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How good is the macaque monkey model of the human brain?
Richard Passingham
Macaque monkeys are widely used in order to understand the

mechanisms of the human brain. But humans have capacities

not found in monkeys, and their brains differ in important ways,

for example in the proportions of different regions and in

microstructure. However, this does not mean that we must

abandon the monkey model, only that wherever possible, we

should test whether generalizations can be made. One strategy

is to use fMRI to visualize activations in humans, and compare

these with activations in monkeys. Where the results are the

same, we can then use information from single unit recording in

those areas to suggest the mechanisms by which those areas

perform their functions in the human brain.
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Introduction
Monkeys have been used for studies of the neural mech-

anisms of cognition for over 70 years [1]. Most of this work

has been carried out on macaque monkeys, though there

are also studies on marmosets, and a few studies on

squirrel monkeys and cebus monkeys. There have been

no such studies on great apes such as the chimpanzee or

the lesser apes, the gibbons. The assumption has been

that studies on monkeys will help us to understand the

human brain. There could be two challenges.

The first accepts that these studies could be helpful but

argues that they are no longer needed. The claim is that

fMRI, MEG, TMS and DTI can now tell us everything

that we need to know about the human brain for the

purposes of cognitive neuroscience. However, this objec-

tion fails to distinguish between methods that record from

or disrupt whole populations of cells and methods that

record from cells one at once or in small populations. The

spatial resolution of imaging methods is adequate if one is

interested in the functions of an area. But if one is
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interested in mechanism, that is in how the area does what

it does, there is no alternative to using methods with a

much finer spatial resolution. The reason is that one

needs to know how the different cells interconnect within

a module [2], and how the differential coding of each cell

within a module contributes to the population signal [3].

It is true that in fMRI multivariate techniques can be

used to compare the pattern of activity across voxels in

different tasks [4], but so far they have not significantly

advanced our knowledge of the detailed mechanisms by

which behaviour is coded. Though some progress has

been made with receptive field models and plots of the

tuning curves for individual voxels [5,6], voxels as typi-

cally measured at the moment contain millions of

neurones [7]. The scale allows fine mapping, but it is

much too coarse if we are to understand the underlying

mechanisms.

The objection also assumes that DTI will be able to

provide the detail on anatomical wiring that is provided

by the use of tracers in the macaque brain. The reason

why we need detailed wiring diagrams is that the func-

tions performed by an area are determined both by the

pattern of extrinsic inputs and outputs of that area [8�]
and also by intrinsic wiring of that area [9]. DTI can

certainly provide information on the major pathways in

the human brain, but it is unlikely that it will be able to

achieve the level of detail currently available from tracers,

We now have 36 994 connection details on the connec-

tions of the cerebral cortex in the macaque monkey brain

(www.mon-kunden.de/cocomac). And although special-

ized coils can be used to enable diffusion imaging to

visualize the termination of thalamo-cortical inputs

within the cortical layers [10], it is a long way from being

able to visualize the details of intra-cortical wiring.

The second challenge is more serious. This is that the

lines leading to modern monkeys and humans have been

separated for 25 million years [11]. Thus, one would

expect to find significant differences between the brains

of monkeys and humans [12��]. Furthermore, there are

very marked behavioural differences [13,14�,15], and

these must depend partly on differences in the brain.

For example, humans, but not monkeys, can speak and

use grammar, can reflect on their own mental states and

those of others and can achieve an explicit understanding

of causes in the physical and mental world.

Differences between the human and monkey
brain
We already know some of the specializations of the human

brain that make this possible. They are summarized in a
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recent book by the author [16��]. First, the human brain is

4.8 times the size for a hypothetical monkey of the same

body weight [17]. To put this into perspective, if one

relates the size of the brain to the size of the medulla in

the brain stem, the gap between the human brain and that

of the macaque monkey is twice as large as the gap between

the monkey and a small insectivore such as a shrew [16��].

But the human brain is not just a scaled up version of the

monkey brain [18�]. The proportions of the human brain

are not those that would be predicted by a plot of the

changes in proportions in other primates as brain size

increases. For example, the neocortex is 35% larger than

predicted for a primate with as large a brain [19]. The

prefrontal cortex, defined as the granular frontal cortex,

forms 28.5% of the neocortex in the human brain but only

11.3% in the macaque brain [20��,21]. When related to the

brain as a whole, the frontal polar cortex, area 10, is

proportionately twice as large in the human brain as in

that of the chimpanzee [22]. It is not even clear whether

area 10 in the gibbon is homologous with the dorsal area

10 in the human brain [22], a fortiori for the macaque

monkey.

There are two consequences of an increase in size. The

first is that there is an increase in the number of special-

ized subregions, for example in the visual areas and in

parietal cortex [23,24��]. This follows the general trend

within mammals that there are more specialized sensory

areas with increasing size of neocortex, perhaps because

of the necessity to decrease the length of connections

between similar inputs [25]. There is also a principle

within sensory and motor systems that the amount of

tissue devoted to a particular body part relates to the

sophistication of the analysis or control rather than the

size of that part. The amount of information received by

the eye of a monkey and a human does not greatly differ,

and yet the inferior temporal cortex is 12 times larger in

the human brain [26].

The second is that there are consequential changes in the

microstructure. The maximum spine density of layer III

pyramidal neurones in the prefrontal cortex is 70% greater

in the human than in the macaque brain [20��]. It is true

that the value for the human brain is what would be

predicted for a primate with a granular frontal cortex that

was as large [20��]. But not all the differences in micro-

structure are the result of differences in size. For

example, Buxhoeveden et al. [27��] measured the width

of the mini-columns and the distance between columns in

area Tpt within Wernicke’s area. In the human brain the

column width is 14–17% larger on the left than the right,

whereas there is no such asymmetry in the columns of the

macaque brain. There are also more magnopyramidal

cells in the left rather than right superior temporal cortex

in the human brain [28], and in the left rather than the

right Broca’s area [29].
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There are other aspects of the microstructure of the human

brain that cannot be accounted for by differences in size.

Two of these have been discussed in relation to the human

ability to reflect on one’s own thoughts and those of others.

The first is that the paracingulate area 32, which is activated

when participants reflect on mental states [30], probably

has no homologue in the macaque brain [31]. The second is

that there are ‘spindle cells’ or ‘von Economo neurones’ in

the anterior cingulate cortex and anterior insula of the

human but not macaque brain [32�].

This is not to claim that these are the only possible

differences between the human and macaque brain.

But those mentioned above are enough to challenge

the macaque monkey model.

The usefulness of the macaque monkey
model
So can the macaque monkey model survive this chal-

lenge? It is illuminating to start with the even more

problematic task of generalizing from the rat brain to

the human brain. The neocortex, with its white matter,

forms just 28% of the brain in the rat, compared with 72%

in the macaque monkey. This might make us very wary of

adopting a rat model of the human brain. Yet, the hippo-

campus is well developed in the rat brain, and it was the

discovery that the rat hippocampus is specialized for

spatial mapping [33] that led to the explanation for the

role of the hippocampus in episodic memory in the

human brain. There is activation in the human hippo-

campus when subjects negotiate their way through space

[34], but also specifically in the left hippocampus when

they recall episodes in their life [35]. The reason is

probably that personal episodes are remembered in their

spatial, as well as their temporal context. Whether animals

have the same experience of recollection when they

remember is unclear, but what is clear is that the human

brain has adapted mechanisms that exist in the rat brain.

The reason is that evolution is opportunistic, as we know

not only from comparative anatomy and embryology but

also from recent comparisons of the coding sequences of

the DNA in different animals. Evolution is a historical

process. It works in two ways. Where something works it

retains it; where novel changes are required, they are

typically made by adapting what was there in the first

place. It is for this reason that the macaque monkey

model can remain productive even in cases where humans

have cognitive abilities that have not developed in other

animals.

Take language, for example. It is controversial to what

extent chimpanzees can be taught the elements of

language. In particular, it is not clear that when chim-

panzees are taught to use symbols, they appreciate that

the aim is to influence the mental states of others, in the

way that is characteristic of humans. But that does not
Current Opinion in Neurobiology 2009, 19:6–11
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mean that the macaque monkey model has nothing to

contribute to the understanding of language. An essential

characteristic of human language is that there is an

arbitrary link between a word and its referent. That link

must be learned because it is different in each particular

language. There are pair coding neurones in the temporal

lobe of macaque monkeys that can code for the learned

association between two stimuli [36]. This is not to argue

that all there is to reference is association, but a mech-

anism for association is still a necessity to allow the

retrieval of a word. Of course, the associations in language

can be cross-modal, as in the link between spoken words

and their referents, but there are also cells in the monkey

brain that can code for cross-modal associations [37].

When Japanese subjects learn the association between

unfamiliar Korean or Thai ideograms and phonemes,

there is activation in the superior temporal sulcus, just

as for intelligible speech [38].

Humans differ from monkeys not only in being capable of

language but also in being able to reflect on the thoughts

of others. When they do so there is activation in the

paracingulate cortex, area 32 [30]. One’s first thought is

that studying the monkey brain will tell us nothing about

the mechanisms. But it is clear that the anterior cingulate

cortex is involved in social evaluation even in other

animals. Rats with lesions there show a decrease in social

behaviour [39]. It is easier to analyze the reasons with

monkeys, and Rudebeck et al. [40�] showed that macaque

monkeys with cingulate lesions show a marked reduction

in their interest in other individuals. The authors suggest

that the anterior cingulate cortex is important for social

valuation. This is not to claim that the monkeys could

infer the mental states of other monkeys, but that they

were less interested in the social signals made by other

monkeys. In understanding the role of the paracingulate

cortex in theory of mind, it may well be fruitful to

understand the mechanisms for social valuation in mon-

keys.

Conclusion
The previous section has deliberately taken difficult

cases. There are, of course, many respects in which

human abilities can be found in monkeys. In these cases

one can give the same tasks to monkeys and human

subjects. Examples are visual conditional tasks

[41,42�], spatial working memory tasks [43,44], oddity

tasks [45,46] or visual matching and non-matching rules

[47,48].

Given uncertainty as to whether data on macaques can

be generalized to humans, the strategy should be to

follow up imaging experiments in human subjects by

giving the same tasks to macaque monkeys in the fMRI

scanner [24��,49]. This enables us both to interpret the

fMRI signal in relation to electrophysiological signals

and to visualize the similarities and differences between
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activations in monkeys and humans. Where there are

similarities, one may then be justified in using data from

the recording of single units and field potentials in

monkeys so as to suggest mechanisms in the human

brain. Wherever possible, one should try to confirm the

results by direct recording from cells in patients, as has

been done for recordings in the anterior cingulate cortex

[50,51��].

We should also use the fact that we can intervene in

monkey brains to check findings on the human brain. If

A causes B, then removing A should prevent B. To give

one example of our own, measures of effective connec-

tivity in our imaging data suggested changes in the

interactions between areas during learning [41]; and

so we checked whether the changes in covariance were

causal by studying the effect of disconnecting the

relevant areas in macaque monkeys [42�]. The tech-

nique of disconnecting areas by crossed asymmetrical

lesions provides an essential analytic tool for studying

interactions that is not available for human subjects [52].

There will always be interventions that are needed if we

are to study mechanisms but which we cannot make in

the human brain: for example, selective depletion of

different transmitters can reveal their contribution to

the workings of specific areas in monkeys [53]. Finally,

wherever possible we should directly compare the ana-

tomical connections in the human and monkey brain

[54��,55].

But why bother about monkeys at all? The reason is that

recordings from electrodes in the human brain are always

going to be restricted for ethical and practical reasons. For

example, recordings can be taken for short periods during

surgery for temporal lobe epilepsy [56] and for longer

periods with depth electrodes implanted so as to detect

the source of the seizure onset [57]. In these cases the aim

of the recordings that are made for experimental purposes

is not the clinical well-being of the patient, and there will

always be strict limits to this type of research. However,

recordings can also be taken so as to guide prostheses and

here there is a clear clinical justification. Nonetheless, the

basic work on decoding the activity of populations of

cortical cells has first to be pioneered on macaque mon-

keys [58].

The message is clear. Work on monkeys is essential for

understanding the mechanisms of the brain. But when-

ever possible, one should test whether the results can be

generalized to the human brain. There is nothing out-

landish about this message. After all, Kandel and co-

workers [59] had to check whether the molecular mech-

anisms that they had established for learning in the sea

slug (Aplysia) were also involved in memory in a mammal,

such as the mouse. The gap between macaque monkeys

and humans is of the same order, and we should follow

their example.
www.sciencedirect.com
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