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Abstract

A characterisation is given of edge-transitive Cayley graphs of valency 4 on odd number of ver-
tices. The characterisation is then applied to solve several problems in the area of edge-transitive
graphs: answering a question proposed by Xu [Automorphism groups and isomorphisms of Cayley
graphs, Discrete Math. 182 (1998) 309-319] regarding normal Cayley graphs; providing a method for
constructing edge-transitive graphs of valency 4 with arbitrarily large vertex-stabiliser; constructing
and characterising a new family of half-transitive graphs. Also this study leads to a construction of
the first family of arc-transitive graphs of valency 4 which are non-Cayley graphs and have a ‘nice’
isomorphic 2-factorisation.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A graph I' is a Cayley graph if there exist a group G and a subset S C G with 1 ¢ § =
S~ :={g~"' | g € S} such that the vertices of I" may be identified with the elements of G
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in such a way that x is adjacent to y if and only if yx~! € S. The Cayley graph I" is denoted
by Cay(G, S). Throughout this paper, denote by 1 the vertex of Cay(G, S) corresponding
to the identity of G.

It is well-known that a graph I" is a Cayley graph of a group G if and only if the auto-
morphism group Aut I contains a subgroup which is isomorphic to G and acts regularly on
vertices. In particular, a Cayley graph Cay(G, S) is vertex-transitive of order |G|. However,
a Cayley graph is of course not necessarily edge-transitive. In this paper, we investigate
Cayley graphs that are edge-transitive.

Small valency Cayley graphs have received attention in the literature. For instance, Cayley
graphs of valency 3 or 4 of simple groups have been investigated in [6,7,32]; Cayley graphs
of valency 4 of certain p-groups are investigated in [8,30]. Refer to [4,20,23,24] for more
results regarding edge-transitive graphs of small valencies. A relation between regular maps
and edge-transitive Cayley graphs of valency 4 is studied in [22]. In the main result (Theorem
1.1) of this paper, we characterise edge-transitive Cayley graphs of valency 4 and odd order.
To state this result, we need more definitions.

Let I' be a graph with vertex set VI and edge set EI. If a subgroup X <Aut! is
transitive on VI or ET, then the graph I is said to be X-vertex-transitive or X-edge-
transitive, respectively. A sequence v, v1, ..., vy of vertices of I' is called an s-arc if
vi—1 # vy for 1<i<s — 1, and {v;, vi4+1} is an edge for 0<i<s — 1. The graph
I' is called (X, s)-arc-transitive if X is transitive on the s-arcs of I'; if in addition X
is not transitive on the (s + 1)-arcs, then I is said to be (X, s)-transitive. In particu-
lar, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph is called X-arc-
transitive.

A typical method for studying vertex-transitive graphs is taking certain quotients. For an
X-vertex-transitive graph I" and a normal subgroup N <X, the normal quotient graph I' y
induced by N is the graph that has vertex set VI 'y = {v" | v € V I} such that v{v and vév
are adjacent if and only if v is adjacent in I" to some vertex in vév . If further the valency of
I'y equals the valency of I', then I is called a normal cover of I'y.

Theorem 1.1. Let G be a finite group of odd order, and let I' = Cay(G, S) be connected
and of valency 4. Assume that I' is X-edge-transitive, where G < X <AutI'. Then one of
the following holds:

(1) Gisnormal in X, X1<Dg, and S = {a,a™", a", (a®)~'}, where T € Aut(G) such that
either o(t) = 2, or o(t) = 4 and av = a b
(2) there is a subgroup M < G such that M <X, and I is a normal cover of I yr;

(3) X has a unique minimal normal subgroup N =~ Z/; with p odd prime and k > 2 such that
i) G = NNR;Z’;NZ,H, where m > 1 is odd,
(i) X = Nx((HXR).0)=Zkx((Z4%Zy).Z,), and Xy = H.O, where H =7} with
2<I<k, and O =7; witht = 1 or 2, satisfying the following statements:
(a) there exist xi,...,xx € N andty,...,Tx € H such that N = (xy, ..., xx),
(xi, 1) =Dop and H = (1;) x Cy(x;) for 1 <i <k;
(b) R does not centralise H,
(¢) X/(NH)=Zy, or Dy, and I is X-arc-transitive if and only if X /(N H) = Doy,
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@) I'is (X, s)-transitive, and X, X1, s and G are as in the following table:

X X1 s G

As, S5 A4, Sy 2 Zs
PGL(2,7) Dis 1 Z7%73
PSL(2, 11), PGL(2, 11) A4, Sy 2 71175
PSL(2, 23) S4 2 VAL VAR

Remarks on Theorem 1.1.

(a) The Cayley graph I' in part (1), called normal edge-transitive graph, is studied in [25].
If further X = Aut I, then I is called a normal Cayley graph, introduced in [31]. For
this type of Cayley graph, the action of X on the graph I" is well-understood.

(b) Part (2) is a reduction from the Cayley graph I to a smaller graph I'ys, which is also
an edge-transitive Cayley graph of valency 4. An edge-transitive Cayley graph is called
basic if it is not a normal cover of a smaller edge-transitive Cayley graph. Theorem 1.1
shows that if I is not a normal Cayley graph then I' is a cover of a well-characterised
graph, that is a basic Cayley graph satisfying part (3) or part (4).

(c) Construction 3.2 shows that for every group X satisfying part (3) with O = 1 indeed
acts edge-transitively on some Cayley graphs of valency 4.

(d) Part (4) tells us that there are only three 2-arc-transitive basic Cayley graphs of valency
4 and odd order. The graph in row 1 of the table is the complete graph Ks; the graph in
row 2 of the table is the line graph of the Heawood graph.

The following corollary of Theorem 1.1 gives a solution to Problem 4 of [31], in particular,
answering the question stated there in the negative.

Corollary 1.2. There are infinitely many connected basic Cayley graphs of valency 4 and
odd order which are not normal Cayley graphs.

The proof of Corollary 1.2 follows from Lemma 3.3.

It is well-known that the vertex-stabiliser for an s-arc-transitive graph of valency 4 with
s > 2 has order dividing 2436, see Lemma 2.5. However, in [2,26], ‘non-trivial’ arc-transitive
graphs of valency 4 which have arbitrarily large vertex-stabiliser are constructed. Part (3) of
Theorem 1.1 characterises edge-transitive Cayley graphs of valency 4 and odd order with
this property.

Corollary 1.3. Let I' be a connected Cayley graph of valency 4 and odd order. Assume that
I' is X-edge-transitive for X <Aut I'. Then | X1| > 24 if and only if I is a cover of a graph
satisfying part (3) of Theorem 1.1 with 1 > 5.

This characterisation provides a potential method for constructing edge-transitive graphs
of valency 4 with arbitrarily large vertex-stabiliser, see Construction 3.2.

A graph I is called half-transitive if AutT is transitive on the vertices and the edges
but not transitive on the arcs of I'. Constructing and characterising half-transitive graphs
was initiated by Tutte (1965), and is a currently active topic in algebraic graph theory, see
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[18,21,22] for references. Theorem 1.1 provides a method for characterising some classes
of half-transitive graphs of valency 4. The following theorem is such an example:

Theorem 1.4. Let G = Nx(g) = Z’;NZm < AGL(1, p*), where k > 1 is odd, p is
an odd prime and m is the largest odd divisor of p* — 1. Assume that I' is a connected

edge-transitive Cayley graph of G of valency 4. Then Aut I' = GxZ3, I is half-transitive,
and I =I'; = Cay(G, S;), where 1<i <"51, (m,i) = 1, and

S, = {agi, a_lgi, (agi)_l, (a_lgi)_l} where a € N \ {1}.

Moreover, I't =T'j if and only if p"i = j or —j (mod m) for some r >0.

The following result is a by-product of analysing PGL(2, 7)-arc-transitive graphs of
valency 4. (For two graphs I" and 2 which have the same vertex set V and disjoint edge sets
E1 and E», respectively, denote by I" + 2 the graph with vertex set V and edge set E1 U E».
For a positive integer n and a cycle C,, of size m, denote by nC,, the vertex disjoint union
of n copies of C,,.)

Proposition 1.5. Let p be a prime such that p = —1 (mod 8), and let T = PSL(2, p) and
X = PGL(2, p). Then there exists an X-arc-transitive graph I of valency 4 such that the
following hold:

2
() I' = Ay + 4o, 41 =2, = 2ZEVC3, T <Aut 41 N Aut 4o, and both Ay and A are
T-arc-transitive; in particular, I is not T-edge-transitive;
(11) I' is a Cayley graph if and only if p = 7.

Part (i) of this proposition is proved by Lemma 4.3, and part (ii) follows from Theorem
1.1.

Remark on Proposition 1.5. The factorisation I' = Ay 4 43 is an isomorphic 2-factorisa
tion of I'. The group X is transitive on {41, 4>} with T being the kernel. Such isomorphic
factorisations are called homogeneous factorisations, introduced and studied in [9,19]. The
factorisation given in Proposition 1.5 are the first known example of non-Cayley graphs
which have a homogeneous 2-factorisation, refer to [9, Lemma 2.7] for a characterisation
of homogeneous 1-factorisations.

This paper is organized as follows. Section 2 collects some preliminary results which
will be used later. Section 3 gives some examples of graphs appeared in Theorem 1.1.
Then Section 4 constructs the graphs stated in Proposition 1.5. Finally, in Sections 5 and 6,
Theorems 1.1 and 1.4 are proved, respectively.

2. Preliminary results

For a core-free subgroup H of X and an elementa € X \ H,let[X: H] = {Hx | x € X},
and define the coset graph I' := Cos(X, H, H{a, a~'}H) to be the graph with vertex set
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[X : H] such that {Hx, Hy} is an edge of I" if and only if yx~' € H{a,a "}H. The
properties stated in the following lemma are well-known.

Lemma 2.1. For a coset graph I' = Cos(X, H, H{a, a_l}H), we have

(1) I is X-edge-transitive;
(ii) I is X-arc-transitive if and only if HaH = Ha™'H, or equivalently, HaH = HbH
for some b € X \ H such that b*> € H N H”;
(iii) I is connected if and only if (H, a) = X
(iv) the valency of I' equals

|H: HNHY| if HaH = Ha 'H,
val(I') = a .

2|H: HN H* otherwise.
Lemma 2.2. Let I' be a connected X-vertex-transitive graph where X <Aut I, and let
N <X be intransitive on VI'. Assume that I' is a cover of I'y. Then N is semiregular on
VI, and the kernel of X acting on VI'n equals N.

Proof. Let K be the kernel of X acting on VI'y. Then N<K <X. Suppose that K, # 1,
where v € VI'. Then since I' is connected and K <X, it follows that KUF @ # 1. Thus
the number of K, -orbits in I'(v) is less than |I'(v)]|, and so the valency of I'y is less than
the valency of I', which is a contradiction. Hence K, = 1, and it follows that N = K is
semiregularon VI'. [

For a Cayley graph I' = Cay(G, S), let Aut(G, S) = {o € Aut(G) | S* = S}. For the
normal edge-transitive case, we have a simple lemma.

Lemma 2.3. Let I' = Cay(G, S) be connected of valency 4. Assume that Aut I has a sub-
group X such that I is X-edge-transitive and G<1X. Then X <Nau: r(G) = G xAut(G, S),
and either X1 <Dsg, or I' is (X, 2)-transitive and |G| is even.

Proof. Since I' is connected, (S) = G, and so Aut(G, S) acts faithfully on S. Hence
Aut(G, §)<S4. By [11, Lemma 2.1], we have that X <Nput r(G) = GxAut(G, §). Thus
X1 <Aut(G, S) <S4. Suppose that 3 divides | X1|. Then X is 2-transitive on S. Hence I is
(X, 2)-transitive, and all elements in S are involutions, see for example [17]. In particular,
|G| is even. On the other hand, if 3 does not divide |X1|, then X is a 2-group, and hence
X1<Dg. O

Lemma 2.4. Let G be a finite group of odd order, and let I' = Cay(G, S) be connected
and of valency 4. Assume that N<\X <Aut I" such that G < X and I is X-edge-transitive.
Then one of the following statements holds:

(i) N has odd order and N < G;

(i) N has even order, and either N is transitive on VI', or GN is transitive on ET .

Proof. Let Y = GN.ThenY is transitive on V I". Suppose that N £G. Then Y is not regular
on VI Itfollows that Yy is a nontrivial {2, 3}-group. If Y1 has an orbitof size 3on I'(1) = S,
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then Y has an orbit on E " which is a 1-factor of I", which is not possible since |V I'| = |G| is
odd. It follows that either Y7 is transitive on S, or Y7 has an orbit of size 2 on §. In particular,
|Y1| is even, so |N| is even. Therefore, either N has odd order and N < G, as in part(i), or N
has even order.

Assume now that | N| is even. If Y7 is transitive on S, then I is Y-arc-transitive and hence
Y-edge-transitive, so part (ii) holds. Thus assume that Y7 has an orbit of size 2 on S. Noting
that N<1X, N1 # 1 and I’ is connected and X-vertex-transitive, it is easily shown that Ny
is non-trivial on §. Since Ny <Y1, N1 has an orbit {x, y} of size 2 on S. Suppose that N
is intransitive on VI'. Let H = 1V be the N-orbit containing 1. Then H N S = @ as I is
X-edge-transitive. Further, xV = (15)N = 16V¥™Dx — (1N)* — Hx and yV = @)V =
10M7Dy — (INYY = Hy, and so Hx = xV¥ = y¥ = Hy. Itis easily shown that H forms
a subgroup of G. In particular, xy™' € H. If y = x~ !, then x> = xy~' € H,andx € H
as |H| is odd, a contradiction. Thus § = {x, y, x~!, y~!'}. Clearly, {x, y} is an orbit of Y;
on S. It follows that Y is transitive on ET, as in part (ii). O

By the result of [15], there is no 4-arc-transitive graph of valency at least 3 on odd number
of vertices. Then by the known results about 2-arc-transitive graphs (see for example [29]
or [16, Section 3.1]), the following result holds.

Lemma 2.5. Let I' be a connected (X, s)-transitive graph of valency 4. Then either s <4
or s =7, and further, s and the stabliser X, are listed as following

Xy
2-group
Ay<Xy<Sy
Ay x 73< Xy <S4 x S3
73.SL(2,3)< X, <7Z3.GL(2,3)
[3°].SL(2, 3) < X, <[3°].GL(2, 3)

N R W =

Moreover, if |VI'| is odd, then s < 3.
Finally, we quote a result about simple groups, which will be used later.

Lemma 2.6 (Kazarin [13]). Let T be a non-abelian simple group which has a 2'-Hall
subgroup. Then T = PSL(2, p), where p = 2° — 1 is a prime. Further, T = G H, where
G=2ZpxZp-1 and H =Dy = Dpe.

2

3. Existence of graphs satisfying Theorem 1.1

In this section, we construct examples of graphs satisfying Theorem 1.1.

First consider part (1) of Theorem 1.1. We observe that if I is a connected normal edge-
transitive Cayley graph of a group G of valency 4, then G = (a, a®), where t € Aut(G)
such that a® = a ora~!. Conversely, if G is a group that has a presentation G = (a, a%),
where T € Aut(G) such that a® =aor a~", then G has a connected normal edge-transitive
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Cayley graph of valency 4, that is, Cay(G, S) where S = {a, al a’, (ar)’l}. Thus we
have the following conclusion:

Lemma 3.1. Let G be a group of odd order. Then G has a connected normal edge-transitive
Cayley graph of valency 4 if and only if G = (a, a*), where t € Aut(G) such that av =a
ora .

See Construction 6.1 for an example of such graphs.
The following construction produces edge-transitive graphs admitting a group X satisfy-
ing part (3) of Theorem 1.1 with O = 1.

Construction 3.2. Let X = Nx(HXR) gZ’; X (le xZm), where p is an odd prime, m is
odd and 2 </ <k, such that N =7}, H =7} and R=7,, satisfy
(a) N is the unique minimal normal subgroup of X;

(b) there exist x € N \ {1} and t € H such that x* = x Vand H = (1) x Cy(x);
(¢) R does not centralise H.

Let R = (6)=Z,,,and let y = xa. Set

I'(p,k,1,m) = Cos(X, H, H{y, y '}H).
The next lemma shows that the graphs constructed here are as required.

Lemma 3.3. Let I' = I'(p, k, 1, m) be a graph constructed in Construction 3.2, and let
G =N NR;Z];XZ,". Then I' is a connected X-edge-transitive Cayley graph of G of
valency 4, and G is not normal in X.

Proof. By the definition, H is core-free in X, and hence X <AutI. Now X = GH and
G N H =1, and thus G acts regularly on the vertex set [X: H]. So I is a Cayley graph of
G, which has odd order p¥m. Obviously, G is not normal in X.

. . i1 .
For x and ¢ defined in Construction 3.2, set x; = x® fori = 1,2,...,m, and let
o= (U’I)Ta. Then, as y = xa, xp = o 1xo and t € H, we have

otx% = (e Yoo 'x0)? = (6 Hx?e = (x"'e") xo) = )y € (H, y).

Ast € H and o normalises H, we have o = (6~ !)%¢ = 17(z%) € H.Thus, x% = a_l(ocxg) €

(H,y), and as x has odd order, x, € (H,y). Then x3 = xJ = xgla = xzy e (H,y).
Similarly, we have that x; € (H,y) fori = 2,3,..., m. Then calculation shows that
YY" =x1x2---x, € (H,y). Thusx = x1 = ymx2_1 .- -x,;l € (H,y),andsoc=x"ly e

(H, y). Since N is a minimal normal subgroup of X, we conclude that N = (x"7 |h €
H,0<i<m—1),and hence N<(H, y).So (H, y)>(N, H,¢) = X, and I' is connected.

Finally, as ¢ normalises H and by condition (b) of Construction 3.2, we have that H*NH =
Cpy(x) hasindex 2in H. Thus HY N H = (H* N H"fl)” = (H*NH)? = Cy(x)?, which
has index 2 in H. Since X <AutI', I'is not a cycle. By Lemma 2.1, I" is connected, X-edge-
transitive and of valency 4.
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We end this section by presenting several groups satisfying (a), (b) and (c) of Construction
3.2, so we obtain examples of graphs satisfying Theorem 1.1(3).

Example 3.4. Let p be an odd prime, and m an odd integer.

(1) Let X = ((x1,71) x (x2,72) X -+ X (X, Tp)) ¥ (0) =Dy Z;y = D’2"p>42m, where
(xi, 1) =Dy and (x;, 7,)° = (Xj41, Ti4+1) (reading the subscripts modulo #2). Then
N = (x1,x2,...,Xn) EZZ’ is a minimal normal subgroup of X, and H = (11, 12, .. .,
T) = 25" is such that H = (1;) x Cy (x;) for 1 <i <m.

(i) Let Y < X with X as in part (i) such that ¥ = (x1,x2, ..., X)X (1172, 1273, . . .,
rm_lrm)m(a);Z’;ZN(Z’{’_INZW,). Then N = (x1, x2, ..., X;) is a minimal normal
subgroup of ¥, and L := (7172, T2T3, . . . » Tin—1Tm) ;Zg‘_]

Cpr(x;) for 1<i<m.

issuchthat L = (t;7;41) X

Thus both X and Y satisfy the conditions of Construction 3.2.

Example 3.5. Let N = (x1,...,x;) = Z';,, where p is an odd prime and k > 3. Let [ be a
proper divisor of k. Let ¢ € Aut(NN) be such that
L0 = )i if1<i<k—1,
i x1xi41 ifi =k.

Let 1 € Aut(N) be such that

-1 . .
RN EY 1fl|Jf1,
J x;  otherwise.

Leto(o) =m, H = (IUH | 1<i<m)and X = N x(t, ). Then N is a minimal normal
subgroup of Xand H = (1) x Cy(x)) = le. Thus, X satisfies the conditions of Construction
3.2.

For instance, taking p = 3,k = 9 and [ = 3, so m = 39, and then applying Construction
3.2, we obtain an X-edge-transitive Cayley graph I'(3, 9, 3, 39) of valency 4 of the group
Z3x7Z39, where X = 73 x(Z3%739).

4. A family of arc-transitive graphs of valency 4

Here, we construct a family of 4-arc-transitive cubic graphs and their line graphs. The
smallest line graph is PGL(2, 7)-arc-transitive but not PSL(2, 7)-edge-transitive, which is
one of the graphs stated in Theorem 1.1(4).

Construction 4.1. Let p be a prime such that p = —1 (mod 8), and let T = PSL(2, p)
and X = PGL(2, p). Then T has exactly two conjugacy classes of maximal subgroups
isomorphic to S4 which are conjugatein X. Let L, R < T besuchthat L, R =S4, LNR =Dg,
and L, R are not conjugate in 7 but L* = R for some involutiont € X \ 7.

(1) LetX = Cos(T, L, R) bethe coset graph defined as: the vertexset VX = [T: L1U[T: R]
such that Lx is adjacent to Ry if and only if yx~! € LR.
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(2) Let I' be the line graph of 2, that is, the vertices of I" are the edges of 2 and two vertices
of I' are adjacent if and only if the corresponding edges of X have exactly one common
vertex.

Then it follows from the definition that X is bipartite with parts [7: L] and [T: R], and T
acts by right multiplication transitively on the edge set EX. Further, we have the following
properties:

Lemma 4.2. The following statements hold for the graph X defined above:

(1) 2 is connected and of valency 3;

(i1) X may also be represented as the coset graph Cos(X, L, LtL);
(i) 2 is (X, 4)-arc-transitive,
(iv) 2 is T-vertex intransitive and locally (T, 4)-arc-transitive.

Proof. Since (L, R) = T, part (i) follows from the definition, see [10, Lemma 2.7].

Part (ii) follows from the definitions of Cos(T, L, R) and Cos(X, L, LtL).

See [1] or [16, Example 3.5] for part (iii).

It follows from the definition that 7'is not transitive on the vertex set V 2, and so part (iv)
follows from part (iii). [

Next we study the line graph I' in the following lemma.

Lemma 4.3. Let I be the line graph of X defined as in Construction 4.1. Let v be the vertex
of I corresponding to the edge {L, R} of X. Then we have the following statements:

(1) I is connected, and has valency 4 and girth 3;
(i1) I is X-arc-transitive, and X, =Die;
(iii) T is transitive on VI and intransitive on EI', and T, ~Dg;
@iv) T has exactly two orbits E, E» on EI, and letting A1 = (VI', Ey) and A =

(VI En), we have Ay = Ay~ P20y and T = A + M.

Proof. We first look at the neighbors of the vertex vin I'. Let a € L be of order 3, and let
b = a® € R.Thenthe 3 neighbors of Lin X are R, Ra and Ra~'; and the 3 neighbors of R are
L, Lband Lb~'. Write the corresponding vertices of I" as: u; = {Lb, R}, ur = {Lb_l, R},
wy = {L, Ra} and wy = {L, Ra~"'}. Then the neighborhood I'(v) = {u, us, wi, wa}.

Thus I' is of valency 4. By the definition of a line graph, # is adjacent to u, and wy is
adjacent to w». Hence the girth of I' is 3. Since 2 is connected, I" is connected too, proving
part (i).

Now T, = LN R=Dg and X, = (L N R, 1) =Dj¢. Since T is transitive on EX and is
not transitive on the vertex set V 2, there is no element of 7" maps the arc (L, R) to the arc
(R, L).Since T, = LNR, there exist o, 05 € T, suchthata® = a~'and b2 = b~!. Thus
ul' = urandw]® = w. So T, has exactly two orbits on I'(v), thatis, {u1, u>} and {wy, w»}.
Further, (b) acts transitively on {v, u1, us}. It follows that £ := {uy, uz}T is a self-paired
orbital of T on VI'. Therefore, I' is not T-edge-transitive. Further, since 7 interchanges L
and R and also interchanges a and b, it follows that t € X, and {u1, u2}* = {wy, wy}. Thus
I' is X-arc-transitive.
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Let E; = {wy, wa}T, and let A4; = (VI, E;) withi = 1,2. Then I’ = 4 + 4», and 4;

2
consists of cycles of size 3. Thus |E1| = |Ez| = |VI| = % = p(pl—gl), and 4; consists of

. . . 2— . . . .
|E3—’| cycles of size 3, that is, 4; = ”(’14—81)C3. Finally, Ef = E5 and so t is an isomorphism

between 4; and 4,. [

5. Proof of Theorem 1.1

Let G be a finite group of odd order, and let I' = Cay(G, S) be connected and of valency
4. Assume that I" is X-edge-transitive, where G < X <Aut I', and assume further that G is
not normal in X.

We first treat the case where I" has no non-trivial normal quotient of valency 4 in Sections
5.1 and 5.2.

Suppose that each non-trivial normal quotient of I" is a cycle. Let N be a minimal normal
subgroup of X. Then N = T* for some simple group 7 and some integer k > 1. Since
|[VI'| = |G| is odd, X has no nontrivial normal 2-subgroups. In particular, N is not a
2-group. Further we have the following simple lemma.

Lemma 5.1. Either N is soluble, or Cx(N) = 1.

Proof. Suppose that N is insoluble and C := Cx(N) # 1. Then NC = N x C and C<X.
Since |N|is not semiregular on VI', C is intransitive. By the assumption that any non-trivial
normal quotient of I is a cycle, I'c is a cycle. Let K be the kernel of X acting on VI'c.
Then X /K <AutI'c =Dy, where ¢ = |V I'¢|. It follows that N < K. Let A be an arbitrary
C-orbit on VI'. Then A is N-invariant. Consider the action of NC on A, and let D be the
kernel of NC acting on A. Then NC/D = (ND/D) x (CD/D). Since C is transitive on
A, CD/D is also transitive on A. Then N D/D is semiregular on A. Noting that |A| is odd
and ND/D=N/(NND)x T for some k' >0, it follows that ND/D is trivial on A, and
hence N < D. Thus N is trivial on every C-orbit, and so N is trivial on VI', which is a
contradiction. Therefore, either N is soluble, or Cx(N) =C =1. O

5.1. The case where N is transitive

Assume that N is transitive on the vertices of I'. Our goal is to prove that N = As,
PSL(2,7), PSL(2, 11) or PSL(2, 23) by a series of lemmas. The first shows that N is
nonabelian simple.

Lemma 5.2. The minimal normal subgroup N is a nonabelian simple group, X is almost
simple, and N = soc(X).

Proof. Suppose that N is abelian. Since N is transitive, N is regular, and hence |N| = |G|
is odd. By Lemma 2.3, we have that N <G, and so G = N<X, which is a contradiction.
Thus N = T¥ is nonabelian. Suppose that k > 1. Let L be a normal subgroup of N such that
L=T*1 Since N1< X1 is a {2, 3}-group, it follows that L is intransitive on V I'; further,
since |V I'| is odd and |T| is even, L is not semiregular. It follows from Lemma 2.2 that
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I'z is a cycle. Then Aut 'y is a dihedral group. Thus N lies in the kernel of X acting on
VI';, and so N is intransitive on V I', which is a contradiction. Thus k = 1, and N = T is
nonabelian simple. By Lemma 5.1, Cx (N) = 1, and hence N is the unique minimal normal
subgroup of X. Thus X is almost simple, and N = soc(X). [

The 2-arc-transitive case is determined by the following lemma.

Lemma 5.3. Assume I is (X, 2)-arc-transitive. Then one of the following holds:

(1) X = A5 orSs, and X1 = A4 or Sa, respectively, and G = Zs5;
(i) X =PSL(2, 11) or PGL(2, 11), and X1 = A4 or S4, respectively, and G = 711X Zs;
(iii) X =PSL(2,23), X1 =S4, and G = Zr3xZ;.

Proof. Note that X = GX and G N X1 = 1. By Lemma 2.5, | X1| is a divisor of 2432 =
144, and hence a Sylow 2-subgroup of X is isomorphic to a subgroup of Dg x Z. Further,
IN : (GN N)| = |GN: G| divides | X: G| = |Xq]|. Let M be a maximal subgroup of N
containing G N N. Then [N: M] has size dividing 144, and N is a primitive permutation
group on [N: M]. Inspecting the list of primitive permutation groups of small degree given
in [3, Appendix B], we conclude that N is one of the following groups:

As, Ag, PSL(2,7), PSL(2, 8), PSL(2, 11), My, PSL(2, 17), PSL(2, 23), PSL(2, 47),

PSL(2,71) and PSL(3, 3).

It is known that the groups My, PSL(2, 17), PSL(2, 47) and PSL(3, 3) have a Sylow
2-subgroup isomorphic to Qg.Z», D16, D1g and Z,.Qg, respectively. Thus N is none of these
groups. Suppose that N = Ag or PSL(2, 8). Then X = Ag, Sg, PSL(2, 8) or PSL(2, 8).Z3.
However, X has no factorisation X = G Xy such that G N X1 = 1, and X7 is a {2, 3}-
group, which is a contradiction. Suppose that N = PSL(2,71). Then X = PSL(2,71)
or PGL(2,71), and X1 = D7, or Dyu4, respectively, and G = Z7;xZ35. Thus X is a
maximal subgroup of X, and X acts primitively on the vertex set VI' = [X: Xy]. This is not
possible, see [28] or [18]. If N = PSL(2, 7), then G = Z7 and N1 = S4. Then, however, N
is 2-transitive on VI' = [N: Nq], and so I' =~ Ky, which is a contradiction.

Therefore, N = As, PSL(2, 11) or PSL(2, 23). Now either X is primitive on VI, or
X =N =PSL(2,11)and G = Z1 X Zs. Then, by [27] and [12], we obtain the conclusion
stated in the lemma. [J

The next lemma determines X for the case where I is not (X, 2)-arc-transitive.

Lemma 5.4. Suppose that I is not (X, 2)-arc-transitive. Then X = PGL(2,7), X1 = Dy
and G = Z7x73.

Proof. Since I"is not (X, 2)-arc-transitive, X is a 2-group. Since X = GXjand GNX; =

1, G is a 2/-Hall subgroup of X. Then G N N is a 2’-Hall subgroup of N. By Lemma 5.2, N is

nonabelian simple. By Lemma 2.6, N = PSL(2, p), GNN = Z,XZ p—1,and N1 = Dp41,
2

where p = 2° — 1 is a prime. If e > 3, then Njp is a maximal subgroup of N. Thus N is a
primitive permutation group on V I" and has a self-paired suborbit of length 4, which is not
possible, see [28] or [18]. Thus e = 3, N = PSL(2,7), G = Z7xZ3, and N1 = Dg. So
X =PSL(2,7) or PGL(2, 7).
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Suppose that X = PSL(2, 7). Now write I" as coset graph Cos(X, H, H{x, x’]}H),
where H = X1 = Dg, and x € X is such that (H,x) = X. Let P = H N H*. Then
|H: P| =2or4.

Assume that |H: P| = 4. Then I' is X-arc-transitive and P = Z;. By Lemma 2.1, we
may assume that x2 € P = HN H* and x normalises P. If P<<H, then P<\(H, x) = X =
PSL(2, 7), which is a contradiction. Thus P is not normal in H, and so Z% ~Ny(P)<H.
Since Nx (P)=Dg, we have Nx(P) # H. So Ny(P)<(H,Nx(P)) = X, which is a
contradiction. Thus |H : P| = 2, and hence P<IL := (H, H*). We conclude that L ~S4.
Then H and H* are two Sylow 2-subgroups of L, and hence H* = H?Y forsome y € L. Thus
Y = H, thatis, xy™' € Nx(H) = H, hence x € Hy C L. Then (x, H)<L # X,
which is a contradiction. Thus X # PSL(2,7), and so X = PGL(2,7). O

5.2. The case where N is intransitive

Assume now that the minimal normal subgroup N <X is intransitive on V I'. We are going
to prove that part (3) of Theorem 1.1 occurs.

Lemma 5.5. The minimal normal subgroup N is soluble, and N < G.

Proof. Suppose that N is insoluble. Then N = T* and N £ G, where T is nonabelian simple
and k>1. Let Y = NG. Then by Lemma 2.4 Y is transitive on both of VI" and ET. Let
L < N be a non-trivial normal subgroup of Y. Then L is intransitive, and since |V I'| is odd,
L is not semi-regular on V I'. Thus the valency of the quotient graph Iy is less than 4. Since
|VI'|isodd, I'y is acycle of size m > 3. Let K be the kernel of Y acting on the L-orbitsin VI
Then Y/K <Aut 'y ~D»,,, where m = |V I'z|. Further, since NK/K ~N/(N N K)~T!
for some /, we conclude that / = 0 and N < K. Considering the action of N on an arbitrary
L-orbit, we have that L = N. This particularly shows that N is a minimal normal subgroup
of Y. As I'y is a cycle, I' is not (X, 2)-arc-transitive, and X7 is a nontrivial 2-group. In
particular, K is a 2-group. Since K = NK1 <Y and |Y : N|is odd, we know that K = N.
Thus N itself is the kernel of X acting on VI 'y. It follows that Y /N is the cyclic regular
subgroup of Aut I'y actingon VI'y.Thus Y = NG = N{a) =2 N.Z,, forsomea € G\ N.

Since X7 is a nontrivial 2-group, it is easily shown that G N N is a 2’-Hall subgroup of
N,and N = (GNN)N1.Then GNT = GN N NT is a2’-Hall subgroup of T. By Lemma
2.6, T = PSL(2, p) for a prime p = 2¢ — 1. In particular, Out(7T) =~ Z,. By Lemma 5.1,
Cx(N) =1, and hence Cy(N) = 1. Then N is the only minimal normal subgroup of ¥ and
of X. Sotheelementa € ¥ < X <Aut(N) = Aut(T) :Sg. Write N = T1 x - - - X Ty, where
T; =~T. Then Aut(N) = (Aut(Ty) x Aut(T») x --- x Aut(Ty))=xSt, and a = bm, where
b € Aut(T) x Aut(Tp) x - -+ x Aut(Ty) and & € Sg.

Since N is a minimal normal subgroup of ¥, we have that (a) acts by conjugation tran-
sitively on {771, T», ..., Tx}, and hence the permutation 7 is a k-cycle of Si. Relabeling if
necessary, we may assume © = (12...k) € Si. Then Tk“ = Tp and Ti“ = T;+1, where

i=1,...,k—1.Further,ak = b™ - .. b™ € Aut(T}) x Aut(T) x - - - x Aut(Tz) = N xZ%.
Since a* is of odd order, it follows that af € N. Thus Y/N =7, and hence m = k.
Set a* = titp - - - 1y, where 1; € T;. Since a centralises a¥, we have f1r2--- 1y = a¥ =

(@ = tity ---tf. Since tf € T = Ty and 1 € T = T;yy, it follows that 1 = 1
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i—1

and ¢ = tiy1, wherei = 1,...,k — 1. Let g = tl_la. Then T; = Tl{l = Tlg and
gi = a"tl;l1 ti_l coly 1 (reading the subscripts modular k), where 2 <i <k. In particular,
gk = aktl_lz‘k_1 .. .t2_l = 1, and so the order of g is a divisor of k. Noting that Y /N ~ 7y

and N(g) = (N, g) = (N,tl_la) = (N,a) =Y, it follows that Y = N x(g).

Let Hy = (T1)1and H; := H{gl 1 forl1 <i<k,andlet H = H; x---x H.Then H; =Dje
is a Sylow 2-subgroup of T;, H is a Sylow 2-subgroup of N, and H® = H. Since Iy is a
k-cycle and Y /N = 7y, it follows that I' is not Y-arc-transitive. Since I is Y-edge-transitive,
we may write I" as a coset graph I' = Cos(Y, H, H{g/x, (g/x)"'}H), where 1< < k
andx = x1---x¢ € N forx; € T;, such that |[H: (HNH$'¥)| = 2 and (H, g/x) =Y.Now
H8'* = H* = H' x Hy> x -~ x H* and HNH8'* = (H N H") x -+ x (He 0 HE).
Thus we may assume that |H; : (Hy N H;')| = 2 and H; N H;" = H;. Then H;" = H;
fori = 2,...,k. Since Nr,(H;) = H;, we know that x; € H; fori>2.If e > 3, then
H, is maximal in 7, and hence H; N H]XI<I(H1, H{“} = Ty, which is a contradiction.
Thus e = 3, Ty ~PSL(2,7). Let U} = (Hy.x;) and U; = US  fori = 2.3.....k.
Then S4=U; < T;. It follows that (Uy, g) = (Up x -+ X Uk)><l(g>§(S4)k><12k. Since
I is connected, Y = (H, g/x)<(Hi,x1,g) = (Ui, g)=(S4)*xZ, which is again a
contradiction.

Thus N is soluble. Then by Lemma 2.4, we have N < G, completing the proof. [J

We notice that, since N is intransitive on VI, the N-orbits in VI form an X-invariant
partition V I'y. The next lemma determines the structure of X.

Lemma 5.6. Let K be the kernel of X acting on VI . Then the following statements hold:

(i) X/K =7, or Doy, for an odd integer m > 1, K1 # 1, and I is X-arc-transitive if and

only if X/ K =Day;
(i) G =NXR,X = Nx((K1xR).0) and R does not centralise K1, where R>=17,,, and
O =1 orZy;
(iii) N ;Zl; for an odd prime p, and Ky ;le, where 2<I<k;
(iv) there exist x1,...,xx € N and ty, ..., € Ky such that N = {(x1, ..., xg), {xi, ;)

=Dy, and K1 = (1;) x Cg, (x;) for 1 <i<k.
(v) N is the unique minimal normal subgroup of X;

Proof. By Lemma 5.5, N < G is soluble, hence N ;Z’; for an odd prime p and an
integer k> 1. In particular, N is semi-regular on VI'. Since I'y is a cycle of size m say,
X/K <Autl'y = Dy,. Thus K = NxKj, Kj is a 2-group, and X/K =7, or Dy,,.
It follows that G/N~GK /K =Z,,. If K1 = 1, then K = N, and hence G<X, which
contradicts that G is not normal in X. Thus K1 # 1. Further, I" is X-arc-transitive if and
only if X/K =Dy, so we have part (i).

SetU = Nx(K1). Then U # X since K7 is not normal in X. Noting that (|N|, |K1]) = 1,
it follows that Nx,/n (K /N) = Nx/n(NK1/N) = Nx(K1)N/N = UN/N. Since K/N is
normal in X /N, it follows that X = UN. Since N<<X, NNU <U . Further NNU <IN as Nis
abelian. Then NNU<(U, N) = UN = X.If N<U,then K = NK1 = N x K1, and hence
K1<1X, a contradiction. Thus N N U < N. Further, since N is a minimal normal subgroup
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of X, we know that NN U = 1,and hence K NU = NK1NU = (NNU)K; = Kj.
Now X/K =UN/K =UK/K=U/(KNU) =U/Kj,and so U = (K1 xR).0, where
R=~7,, and O = 1 or Z. Then G = NxR, and X1 = K;.0. Further, since G is not
normal in X, we conclude that R does not centralise K1, as in part (ii).

LetY = KR = Nx(K1xR). ThenY has index at most 2 in X, and I is Y-edge-transitive
by Lemma 2.4, but it is not Y-arc-transitive. Thus I' = Cos(Y, K1, K1{y, y’l}K 1), where
y € Y is such that (Ky,y) = Y and K1 N Kly has index 2 in K. We may choose y €
NxR = G such that R = (0) and y = ox where x € N. Then K1 N K; = K1 N K7 has
index 2 in K7j.

We claim that K1 N Ky = Cg, (x). Leto € K{N K. Then o' e Ky,andsoo ¥ €
K1. Since x € N and N<INKq, we have 6= 'o* ' = (6~ 'xa)x~! € N. Thus o~ 'o* ' €
NNKj =1, and so o' = g. Then & centralises x. It follows that K1 N Ky <Ckg,(x).
Clearly, Ck, (x) <Ky N Ky . Thus Cg, (x) = K1 N Ky as claimed.

Since Nis a minimal normal subgroup of X and X = NU, we have that N = (x) x (x?2) x

- x (x%) where g; € U. Then Cg, (x?) = Cg, (x)% < Kf’ = Kj. The intersection
N_, Ck, (x7)<Ck(N) = N, and hence N’_,Ck, (x%) = 1. Since each Ck, (x%) is a
maximal subgroup of K1, the Frattini subgroup ®(K1) < ﬁf.‘zl Ck, (x%) = 1. Hence K} is
an elementary abelian 2-group, say Kj = le for some / > 1. Noting that ﬁf.‘zl Ck, (x%) =1,
it follows that [ <k. Suppose that/ = 1. Then K1 =7, and hence |Y : G| = 2. Then G<Y,
and hence Gchar Y<1X. So G<1X, which contradicts the assumption that G is not normal
in X. Thus [ > 1, as in part (iii).

Since |K1: Ck,(x)| = 2, there is 11 € K7 such that K1 = (11) x Ck,(x). Let x; =
x~1x™. Then x; # 1, xfl = xf] and Cg, (x) = Cg,(x1), and so K1 = (11) x Ck, (x1).
Since N is a minimal normal subgroup of X = NU, thereare u; =1, u,, ..., i, € U such
that N = (xlul) NERED (xft"). Let x; = xlﬂi and 7; = rﬁt", where i = 1,2, ..., k. Then
7y ' =(Cry e = Cy (x]") = Ciy (). and K1 = Ky" = (t;) x Cr, (x7). Further,
xf = x" = (xy % = x7!, and hence (x;, ;) = D3, as in part (iv).

Now N~ Z’; for an odd prime p and an integer k£ > 1. Suppose that X has a minimal
normal subgroup L # N.Then NNL = 1,and LK /K<X/K =7, or Dy,,. It follows that
either L <K, or L is cyclic and hence |L| is an odd prime. If L < K, then L is a 2-group, it
is not possible. Hence L is cyclic. It follows that L is intransitive and semiregular on VI
Then 'y is a cycle, and hence N is isomorphic a subgroup of Aut I'y. It follows that N is
cyclic, which is a contradiction. Thus N is the unique minimal normal subgroup of X, as in

part (v). O
5.3. Proof of Theorem 1.1

If G<1X, then by Lemma 2.3, we have X1 <Dg. Thus by Lemma 3.1, S = {a,a"', a7,
(a®)~ !} for some involution T € Aut(G), as in Theorem 1.1(1).

We assume that G is not normal in X in the following. Let M <1X be maximal subject to
that I" is a normal cover of I'y;. By Lemma 2.2, M is semiregular on VI and equals the
kernel of X acting on VI'ys. Thus, setting ¥ = X/M and X = I'y, X is Y-edge-transitive.
Since | M| is odd, by Lemma 2.3, we have M < G. Therefore, 2 is a Y-edge-transitive Cayley
graph of G/M, as in Theorem 1.1(2).
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We note that for the normal subgroup defined in the previous paragraph, we have that
G<X if and only if G/M<1X/M. Thus, to complete the proof of Theorem 1.1, we only
need to deal with the case where M = 1, that is, I has no non-trivial normal quotients
of valency 4. Let N be a minimal normal subgroup of X. If N is intransitive on VI, then
by Lemmas 5.5 and 5.6, part (3) of Theorem 1.1 occurs. If N is transitive on VI, then by
Lemmas 5.2-5.3, Theorem 1.1(4) occurs. [

6. Proof of Theorem 1.4

Let p be an odd prime, and let k > 1 be an odd integer. Let m be the largest odd divisor
of pk — 1, and let

G = Nx(g) = ZyxZ, < AGL(1, p*).

It is easily shown that (g) acts by conjugation transitively on the set of subgroups of N of
order p. We first construct a family of Cayley graphs of valency 4 of the group G.

Construction 6.1. Letibe suchthat 1 <<i<<m — l,andleta € N \ {1}. Let

= {ag',a"'g", (ag) ™!, (@ 1gH7 1},
I'i = Cay(G, S)).

The following lemma gives some basic properties about G and I';.

Lemma 6.2. Let G be the group and let I'; be the graphs defined above. Then, we have the
following statements:

(i) Aut(G) = ATL(1, ph) = Z% xT'L(1, pb);
(i1) I’ is edge-transitive, and I'; is connected if and only if i is coprime to m;
(i) I'y =1y, and if p"i = j (modm), then I'; =TI ;.

Proof. See [5, Proposition 12.10] for part (i).

Since Aut(G) = ATL(1, p¥) and G < AGL(l, p¥), there is an automorphism 7 €
Aut(G) such that a®* = a~! and g* = g. Thus S7 = S; and (ag’)* = a~'g' and
((agh™hH" = (a~'g")~L. It follows that I'; is edge-transitive. It is easily shown that
(ag',a=lg') = G if and only if (m,i) = 1. Hence I'; is connected if and only if i is
coprime to m.

Since g normalises N, there exists a’ € N such that (ag')™' = da’g™ and (a~'¢")~! =
(@) g7 . Thus S; = {a’g™, (@) 'g™, (@’g7) 7L, ((a)"'g~)~'}. Since GL(1, p*) acts
trans1t1vely on N \ {1}, there exists an element p € Aut(G) such that (a’)? = a and g° = g.
Thus Sl.p ={ag™ ", a g™, (ag" )L, (@ Tgm )"y = Si.Soli=Iy_;.

Suppose that p”i = j or —j(mod m) for some r >0. Noting that I'y,_ ; = I';, we may as-
sume that p”i = j(mod m). Smceg e GL(1, p ) < T'L, pk) there exists 8 € T'L(1, p )
such that 0 normalises N and g = gP. Thus S = {d'g", a 1P (d'g" ), (a'
gp H=1y, where a’ = a” € N. Since GL(1, pk) is transitive on N \ {1} and fixes g, there
exists ¢ € GL(1, p¥) such that (S )¢ = §;, and so I =T;. O
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In the rest of this section, we aim to prove that every connected edge-transitive Cayley
graph of G of valency 4 is isomorphic to some I';, so completing the proof of Theorem 1.4.

Let I' = Cay(G, S) be connected, edge-transitive and of valency 4. We will complete the
proof of Theorem 1.4 by a series of steps, beginning with determining the automorphism
group Aut I

Step 1: G is normal in Aut I', and Aut I' = G xAut(G, S).

Suppose that G is not normal in Aut I'. Since N is the unique minimal normal subgroup of
G, it follows from Theorem 1.1 that either part (3) of Theorem 1.1 occurs with X = Aut I,
or 'y is a Cayley graph of G/N and isomorphic to one of the graphs in part (4) of Theorem
1.1. Assume that the latter case holds. Then G/N =75, Z7xZ3, Z11XZ5 or Zy3x 2.
Therefore, as G/N = 7Z,,, we have that G/N = 7,, =~ 75. By definition, m = 5 is the largest
odd divisor of p¥ — 1, which is not possible since p is an odd prime and k > 1 is odd. Thus
the former case occurs, and Aut I’ = Nx((Hx(g)).0) ;Z’I‘, N((lemZm).Z,), satisfying
the properties in part (3) of Theorem 1.1. In particular, 2 </ <k, and Cy(N) = 1.

By Theorem 1.1(3), there exist tg € H \ {1} and zg € N such that H = (79) x Cg(z0).
It follows that for each ¢ € H, we have z§ = zo or z;, !, Since g normalises H and (g)
acts transitively on the set of subgroups of N of order p, it follows that for each x € N and
each o € H, we have x = x or x_!. Suppose that there exist x;, x, € N \ {1} such that
x{ = x1 and x§ = x;l. Then (x1x2)? = x]xgl, which equals neither xjx, nor (xjx2)~!,
a contradiction. Thus, as ¢ does not centralise N, we have x° = x~! for all x € N. Since
H=>~ le with [ > 2, there exists T € H \ (g). Then similarly, 7 inverts all elements of N, that
is, x* = x~! for all elements x € N. However, now x°% = x for all x € N, and hence
ot € Cy(N) = 1, which is a contradiction.

Therefore, G isnormal in Aut I', and by Lemma 2.3, we have that Aut I' = G xAut(G, §).

Step 2: Aut I' = Gx(0) = ZX x((0) x (f) =N %Zow=GxZs,and S = {af', a™' f',
(afy=1, (@ '~y where a € N and f € G has order m such that a® = a~'; in
particular, I is not arc-transitive.

ByLemma 6.2, we have Aut(G) = ATL(1, p*) = N x(Z ,x_y xZ;). Since kis odd, Aut(G)
has a cyclic Sylow 2-subgroup, and thus all involutions of Aut(G) are conjugate. It is easily
shown that every involution of Aut(G) inverts all elements of N. Since I' is edge-transitive
and Aut I’ = G xAut(G, S), Aut(G, S) has even order. On the other hand, since G is of odd
order, by Lemma 2.3, we have that Aut(G, S) is isomorphic to a subgroup of Dg. Further,
since a Sylow 2-subgroup of Aut(G) is cyclic, we have that Aut(G, S) = (g) =7, or Z4.
It follows that ¢ fixes an element of G of order m, say f € G such that o(f) = m and
f°=f.Then G = Nx{(f),and X = AutI’' = Gx{a) = Nx(f, g).

Since I’ is connected, (S) = G and Aut(G, S) is faithful on S. Hence, we may write S =
{x,y,x~1, y~1} such that either o(¢) = 2 and (x, y)° = (v, x), oro(c) = 4 and (x, y)? =
(y, x~ 1), refer to Lemma 3.1. Now x = af, where a € N and i is an integer. Suppose that
0(6) =4.Theny = x° = (af)° =a®fl,andd’ f' = f7la™ ! = (af) ' =x"! =
X = a“zfi = a1 f1. Tt follows that f% = 1, and since f has odd order, f! = 1. Thus
x =aand y = x? = a’, belonging to N, and so (S) <N < G, which is a contradiction.
Thus ¢ is an involution, and so (x, y)® = (y,x), x = af’,and y = x° = a f} = a~ f'.
In particular, I is not arc-transitive, and S = {af’, a~' f*, (af)~", (@™ f)~'}.
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Step 3: I'=1I"; for some j such that 1 < j < ’"2_1 and (j, m) = 1.

By Step 2, we may assume that Aut I’ = N x(f, o) <AGL(1, pk). Since g € G has
order m, it follows from Hall’s theorem that there exists b € N such that g? € (f, o). So
f7" = g for some integer r. Let t = ¢®~ . Then (g, 7) = (f, ) = Zo;y, and G = N x(g)
and Aut I’ = Nx(g, 7). Further, T := "' = {ag’",a"'g'", (ag™)~!, (a~'g'")~!}. Let
j =ir (modm)and 1<j<m — 1. Then T = {ag/,a'g/, (ag/)~", (a='g/)~"}, and
(j,m) = 1 as I'=Cay(G, T) is connected. By Lemma 6.2(iii), I'j = I,—;, and so the
statement in Step 3 is true.

Step 4: Let I'; and I'j be as in Construction 6.1 with (i, m) = (j,m) = 1.Then I'; =TI ';
if and only if p"i = j or —j(mod m) for some r >0.

By Lemma 6.2, we only need to prove that if I'; ~I"; then p”"i = j or —j(modm) for
some r > 0. Thus suppose that I'; =I";. By Step 2, we have AutI'; =Autl'; =G xZ. It
follows that I'; and I'; are so-called CI-graphs, see [14, Theorem 6.1]. Thus Siy = §; for
somey € Aut(G). Since N is a characteristic subgroup of G, this y induces an automorphism
of G/N = (g) such that §;-/ = Ej, where S; = {g', g '} and Ej = {g’/, g/} are the images
of §; and S; under G — G/N, respectively. Thus ()" =g/ or g7/, Since Aut(G) =
ATL(1, p*), it follows that for each element p € Aut(G), we have g” = cg? for some
¢ € N and some integer r with 0<r <k — 1. Thus (g')? = g”"’, and hence p’i = j or
—Jj (mod m).

This completes the proof of Theorem 1.4. [J

References

[1] N. Biggs, Algebraic Graph Theory, 2nd ed., Cambridge University Press, New York, 1992.
[2] M. Conder, C. Walker, Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer, J. Algebraic
Combin. 8 (1998) 29-38.
[3] J.D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.
[4] D. Djokovi¢, A class of finite group amalgams, Proc. Amer. Math. Soc. 80 (1980) 22-26.
[5] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter Co., Berlin, 1992.
[6] X.G. Fang, C.H. Li, J. Wang, M.Y. Xu, On cubic normal Cayley graphs of finite simple groups, Discrete
Math. 244 (2002) 67-75.
[7] X.G. Fang, C.H. Li, M.Y. Xu, On finite edge-transitive Cayley graphs of valency 4, European J. Combin. 25
(2004) 1107-1116.
[8] Y.Q. Feng, J.H. Kwak, R.J. Wang, Automorphism groups of 4-valent connected Cayley graphs of p-groups,
Chinese Ann. Math. Ser. B 22 (3) (2001) 281-286.
[9] M. Giudici, C.H. Li, P. Potocnik, C.E. Praeger, Homogeneous factorisations of graphs and digraphs, European
J. Combin., to appear.
[10] M. Giudici, C.H. Li, C.E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc.
356 (2004) 291-317.
[11] C.D. Godsil, On the full automorphism group of a graph, Combinatorica 1 (1981) 243-256.
[12] A.Hassani, L.R. Nochefranca, C.E. Praeger, Two-arc transitive graphs admitting a two-dimensional projective
linear group, J. Group Theory 2 (1999) 335-353.
[13] L.S. Kazarin, On the product of finite groups, Soviet Math. Dokl. 27 (1983) 354-357.
[14] C.H. Li, Isomorphisms of connected Cayley graphs, Discrete Math. 178 (1998) 109-122.
[15] C.H. Li, Finite s-arc transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001) 307-317.
[16] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s >4, Trans. Amer. Math.
Soc. 353 (2001) 3511-3529.



C.H. Li et al. / Journal of Combinatorial Theory, Series B 96 (2006) 164—181 181

[17] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc.
133 (2005) 31-41.

[18] C.H. Li, Z.P. Lu, D. Marusi¢, On primitive permutation groups with small suborbits and their orbital graphs,
J. Algebra 279 (2004) 749-770.

[19] C.H. Li, C.E. Praeger, On partitioning the orbitals of a transitive permutation group, Trans. Amer. Math. Soc.
355 (2003) 637-653.

[20] A. Malni¢, D. Marusic, P. Poto¢nik, On cubic graphs admitting an edge-transitive graphs with a solvale group
is given, J. Algebraic Combin. 20 (2004) 99—-113.

[21] D. Marusi¢, Recent developments in half-transitive graphs, Discrete Math. 182 (1998) 219-231.

[22] D. Marusi¢, R. Nedela, Maps and half-transitive graphs of valency 4, European J. Combin. 19 (1998)
345-354.

[23] D. Marusic¢, R. Nedela, On the point stabilizers of transitive groups with non-self-paired suborbits of length
2, J. Group Theory 4 (2001) 19-43.

[24] D. Marusic¢, R. Nedela, Partial linear graph operator and half-arc-transitive group actions, Math. Slovaca
(2001) 241-257.

[25] C.E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc. 60 (1999) 207-220.

[26] C.E. Praeger, M.Y. Xu, A characterisation of a class of symmetric graphs of twice prime valency, European
J. Combin. 10 (1989) 91-102.

[27] C.E. Praeger, M.Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory
Ser. B 59 (1993) 245-266.

[28] J. Wang, The primitive permutation groups with an orbital of length 4, Comm. Algebra 20 (1992) 889-921.

[29] R.M. Weiss, s-Arc transitive graphs, in: Algebraic Methods in Graph Theory, vol. 2, 1981, pp. 827-847.

[30] M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combin. 1 (3) (1992) 275-282.

[31] M.Y. Xu, Automorphism groups and isomorphisms of Cayley graphs, Discrete Math. 182 (1998) 309-319.

[32] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, On cubic s-arc transitive Cayley graphs of finite simple groups,
European J. Combin. 26 (2005) 133-143.



