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Let m,(G) be the number of inequivalent, irreducibie characters of group 
G whose degree is relatively prime to p. In [6] McKay tabulated nz,(G), the 
number of odd degree characters, for certain simple groups and some infinite 
simple families of groups. From [4] several additions can be made to this 
list for the infinite families PSL(3, q), PSU(3, 9”) and PSL(4, q) d = 1: 

G d q = pt, p a prime mp(G) 

PSL(3,q) 3 even (q = 2t t even) +(qz + 8) 
3 odd (q = I (mod 6)) $2 - I! 

1 odd 2(q - 1) 

1 even (q = 2t, t odd) 4” 

PSG(3, 4%) 3 even (q = 2t, t odd) i(q2 + 8) 
3 odd (q = 5 (mod 6)) %l + 1) 

1 odd aq t 1) 

1 even (q = 2f t even) 4’ 

PSL(4,q) 1 even (q = 29 y” 

(d = n, q + 6) s= i-1 for G = PSL(n, q) 
(+I for G = PSC(n, q2) 

It has been conjectured (Bannai-Enomoto) that if L is a complex, simple Lie 
algebra of rank I and G is the group defined by Chevalley and constructed 
from L over GF(2f) then m,(G) = 2tz. From [a and the above table we note 
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that ~@‘%(n, 2t), d = 1) = qnV1 = 2t(n-1j n = 2,3,4 which lends support 
to the conjecture. 

Using the method described by McKay [6] we shall prove the following 
tbeosem. 

THEOREM 1. m#?SL(n, q), d = 1) = q”-l wh~e q -= pt. 

An immediate corollary is the specific case of the B~nai-~nomoto conjecture 
noted above: 

COROLLARY. m#?sL(n, 2t), d = 1) = 2t@+1). 

Proof of Theorem 1. Let 

when d = (n, q - I) = I, q = p”. ‘We can calculate the order of the 
centralizer of iy. in GL(n, 4) usmg formulas found in several papers. (The 
formula given in [I] for U(n, 9%) can be used for GL(n, q2) with. a couple very 
minor changes). We find that j C(cx)joL = qiz-l 
I C6-4YL -= I q~)lGLl(q - 1) = P-l 

and , c( ,(q - 1). Now since d = 1, 
a psL = q*-1. 

The order of a: is a power of the characteristic of G8’(pt) so by the repeated 
use of the congruence relation established by Frame [3], we get that 
xi(a) = xi(l) mod p for all characters xi of PSL(n, q). 

If we can show that ,~(ol) = +I or 0 Vi, we are done since xi(~) = x$(l) 
modp implies xi(~) = &l if and only if the degree of xi is relatively prime 
to p, and thus m,(PSL(n, q)) =: (xi(m), xi(a)) = j C(a)jpSL = qn-1. To show 
that xi(~) -= &I or 0 we look at the characters lffj of GL(n, q). Since d = 1, 
we can obtain the irreducible characters of PSL(n, q) from those of GL(n, q) 
without splitting any character or conjugacy classes of GL. Thus if &(a) = f 1 
or 0 then X$(CS) = fl or 0. The fact that we need only examine the characters 
of GL is advantageous because Green in [S] develops a method of con- 
structing the character table of GL(n, q) ‘$n, g from certain ‘primary’ 
characters. We shall show that using Green’s procedure to calculate the 
entries ifis Vj will always result in +l or 0. 

In order to conserve space, all necessary definitions and theorems from 
ES] will be referenced by page rather than restated here. 
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Denote by u, the n i< n matrix 

u 

uu 

i ..*I 

u E GF(q) 

u 
uu 

and let its conjugacy class be c. 
Let n = 72, + n, + ... $ nk be a partition of iz into positive integers ni 

and let a, be a character of GL(n, , q) for i = 1, 2,..., K. On page 403 an 
operation called the ‘O-product’ is defined. This operation enables us to 
construct characters of GL(Iz, q) from those of GL(n, , q) by an inducing 
process. Such a character of GL(n, q) is called an ‘~-product’ and is denoted 
by a, 0 a, a ... 0 a, . The value of any o- product for GL(rz, q) is particularly 
simple on the class c. Using [Theorem 2 (p. 410)7 we find that 

a, 0 u, 0 ... 9 %c(%) = %(%,) . %(%J ... %(%J 

i.e., it is an ordinary product of characters. 
By [Theorem 14 (p. 443)] we know that every irreducible character of 

GL(pz, q) can be expressed as an o-product of certain ‘primary characters’. 
Since these o-products for the class c are ordinary products of the primary 
characters, we need only show that the primary characters all have the value 
$lorOonc. 

Take a divisor d of z and let z, = n/d. Consider the multiplicative group 
of GF(q”). It is abelian so all its characters are linear and thus form a group, 

x’d 7 under multiplication. Since j Xd / = qd - 1, the map $ - +!J’ of X, 
into itself is a permutation of order d which divides X& into orbits, the 
length of each orbit being a divisor of d. 

Take any such orbit of length d. The set (C/J) = {#, $Q?..., +““-‘j v-e call a 
‘d-simplex’. 

For any d-simplex (Z/J} and any partition X of zl we can construct a ‘primary’ 
irreducible character, J($, A), of GL(q q) and all such primary irreducible 
characters can be constructed for a suitable choice of d, ($5, and A. (Notational 
remark: J(#, A) is denoted in [5, p. 4391 by (g”) where g denotes the d-simplex 

k kq,..., kqd-l. The # and k are related by the fact that if 0 is the generator 
of X,! , then Z,!J is the restriction of P to GF(q”).) 

Each primary irreducible character I(#, X) is composed of independent 
functions called ‘principle parts’ and denoted by V, . By- [5, Theor. 12, 
p. 4391 we see that lJ, = 0 unless p is a partition of n of the form 

‘$8 r jzs/z-6 
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p = (dpl, (24~2 . ..)where?r = (1~1, 2”~ ...) is a partition of v. For p of this form 
we get : 

(1) 

A ‘principle class of type p’ is a conjugacy class whose characteristic poly- 
nomialF(t) has rd factors of degree d (d = 1, 2,..., n), where p is the partition 
(1’1, 2’2, ... I?‘%} of n = rl + 2r, + ... + nr, [5, p. 4071. [p is the set of 
eigenvalues of a typical principle class of type p; e.g., tde,i is the root of 
this class, which happens to have degree de. (ede,i is a root of the irreducible 
polynomial GF(q)[t] of degree de). We define NdeGd(z) to be the product 
.&. . .$a .x4 ?d . ..yJ ‘e-1)d which lies in GF($) for x’ being any nonzero element 
of GF(q”“). 

xj7,1 denotes a character of the symmetric group S, in standard notation. 
To calculate J(#, h) on the class c we must know how to combine the 

principle parts U,, . This is given by the ‘degeneracy rule’ [5, p. 423, (18)]. 
To use this rule we need the ‘modes of substitution’ [5, p. 4221 of the p 
variables into zc, for each partition p of n. The fact that all the eigenvalues 
of u, are the same makes this calculation much easier. 

WritefJt) = t - u, a linear polynomial in t over GF(p). Using the notation 
established in [4, p. 4201 we get the following for a fixed p. 

(i) There is exactly one substitution of the p variables xp into the 
class c of 21, ; it takes each variable to fLd ; or in terms of the p eigenvalues 
tde,i , each eigenvalue is taken to u. 

(ii) If nz is the mode of this substitution, then p(~z,f,) = p. 

(iii) z~~(~J = (n>, the partition whose only part is n. 

(iv) Qp)(q) = 1 for all p (see [4, p. 4551). 

Putting (i)-(iv) into (18) and using Ci,, given by (1) of this paper, we can 
calculate the value of the primary characters on the class c: 

Recalling that 4 is a character of the abelian multiplicative group X, of 
GF(@) so that #(I) = 1, we see that the substitution of 1 in for u above gives: 

J(#, X)(1,) = *l or 0 Vn. 
Q.E.D. 
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In [Z] and [4] it was conjectured that the character tables for C(n, q”j, 
sq?z, q’), PSU(?Z, q”) can be obtained from the tables of GL(n, q), .S’L(fz, q)> 
PSL(n, q) respectively by the simple means of replacing q everywhere by -q 
and multiplying each character by - 1 if necessary to keep the degree positive. 
For 12 = 2, 3 this conjecture was verified. If the above is true? then 

,tz,(PSU(n, 4”)) = q+1 if d = (II, 9 + 1) = 1 
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