtained by suppressing
all transitions outside of a large !nite subgraph of G.

To see this, we will abstract the situation a bit. Suppose that .n and %n are probability
measures such that %n�.n, C is a closed set that supports %n for each n, h is a
non-negative continuous function so that d%n=d.n = h on C for each n, .n → . and
%n → % weakly, and .n(C) → .(C). Then for any continuous function f taking values
in [0; 1],∫

f d%n =
∫
C
fh d.n:

We may pass to the limit as n → ∞ on the left-hand side with no diOculty. For the
right-hand side, note that fh1C is an upper semicontinuous function, so∫

C
fh d.¿ lim sup

n→∞

∫
C
fh d.n: (3.10)

Inequality (3.10) also holds with h replaced by 1 and/or with f replaced by 1 − f.
Therefore∫

C
f d.¿ lim sup

n→∞

∫
C
f d.n and

∫
C

(1 − f) d.¿ lim sup
n→∞

∫
C

(1 − f) d.n:

(3.11)

The sum of the left-hand sides of (3.11) is .(C), while the sum of the integrals
that appear on the right-hand side of (3.11) is .n(C). Since .n(C) → .(C), (3.11)
holds with equality in both cases, and with each lim sup replaced by lim. Therefore,∫
C f d. = limn→∞

∫
C f d.n for any bounded continuous function f. Applying this to

f = min(h; k) and letting k → ∞ gives∫
C
h d.6 lim inf

n→∞

∫
C
h d.n:

Combining this with (3.10) with f ≡ 1, we see that∫
C
h d. = lim

n→∞

∫
C
h d.n = lim

n→∞ %n(C) = 1:



T.M. Liggett, S.W.W. Rolles / Stochastic Processes and their Applications 113 (2004) 65–80 75

A similar argument using this fact and (3.10) for both f and 1 − f gives∫
C
fh d. = lim

n→∞

∫
C
fh d.n;

so that∫
f d%=

∫
C
fh d.;

and hence %�. and d%=d.=h on C. In our application, C is the set of paths ()s)06s6t

so that )s(b; v) is nonincreasing for b∈ @A, v∈Nb \ {a}, and )s(a; v) is nonincreasing
for v∈Na \ @A. The fact that distributions of the processes with transitions suppressed
outside subgraphs Gn with Gn ↑ G converge to the original processes is a consequence
of Theorem 2.12 of Chapter I of Liggett (1985).

When transitions are restricted to a large !nite subgraph of G, both processes are
countable state continuous time Markov chains. (While �v is not countable, the set of
states that can be reached from a given initial con!guration is.) For a path ()s)06s6t

in the support of Q)t , the rates of the transitions that occur in that path are the same
for both processes. One process is obtained from the other by setting some of the rates
to zero.

So, consider this situation. Suppose Xt is a Markov chain with transition rates q(x; y),
and let

c(x) =
∑
y : y 
=x

q(x; y)

be the total rate for transitions out of x. Consider another Markov chain X ∗
t whose

transition rates are q∗(x; y), where for each x; y, q∗(x; y) is either q(x; y) or zero,
and let c∗(x) be the corresponding total rate out of x for this process. Consider
a path 2(s); 06 s6 t that X ∗

s can follow: 2(s) = xi for ti6 s¡ ti+1, where 0 =
t0¡t1¡ · · ·¡tn¡ tn+1 = t. (The fact that X ∗

s can follow this path means that
q∗(xi; xi+1)¿ 0 for each i.) The density of this path for the process Xs is[

n−1∏
i=0

e−c(xi)(ti+1−ti)q(xi; xi+1)

]
e−c(xn)(tn+1−tn);

while its density for X ∗
s is[

n−1∏
i=0

e−c∗(xi)(ti+1−ti)q(xi; xi+1)

]
e−c∗(xn)(tn+1−tn):

The ratio of the second of these to the !rst (which is the appropriate Radon–Nikodym
derivative of the distributions of the two processes on path space) is

exp
[∫ t

0
[c(2(s)) − c∗(2(s))] ds

]
:
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Returning to our models, note that in con!guration ), the di1erence between the
total transition rates for the two processes is∑

b∈@A

∑
v∈Nb\{a}

)(v; b) +
∑
v∈Na\@A

)(v; a):

This gives (3.9) in this case, and thus completes the proof of the lemma.

Proof of Proposition 3.1. Suppose �∈X satis!es (3.1) and (3.2). Lemmas 3.4–3.6
show that Q�()t → A) = 1. By Lemma 3.7, as t → ∞,

log
[

dQ�t
dP�t

()•)
]

↑
∫ ∞

0


∑
b∈@A

∑
v∈Nb\{a}

)s(v; b) +
∑
v∈Na\@A

)s(v; a)


 ds

which is !nite Q�-a.s. by Lemma 3.6. Hence, by Theorem (3.3) on p. 242 of Durrett
(1996) it follows that Q��P�. Consequently, P�(�t → A)¿ 0. If �∈X does not satisfy
(3.1)–(3.2), then the right-hand side of (3.3) equals 0. This completes the proof of the
proposition.

4. The extremal invariant measures

In this section, we prove Theorem 2.6.
We denote by I the set of invariant probability measures for the process (�t)t¿0.

Lemma 4.1. If .∈Ie and .(�(u; v) = 0)¿ 0, then .(�(u; v) = 0; �(v; u) = 0) = 1.

Proof. Let .∈Ie with .(�(u; v)=0)¿ 0. Note that �t(u; v)=0 only if �s(u; v)=0 for
all s∈ [0; t]. Since �(u; v) → (1 + �(u; v))=2 at rate �(v; u), we must have .(�(u; v) =
0; �(v; u)¿ 0) = 0.

Let B := {�(u; v) = 0; �(v; u) = 0}. We have just shown that .(B)¿ 0. Since �t ∈B
i1 �0 ∈B we have for all measurable sets C

P.(·|B)(�t ∈C) = P.(�t ∈C|�0 ∈B) = P.(�t ∈C|�t ∈B)

= P.(�0 ∈C|�0 ∈B) = P.(·|B)(�0 ∈C):

Consequently, .(·|B) ∈I. Analogously, if .(B)¡ 1, .(·|Bc) ∈I. Hence, we can write
. as a linear combination of two invariant measures

.(·) = .(B).(·|B) + .(Bc).(·|Bc):
Since we assumed . to be an extremal invariant measure, it follows that .(B) ∈ {0; 1}
and we conclude .(B) = 1.

Lemma 4.2. If .∈Ie, then .(�(u; v) = 0) ∈ {0; 1} and .(�(u; v) = 1) ∈ {0; 1}.

Proof. The statement .(�(u; v) = 0) ∈ {0; 1} is an immediate consequence of Lemma
4.1.
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Suppose .(�(u; v) = 1)¿ 0. Since
∑
v′∈Nu �(u; v

′) = 1 we have .(�(u; v′) = 0)¿ 0
and thus .(�(u; v′) = 0) = 1 for all v′ ∈Nu \ {v}. It follows from

∑
v′∈Nu �(u; v

′) = 1
that .(�(u; v) = 1) = 1.

Lemma 4.3. If .∈Ie and A is a star, then .(�= A) ∈ {0; 1}.

Proof. Recall the de!nition of �= A from De!nition 2.2. Suppose that .(�= A)¿ 0.
Then, by Lemma 4.2, (2.4)–(2.6) hold .-a.s. Lemma 4.1 implies that .(�(v; a) =
0; �(a; v) = 0) = 1 for all v∈Na \ @A. Hence, (2.3) holds .-a.s. as well, and we have
shown that .(�= A) = 1.

Proof of Theorem 2.6. Let A be a star with center a. By Proposition 2.4,

"A;a(d�(a)) ⊗
(⊗
b∈@A
!(b;a)

)
(d�(b))

is an invariant measure for the process (�t)t¿0 restricted to the graph with vertex set A
and edge set {(a; v) : v∈ @A}∪{(v; a) : v∈ @A}. Hence, %C ∈I whenever C=(An; an)n¿1

is a constellation.
Suppose that %C =4%1 +(1−4)%2 for some 4∈ [0; 1] and %1; %2 ∈I. By the de!nition

of %C, we have

%C(�= An) = 1 for all n¿ 1:

Consequently, %i(� = An) = 1 must hold for i = 1; 2 and all n¿ 1. Hence, for all i
and n, %i is an invariant measure for the process (�t)t¿0 restricted to the set An. By
Proposition 2.4, the restriction of %i to the set

∏
b∈An �b equals

"An;an(d�(an)) ⊗

⊗
b∈@An
!(b;an)


 (d�(b)):

Consequently, %i = %C for i= 1; 2, and we have shown that %C is an extremal invariant
measure.

It remains to show that all extremal invariant measures are of the form %C with a
constellation C = (An; an)n¿1. Let .∈Ie, and let a∈V .

Claim. There exists a star A with .(�= A) = 1 having either a as its center or a∈ @A.

Let us explain why the claim implies the theorem: Suppose .(�= A) = 1 for a star
A with center a0. Then .-a.s. �(b; a0) = 1 for all b∈ @A. Since

∑
v∈Nb �(b; v) = 1 it

follows that �(b; v)=0 .-a.s. for all v∈Nb\{a0}. Consequently, the distribution of �(b)
under . equals !(b;a0) for all b∈ @A. Furthermore, .(�=A) = 1 implies that �(v; b) = 0
.-a.s. for all v∈Nb \ {a0}, �(v; a0) = 0 = �(a0; v) .-a.s. for all v∈Na0 \ @A. This shows
that .-a.s. the sites in A interact only with sites in A. The dynamics for �t(a0; b) with
b∈ @A is as follows:

�t(a0; b) →




1 + �t(a0; b)
2

at rate �t(b; a0) = 1;

�t(a0; b)
2

at rate
∑

v∈Na0 \{b}
�t(v; a0) = |@A| − 1:



78 T.M. Liggett, S.W.W. Rolles / Stochastic Processes and their Applications 113 (2004) 65–80

Hence, by Proposition 2.4, the moments of (�t(a0; b))b∈@A under . satisfy the equation
(2.7). Hence �(a0). = "A;a0 . Since every site is contained in a star A such that .(�=
A) = 1, the statement of the theorem follows.

We turn to the proof of the claim.
If there exists a star A with center a such that .(�=A)=1, we are done. Otherwise,

by Lemma 4.3, we know that .(� = A) = 0 for all stars A with center a. Since . is
invariant, P.(�t → A) = .(�= A) = 0. Integrating (3.3) with respect to ., yields

0 = P.(�t → A)¿
∫
c(�)

[∏
b∈@A
�(b; a)

] ∏
v∈V\A

[
1 −

∑
b∈A
�(v; b)

]
.(d�):

Consequently, for all stars A with center a and .-almost all �∈X , the following holds:

�(b; a) = 0 for some b∈ @A (4.1)

or ∑
b∈A
�(v; b) = 1 for some v �∈ A: (4.2)

Using Lemma 4.2, we see that .(�(b; a) = 0) ∈ {0; 1}. Furthermore,

.

(∑
b∈A
�(v; b) = 1

)
= .(�(v; b) = 0 for all b∈V \ A) ∈ {0; 1}

by Lemma 4.2. We enumerate the elements of

{b∈Na : �(b; a)¿ 0}
as b1; b2; : : : ; bk . (The set is .-a.s. de!ned.) Let Ai := {a; bi} denote the star with center
a and boundary {bi}. Since �(bi; a)¿ 0 .-a.s., an application of (4.1) and (4.2) for
the star Ai yields

�(vi; a) + �(vi; bi) = 1 for some vi �∈ {a; bi}: (4.3)

Case 1: �(vi; bi) = 1 for some i∈ {1; 2; : : : ; k}.
Fix such a bi. We de!ne

B := {bi} ∪ @B with @B := {b∈Nbi : �(b; bi) = 1}
to be the star with center bi. By assumption, @B �= ∅. Suppose .(� = B) = 0. Then,
by (4.1) and (4.2) for the star B, there exists v �∈ B such that

∑
b∈B �(v; b) = 1.

Since �(b; bi) = 1 .-a.s. for b∈ @B, we have �(b; v) = 0 .-a.s. and Lemma 4.1 implies
�(v; b) = 0 .-a.s. Hence, �(v; bi) = 1 which means v∈ @B. But this contradicts v �∈ B.
Hence .(� = B)¿ 0 and by Lemma 4.3, .(� = B) = 1. Since �(bi; a)¿ 0, the site a
must be in @B and we found a star B containing a in its boundary with .(�= B) = 1.
Case 2: �(vi; bi)¡ 1 for all i∈ {1; 2; : : : ; k}.
Then by (4.3), �(vi; a)¿ 0 for all i. Since {bi : 16 i6 k} = {v : �(v; a)¿ 0}, we

have vi = bji for some ji ∈ {1; 2; : : : ; k} \ {i} and (4.3) becomes

�(bji ; a) + �(bji ; bi) = 1: (4.4)
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Suppose that

there exists i �= i′ with ji = ji′ : (4.5)

Then, (4.4) applied for i′ gives

�(bji ; a) + �(bji ; bi′) = �(bji′ ; a) + �(bji′ ; bi′) = 1: (4.6)

Using the identity
∑
v∈V �(bji ; v) = 1 and adding up (4.4) and (4.6) yields

1¿ �(bji ; a) + �(bji ; bi) + �(bji ; bi′) = 2 − �(bji ; a):
Thus, �(bji ; a)¿ 1, and we conclude that

�(bji ; a) = 1: (4.7)

Consider the star C := {a}∪{bi ∈ {b1; b2; : : : ; bk} : �(bi; a)=1} with center a. By (4.7),
@C �= ∅. An application of (4.1/4.2) shows that there exists v �∈ C such that

�(v; a) +
∑

{i : �(bi ;a)=1}
�(v; bi) = 1: (4.8)

Consider bi with �(bi; a) = 1. Then �(bi; v) = 0 and thus, by Lemma 4.1, �(v; bi) = 0
follows. Consequently, (4.8) implies that

�(v; a) = 1:

Since {bi : 16 i6 k}={v : �(v; a)¿ 0}, we have v=bi for some i. Hence, v∈C, which
contradicts v �∈ C. This shows that our assumption (4.5) was wrong. Consequently,
ji �= ji′ whenever i �= i′, i.e. the map {1; : : : ; k} → {1; : : : ; k}; i �→ ji is one-to-one and
thus bijective.

We de!ne D := {a; b1; b2; : : : ; bk}. Eq. (4.4) implies that �(bi; v) = 0 for all v �∈ D.
Thus, by Lemma 4.1,

�(v; bi) = 0 for all v �∈ D:
By the de!nition of the bi’s,

�(v; a) = 0 for all v �∈ D;
and by Lemma 4.1, �(a; v) = 0 for all v �∈ D. This means that the sites in D do not
interact with sites outside of D and vice versa. By Theorem 2.3(a), we know that there
exists a star A containing a such that �t → A with positive P.-probability. Hence for
this star, .(�=A)¿ 0, and consequently, by Lemma 4.3, .(�=A)=1. This completes
the proof of the claim.
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