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Abstract

A characterisation is given of edge-transitive Cayley graphs of valency 4 on odd number of ver-
tices. The characterisation is then applied to solve several problems in the area of edge-transitive
graphs: answering a question proposed by Xu [Automorphism groups and isomorphisms of Cayley
graphs, Discrete Math. 182 (1998) 309–319] regarding normal Cayley graphs; providing a method for
constructing edge-transitive graphs of valency 4 with arbitrarily large vertex-stabiliser; constructing
and characterising a new family of half-transitive graphs. Also this study leads to a construction of
the first family of arc-transitive graphs of valency 4 which are non-Cayley graphs and have a ‘nice’
isomorphic 2-factorisation.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A graph � is a Cayley graph if there exist a group G and a subset S ⊂ G with 1 �∈ S =
S−1 := {g−1 | g ∈ S} such that the vertices of � may be identified with the elements of G
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in such a way that x is adjacent to y if and only if yx−1 ∈ S. The Cayley graph � is denoted
by Cay(G, S). Throughout this paper, denote by 1 the vertex of Cay(G, S) corresponding
to the identity of G.

It is well-known that a graph � is a Cayley graph of a group G if and only if the auto-
morphism group Aut� contains a subgroup which is isomorphic to G and acts regularly on
vertices. In particular, a Cayley graph Cay(G, S) is vertex-transitive of order |G|. However,
a Cayley graph is of course not necessarily edge-transitive. In this paper, we investigate
Cayley graphs that are edge-transitive.

Small valency Cayley graphs have received attention in the literature. For instance, Cayley
graphs of valency 3 or 4 of simple groups have been investigated in [6,7,32]; Cayley graphs
of valency 4 of certain p-groups are investigated in [8,30]. Refer to [4,20,23,24] for more
results regarding edge-transitive graphs of small valencies. A relation between regular maps
and edge-transitive Cayley graphs of valency 4 is studied in [22]. In the main result (Theorem
1.1) of this paper, we characterise edge-transitive Cayley graphs of valency 4 and odd order.
To state this result, we need more definitions.

Let � be a graph with vertex set V � and edge set E�. If a subgroup X�Aut� is
transitive on V � or E�, then the graph � is said to be X-vertex-transitive or X-edge-
transitive, respectively. A sequence v0, v1, . . . , vs of vertices of � is called an s-arc if
vi−1 �= vi+1 for 1� i�s − 1, and {vi, vi+1} is an edge for 0� i�s − 1. The graph
� is called (X, s)-arc-transitive if X is transitive on the s-arcs of �; if in addition X
is not transitive on the (s + 1)-arcs, then � is said to be (X, s)-transitive. In particu-
lar, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph is called X-arc-
transitive.

A typical method for studying vertex-transitive graphs is taking certain quotients. For an
X-vertex-transitive graph � and a normal subgroup N�X, the normal quotient graph �N

induced by N is the graph that has vertex set V �N = {vN | v ∈ V �} such that vN
1 and vN

2
are adjacent if and only if v1 is adjacent in � to some vertex in vN

2 . If further the valency of
�N equals the valency of �, then � is called a normal cover of �N .

Theorem 1.1. Let G be a finite group of odd order, and let � = Cay(G, S) be connected
and of valency 4. Assume that � is X-edge-transitive, where G�X�Aut�. Then one of
the following holds:

(1) G is normal in X, X1 �D8, and S = {a, a−1, a�, (a�)−1}, where � ∈ Aut(G) such that
either o(�) = 2, or o(�) = 4 and a�2 = a−1;

(2) there is a subgroup M < G such that M�X, and � is a normal cover of �M ;
(3) X has a unique minimal normal subgroup N�Zk

p with p odd prime and k�2 such that

(i) G = N�R�Zk
p�Zm, where m > 1 is odd;

(ii) X = N�((H�R).O)�Zk
p�((Zl

2�Zm).Zt ), and X1 = H.O, where H�Zl
2 with

2� l�k, and O�Zt with t = 1 or 2, satisfying the following statements:
(a) there exist x1, . . . , xk ∈ N and �1, . . . , �k ∈ H such that N = 〈x1, . . . , xk〉,

〈xi, �i〉�D2p and H = 〈�i〉 × CH (xi) for 1� i�k;
(b) R does not centralise H;
(c) X/(NH)�Zm or D2m, and � is X-arc-transitive if and only if X/(NH)�D2m;
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(4) � is (X, s)-transitive, and X, X1, s and G are as in the following table:

X X1 s G

A5, S5 A4, S4 2 Z5
PGL(2,7) D16 1 Z7�Z3
PSL(2, 11), PGL(2, 11) A4, S4 2 Z11�Z5
PSL(2, 23) S4 2 Z23�Z11

Remarks on Theorem 1.1.

(a) The Cayley graph � in part (1), called normal edge-transitive graph, is studied in [25].
If further X = Aut�, then � is called a normal Cayley graph, introduced in [31]. For
this type of Cayley graph, the action of X on the graph � is well-understood.

(b) Part (2) is a reduction from the Cayley graph � to a smaller graph �M , which is also
an edge-transitive Cayley graph of valency 4. An edge-transitive Cayley graph is called
basic if it is not a normal cover of a smaller edge-transitive Cayley graph. Theorem 1.1
shows that if � is not a normal Cayley graph then � is a cover of a well-characterised
graph, that is a basic Cayley graph satisfying part (3) or part (4).

(c) Construction 3.2 shows that for every group X satisfying part (3) with O = 1 indeed
acts edge-transitively on some Cayley graphs of valency 4.

(d) Part (4) tells us that there are only three 2-arc-transitive basic Cayley graphs of valency
4 and odd order. The graph in row 1 of the table is the complete graph K5; the graph in
row 2 of the table is the line graph of the Heawood graph.

The following corollary of Theorem 1.1 gives a solution to Problem 4 of [31], in particular,
answering the question stated there in the negative.

Corollary 1.2. There are infinitely many connected basic Cayley graphs of valency 4 and
odd order which are not normal Cayley graphs.

The proof of Corollary 1.2 follows from Lemma 3.3.
It is well-known that the vertex-stabiliser for an s-arc-transitive graph of valency 4 with

s�2 has order dividing 2436, see Lemma 2.5. However, in [2,26], ‘non-trivial’arc-transitive
graphs of valency 4 which have arbitrarily large vertex-stabiliser are constructed. Part (3) of
Theorem 1.1 characterises edge-transitive Cayley graphs of valency 4 and odd order with
this property.

Corollary 1.3. Let � be a connected Cayley graph of valency 4 and odd order. Assume that
� is X-edge-transitive for X�Aut�. Then |X1| > 24 if and only if � is a cover of a graph
satisfying part (3) of Theorem 1.1 with l�5.

This characterisation provides a potential method for constructing edge-transitive graphs
of valency 4 with arbitrarily large vertex-stabiliser, see Construction 3.2.

A graph � is called half-transitive if Aut� is transitive on the vertices and the edges
but not transitive on the arcs of �. Constructing and characterising half-transitive graphs
was initiated by Tutte (1965), and is a currently active topic in algebraic graph theory, see
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[18,21,22] for references. Theorem 1.1 provides a method for characterising some classes
of half-transitive graphs of valency 4. The following theorem is such an example:

Theorem 1.4. Let G = N�〈g〉 = Zk
p�Zm < AGL(1, pk), where k > 1 is odd, p is

an odd prime and m is the largest odd divisor of pk − 1. Assume that � is a connected
edge-transitive Cayley graph of G of valency 4. Then Aut� = G�Z2, � is half-transitive,
and ���i = Cay(G, Si), where 1� i� m−1

2 , (m, i) = 1, and

Si = {agi, a−1gi, (agi)−1, (a−1gi)−1} where a ∈ N \ {1}.
Moreover, �i��j if and only if pri ≡ j or −j (mod m) for some r �0.

The following result is a by-product of analysing PGL(2, 7)-arc-transitive graphs of
valency 4. (For two graphs � and � which have the same vertex set V and disjoint edge sets
E1 and E2, respectively, denote by �+� the graph with vertex set V and edge set E1 ∪E2.
For a positive integer n and a cycle Cm of size m, denote by nCm the vertex disjoint union
of n copies of Cm.)

Proposition 1.5. Let p be a prime such that p ≡ −1 (mod 8), and let T = PSL(2, p) and
X = PGL(2, p). Then there exists an X-arc-transitive graph � of valency 4 such that the
following hold:

(i) � = �1 + �2, �1��2�
p(p2−1)

48 C3, T �Aut�1 ∩ Aut�2, and both �1 and �2 are
T-arc-transitive; in particular, � is not T-edge-transitive;

(ii) � is a Cayley graph if and only if p = 7.

Part (i) of this proposition is proved by Lemma 4.3, and part (ii) follows from Theorem
1.1.

Remark on Proposition 1.5. The factorisation � = �1 + �2 is an isomorphic 2-factorisa
tion of �. The group X is transitive on {�1, �2} with T being the kernel. Such isomorphic
factorisations are called homogeneous factorisations, introduced and studied in [9,19]. The
factorisation given in Proposition 1.5 are the first known example of non-Cayley graphs
which have a homogeneous 2-factorisation, refer to [9, Lemma 2.7] for a characterisation
of homogeneous 1-factorisations.

This paper is organized as follows. Section 2 collects some preliminary results which
will be used later. Section 3 gives some examples of graphs appeared in Theorem 1.1.
Then Section 4 constructs the graphs stated in Proposition 1.5. Finally, in Sections 5 and 6,
Theorems 1.1 and 1.4 are proved, respectively.

2. Preliminary results

For a core-free subgroup H of X and an element a ∈ X \H , let [X: H ] = {Hx | x ∈ X},
and define the coset graph � := Cos(X, H, H {a, a−1}H) to be the graph with vertex set
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[X : H ] such that {Hx, Hy} is an edge of � if and only if yx−1 ∈ H {a, a−1}H . The
properties stated in the following lemma are well-known.

Lemma 2.1. For a coset graph � = Cos(X, H, H {a, a−1}H), we have

(i) � is X-edge-transitive;
(ii) � is X-arc-transitive if and only if HaH = Ha−1H , or equivalently, HaH = HbH

for some b ∈ X \ H such that b2 ∈ H ∩ Hb;
(iii) � is connected if and only if 〈H, a〉 = X;
(iv) the valency of � equals

val(�) =
{ |H : H ∩ Ha| if HaH = Ha−1H,

2|H : H ∩ Ha| otherwise.

Lemma 2.2. Let � be a connected X-vertex-transitive graph where X�Aut�, and let
N�X be intransitive on V �. Assume that � is a cover of �N . Then N is semiregular on
V �, and the kernel of X acting on V �N equals N.

Proof. Let K be the kernel of X acting on V �N . Then N�K�X. Suppose that Kv �= 1,
where v ∈ V �. Then since � is connected and K�X, it follows that K

�(v)
v �= 1. Thus

the number of Kv-orbits in �(v) is less than |�(v)|, and so the valency of �N is less than
the valency of �, which is a contradiction. Hence Kv = 1, and it follows that N = K is
semiregular on V �. �

For a Cayley graph � = Cay(G, S), let Aut(G, S) = {� ∈ Aut(G) | S� = S}. For the
normal edge-transitive case, we have a simple lemma.

Lemma 2.3. Let � = Cay(G, S) be connected of valency 4. Assume that Aut� has a sub-
group X such that � is X-edge-transitive and G�X. Then X�NAut�(G) = G�Aut(G, S),
and either X1 �D8, or � is (X, 2)-transitive and |G| is even.

Proof. Since � is connected, 〈S〉 = G, and so Aut(G, S) acts faithfully on S. Hence
Aut(G, S)�S4. By [11, Lemma 2.1], we have that X�NAut�(G) = G�Aut(G, S). Thus
X1 �Aut(G, S)�S4. Suppose that 3 divides |X1|. Then X1 is 2-transitive on S. Hence � is
(X, 2)-transitive, and all elements in S are involutions, see for example [17]. In particular,
|G| is even. On the other hand, if 3 does not divide |X1|, then X1 is a 2-group, and hence
X1 �D8. �

Lemma 2.4. Let G be a finite group of odd order, and let � = Cay(G, S) be connected
and of valency 4. Assume that N�X�Aut� such that G�X and � is X-edge-transitive.
Then one of the following statements holds:

(i) N has odd order and N �G;
(ii) N has even order, and either N is transitive on V �, or GN is transitive on E�.

Proof. Let Y = GN . Then Y is transitive on V �. Suppose that N�G. Then Y is not regular
on V �. It follows that Y1 is a nontrivial {2, 3}-group. If Y1 has an orbit of size 3 on �(1) = S,
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thenY has an orbit on E� which is a 1-factor of �, which is not possible since |V �| = |G| is
odd. It follows that either Y1 is transitive on S, or Y1 has an orbit of size 2 on S. In particular,
|Y1| is even, so |N | is even. Therefore, either N has odd order and N �G, as in part(i), or N
has even order.

Assume now that |N | is even. If Y1 is transitive on S, then � is Y-arc-transitive and hence
Y-edge-transitive, so part (ii) holds. Thus assume that Y1 has an orbit of size 2 on S. Noting
that N�X, N1 �= 1 and � is connected and X-vertex-transitive, it is easily shown that N1
is non-trivial on S. Since N1 �Y1, N1 has an orbit {x, y} of size 2 on S. Suppose that N
is intransitive on V �. Let H = 1N be the N-orbit containing 1. Then H ∩ S = ∅ as � is
X-edge-transitive. Further, xN = (1x)N = 1(xNx−1)x = (1N)x = Hx and yN = (1y)N =
1(yNy−1)y = (1N)y = Hy , and so Hx = xN = yN = Hy. It is easily shown that H forms
a subgroup of G. In particular, xy−1 ∈ H . If y = x−1, then x2 = xy−1 ∈ H , and x ∈ H

as |H | is odd, a contradiction. Thus S = {x, y, x−1, y−1}. Clearly, {x, y} is an orbit of Y1
on S. It follows that Y is transitive on E�, as in part (ii). �

By the result of [15], there is no 4-arc-transitive graph of valency at least 3 on odd number
of vertices. Then by the known results about 2-arc-transitive graphs (see for example [29]
or [16, Section 3.1]), the following result holds.

Lemma 2.5. Let � be a connected (X, s)-transitive graph of valency 4. Then either s�4
or s = 7, and further, s and the stabliser Xv are listed as following

s Xv

1 2-group
2 A4 �Xv �S4
3 A4 × Z3 �Xv �S4 × S3

4 Z2
3.SL(2, 3)�Xv �Z2

3.GL(2, 3)

7 [35].SL(2, 3)�Xv �[35].GL(2, 3)

Moreover, if |V �| is odd, then s�3.

Finally, we quote a result about simple groups, which will be used later.

Lemma 2.6 (Kazarin [13]). Let T be a non-abelian simple group which has a 2′-Hall
subgroup. Then T = PSL(2, p), where p = 2e − 1 is a prime. Further, T = GH , where
G = Zp�Z p−1

2
and H = Dp+1 = D2e .

3. Existence of graphs satisfying Theorem 1.1

In this section, we construct examples of graphs satisfying Theorem 1.1.
First consider part (1) of Theorem 1.1. We observe that if � is a connected normal edge-

transitive Cayley graph of a group G of valency 4, then G = 〈a, a�〉, where � ∈ Aut(G)

such that a�2 = a or a−1. Conversely, if G is a group that has a presentation G = 〈a, a�〉,
where � ∈ Aut(G) such that a�2 = a or a−1, then G has a connected normal edge-transitive
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Cayley graph of valency 4, that is, Cay(G, S) where S = {a, a−1, a�, (a�)−1}. Thus we
have the following conclusion:

Lemma 3.1. Let G be a group of odd order. Then G has a connected normal edge-transitive
Cayley graph of valency 4 if and only if G = 〈a, a�〉, where � ∈ Aut(G) such that a�2 = a

or a−1.

See Construction 6.1 for an example of such graphs.
The following construction produces edge-transitive graphs admitting a group X satisfy-

ing part (3) of Theorem 1.1 with O = 1.

Construction 3.2. Let X = N�(H�R)�Zk
p�(Zl

2�Zm), where p is an odd prime, m is

odd and 2� l�k, such that N�Zk
p, H�Zl

2 and R�Zm satisfy

(a) N is the unique minimal normal subgroup of X;
(b) there exist x ∈ N \ {1} and � ∈ H such that x� = x−1 and H = 〈�〉 × CH (x);
(c) R does not centralise H.

Let R = 〈�〉�Zm, and let y = x�. Set

�(p, k, l, m) = Cos(X, H, H {y, y−1}H).

The next lemma shows that the graphs constructed here are as required.

Lemma 3.3. Let � = �(p, k, l, m) be a graph constructed in Construction 3.2, and let
G = N�R�Zk

p�Zm. Then � is a connected X-edge-transitive Cayley graph of G of
valency 4, and G is not normal in X.

Proof. By the definition, H is core-free in X, and hence X�Aut�. Now X = GH and
G ∩ H = 1, and thus G acts regularly on the vertex set [X: H ]. So � is a Cayley graph of
G, which has odd order pkm. Obviously, G is not normal in X.

For x and � defined in Construction 3.2, set xi = x�i−1
for i = 1, 2, . . . , m, and let

� = (�−1)��. Then, as y = x�, x2 = �−1x� and � ∈ H , we have

�x2
2 = ((�−1)��)(�−1x�)2 = (�−1)�x2� = (x−1��)−1(x�) = (y�)−1y ∈ 〈H, y〉.

As � ∈ H and � normalises H, we have � = (�−1)�� = �(��) ∈ H . Thus, x2
2 = �−1(�x2

2 ) ∈
〈H, y〉, and as x2 has odd order, x2 ∈ 〈H, y〉. Then x3 = x�

2 = x
x1�
2 = x

y
2 ∈ 〈H, y〉.

Similarly, we have that xi ∈ 〈H, y〉 for i = 2, 3, . . . , m. Then calculation shows that
ym = x1x2 · · · xm ∈ 〈H, y〉. Thus x = x1 = ymx−1

2 · · · x−1
m ∈ 〈H, y〉, and so � = x−1y ∈

〈H, y〉. Since N is a minimal normal subgroup of X, we conclude that N = 〈xh�i |h ∈
H, 0� i�m− 1〉, and hence N �〈H, y〉. So 〈H, y〉�〈N, H, �〉 = X, and � is connected.

Finally, as�normalises H and by condition (b) of Construction 3.2, we have thatHx∩H =
CH (x) has index 2 in H. Thus Hy ∩ H = (Hx ∩ H�−1

)� = (Hx ∩ H)� = CH (x)�, which
has index 2 in H. Since X�Aut�, � is not a cycle. By Lemma 2.1, � is connected, X-edge-
transitive and of valency 4. �
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We end this section by presenting several groups satisfying (a), (b) and (c) of Construction
3.2, so we obtain examples of graphs satisfying Theorem 1.1(3).

Example 3.4. Let p be an odd prime, and m an odd integer.

(i) Let X = (〈x1, �1〉 × 〈x2, �2〉 × · · · × 〈xm, �m〉)�〈�〉�D2p � Zm = Dm
2p�Zm, where

〈xi, �i〉�D2p and (xi, �i )
� = (xi+1, �i+1) (reading the subscripts modulo m). Then

N = 〈x1, x2, . . . , xm〉�Zm
p is a minimal normal subgroup of X, and H = 〈�1, �2, . . . ,

�m〉�Zm
2 is such that H = 〈�i〉 × CH (xi) for 1� i�m.

(ii) Let Y < X with X as in part (i) such that Y = 〈x1, x2, . . . , xm〉�〈�1�2, �2�3, . . . ,

�m−1�m〉�〈�〉�Zm
p �(Zm−1

2 �Zm). Then N = 〈x1, x2, . . . , xm〉 is a minimal normal

subgroup of Y, and L := 〈�1�2, �2�3, . . . , �m−1�m〉�Zm−1
2 is such that L = 〈�i�i+1〉×

CL(xi) for 1� i�m.

Thus both X and Y satisfy the conditions of Construction 3.2.

Example 3.5. Let N = 〈x1, . . . , xk〉 = Zk
p, where p is an odd prime and k�3. Let l be a

proper divisor of k. Let � ∈ Aut(N) be such that

x�
i =

{
xi+1 if 1� i�k − 1,

x1xl+1 if i = k.

Let � ∈ Aut(N) be such that

x�
j =

{
x−1
j if l

∣∣ j − 1,

xj otherwise.

Let o(�) = m, H = 〈��i−1 | 1� i�m〉 and X = N�〈�, �〉. Then N is a minimal normal
subgroup of X and H = 〈�〉×CH (x1)�Zl

2. Thus, X satisfies the conditions of Construction
3.2.

For instance, taking p = 3, k = 9 and l = 3, so m = 39, and then applying Construction
3.2, we obtain an X-edge-transitive Cayley graph �(3, 9, 3, 39) of valency 4 of the group
Z9

3�Z39, where X = Z9
3�(Z3

2�Z39).

4. A family of arc-transitive graphs of valency 4

Here, we construct a family of 4-arc-transitive cubic graphs and their line graphs. The
smallest line graph is PGL(2, 7)-arc-transitive but not PSL(2, 7)-edge-transitive, which is
one of the graphs stated in Theorem 1.1(4).

Construction 4.1. Let p be a prime such that p ≡ −1 (mod 8), and let T = PSL(2, p)

and X = PGL(2, p). Then T has exactly two conjugacy classes of maximal subgroups
isomorphic to S4 which are conjugate in X. Let L, R < T be such that L, R�S4, L∩R�D8,
and L, R are not conjugate in T but L� = R for some involution � ∈ X \ T .

(1) Let� = Cos(T , L, R)be the coset graph defined as: the vertex setV � = [T : L]∪[T : R]
such that Lx is adjacent to Ry if and only if yx−1 ∈ LR.
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(2) Let � be the line graph of �, that is, the vertices of � are the edges of � and two vertices
of � are adjacent if and only if the corresponding edges of � have exactly one common
vertex.

Then it follows from the definition that � is bipartite with parts [T : L] and [T : R], and T
acts by right multiplication transitively on the edge set E�. Further, we have the following
properties:

Lemma 4.2. The following statements hold for the graph � defined above:

(i) � is connected and of valency 3;
(ii) � may also be represented as the coset graph Cos(X, L, L�L);

(iii) � is (X, 4)-arc-transitive;
(iv) � is T-vertex intransitive and locally (T , 4)-arc-transitive.

Proof. Since 〈L, R〉 = T , part (i) follows from the definition, see [10, Lemma 2.7].
Part (ii) follows from the definitions of Cos(T , L, R) and Cos(X, L, L�L).
See [1] or [16, Example 3.5] for part (iii).
It follows from the definition that T is not transitive on the vertex set V �, and so part (iv)

follows from part (iii). �

Next we study the line graph � in the following lemma.

Lemma 4.3. Let � be the line graph of � defined as in Construction 4.1. Let v be the vertex
of � corresponding to the edge {L, R} of �. Then we have the following statements:

(i) � is connected, and has valency 4 and girth 3;
(ii) � is X-arc-transitive, and Xv�D16;

(iii) T is transitive on V � and intransitive on E�, and Tv�D8;
(iv) T has exactly two orbits E1, E2 on E�, and letting �1 = (V �, E1) and �2 =

(V �, E2), we have �1��2�
p(p2−1)

48 C3, and � = �1 + �2.

Proof. We first look at the neighbors of the vertex v in �. Let a ∈ L be of order 3, and let
b = a� ∈ R. Then the 3 neighbors of L in � are R, Ra and Ra−1; and the 3 neighbors of R are
L, Lb and Lb−1. Write the corresponding vertices of � as: u1 = {Lb, R}, u2 = {Lb−1, R},
w1 = {L, Ra} and w2 = {L, Ra−1}. Then the neighborhood �(v) = {u1, u2, w1, w2}.

Thus � is of valency 4. By the definition of a line graph, u1 is adjacent to u2, and w1 is
adjacent to w2. Hence the girth of � is 3. Since � is connected, � is connected too, proving
part (i).

Now Tv = L ∩ R�D8 and Xv = 〈L ∩ R, �〉�D16. Since T is transitive on E� and is
not transitive on the vertex set V �, there is no element of T maps the arc (L, R) to the arc
(R, L). Since Tv = L∩R, there exist �1, �2 ∈ Tv such that a�1 = a−1 and b�2 = b−1. Thus
u

�1
1 = u2 and w

�2
1 = w2. So Tv has exactly two orbits on �(v), that is, {u1, u2} and {w1, w2}.

Further, 〈b〉 acts transitively on {v, u1, u2}. It follows that E1 := {u1, u2}T is a self-paired
orbital of T on V �. Therefore, � is not T-edge-transitive. Further, since � interchanges L
and R and also interchanges a and b, it follows that � ∈ Xv and {u1, u2}� = {w1, w2}. Thus
� is X-arc-transitive.
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Let E2 = {w1, w2}T , and let �i = (V �, Ei) with i = 1, 2. Then � = �1 + �2, and �i

consists of cycles of size 3. Thus |E1| = |E2| = |V �| = |X|
|Xv | = p(p2−1)

16 , and �i consists of
|Ei |

3 cycles of size 3, that is, �i�
p(p2−1)

48 C3. Finally, E�
1 = E2 and so � is an isomorphism

between �1 and �2. �

5. Proof of Theorem 1.1

Let G be a finite group of odd order, and let � = Cay(G, S) be connected and of valency
4. Assume that � is X-edge-transitive, where G�X�Aut�, and assume further that G is
not normal in X.

We first treat the case where � has no non-trivial normal quotient of valency 4 in Sections
5.1 and 5.2.

Suppose that each non-trivial normal quotient of � is a cycle. Let N be a minimal normal
subgroup of X. Then N = T k for some simple group T and some integer k�1. Since
|V �| = |G| is odd, X has no nontrivial normal 2-subgroups. In particular, N is not a
2-group. Further we have the following simple lemma.

Lemma 5.1. Either N is soluble, or CX(N) = 1.

Proof. Suppose that N is insoluble and C := CX(N) �= 1. Then NC = N × C and C�X.
Since |N | is not semiregular on V �, C is intransitive. By the assumption that any non-trivial
normal quotient of � is a cycle, �C is a cycle. Let K be the kernel of X acting on V �C .
Then X/K �Aut�C�D2c, where c = |V �C |. It follows that N �K . Let � be an arbitrary
C-orbit on V �. Then � is N-invariant. Consider the action of NC on �, and let D be the
kernel of NC acting on �. Then NC/D = (ND/D) × (CD/D). Since C is transitive on
�, CD/D is also transitive on �. Then ND/D is semiregular on �. Noting that |�| is odd
and ND/D�N/(N ∩ D)�T k′

for some k′ �0, it follows that ND/D is trivial on �, and
hence N �D. Thus N is trivial on every C-orbit, and so N is trivial on V �, which is a
contradiction. Therefore, either N is soluble, or CX(N) = C = 1. �

5.1. The case where N is transitive

Assume that N is transitive on the vertices of �. Our goal is to prove that N = A5,
PSL(2, 7), PSL(2, 11) or PSL(2, 23) by a series of lemmas. The first shows that N is
nonabelian simple.

Lemma 5.2. The minimal normal subgroup N is a nonabelian simple group, X is almost
simple, and N = soc(X).

Proof. Suppose that N is abelian. Since N is transitive, N is regular, and hence |N | = |G|
is odd. By Lemma 2.3, we have that N �G, and so G = N�X, which is a contradiction.
Thus N = T k is nonabelian. Suppose that k > 1. Let L be a normal subgroup of N such that
L�T k−1. Since N1 �X1 is a {2, 3}-group, it follows that L is intransitive on V �; further,
since |V �| is odd and |T | is even, L is not semiregular. It follows from Lemma 2.2 that
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�L is a cycle. Then Aut�L is a dihedral group. Thus N lies in the kernel of X acting on
V �L, and so N is intransitive on V �, which is a contradiction. Thus k = 1, and N = T is
nonabelian simple. By Lemma 5.1, CX(N) = 1, and hence N is the unique minimal normal
subgroup of X. Thus X is almost simple, and N = soc(X). �

The 2-arc-transitive case is determined by the following lemma.

Lemma 5.3. Assume � is (X, 2)-arc-transitive. Then one of the following holds:

(i) X = A5 or S5, and X1 = A4 or S4, respectively, and G = Z5;
(ii) X = PSL(2, 11) or PGL(2, 11), and X1 = A4 or S4, respectively, and G = Z11�Z5;

(iii) X = PSL(2, 23), X1 = S4, and G = Z23�Z11.

Proof. Note that X = GX1 and G ∩ X1 = 1. By Lemma 2.5, |X1| is a divisor of 2432 =
144, and hence a Sylow 2-subgroup of X is isomorphic to a subgroup of D8 × Z2. Further,
|N : (G ∩ N)| = |GN : G| divides |X: G| = |X1|. Let M be a maximal subgroup of N
containing G ∩ N . Then [N : M] has size dividing 144, and N is a primitive permutation
group on [N : M]. Inspecting the list of primitive permutation groups of small degree given
in [3, Appendix B], we conclude that N is one of the following groups:

A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 11), M11, PSL(2, 17), PSL(2, 23), PSL(2, 47),
PSL(2, 71) and PSL(3, 3).
It is known that the groups M11, PSL(2, 17), PSL(2, 47) and PSL(3, 3) have a Sylow

2-subgroup isomorphic to Q8.Z2, D16, D16 and Z2.Q8, respectively. Thus N is none of these
groups. Suppose that N = A6 or PSL(2, 8). Then X = A6, S6, PSL(2, 8) or PSL(2, 8).Z3.
However, X has no factorisation X = GX1 such that G ∩ X1 = 1, and X1 is a {2, 3}-
group, which is a contradiction. Suppose that N = PSL(2, 71). Then X = PSL(2, 71)

or PGL(2, 71), and X1 = D72 or D144, respectively, and G = Z71�Z35. Thus X1 is a
maximal subgroup of X, and X acts primitively on the vertex set V � = [X: X1]. This is not
possible, see [28] or [18]. If N = PSL(2, 7), then G = Z7 and N1 = S4. Then, however, N
is 2-transitive on V � = [N : N1], and so ��K7, which is a contradiction.

Therefore, N = A5, PSL(2, 11) or PSL(2, 23). Now either X is primitive on V �, or
X = N = PSL(2, 11) and G = Z11�Z5. Then, by [27] and [12], we obtain the conclusion
stated in the lemma. �

The next lemma determines X for the case where � is not (X, 2)-arc-transitive.

Lemma 5.4. Suppose that � is not (X, 2)-arc-transitive. Then X = PGL(2, 7), X1 = D16
and G = Z7�Z3.

Proof. Since � is not (X, 2)-arc-transitive, X1 is a 2-group. Since X = GX1 and G∩X1 =
1, G is a 2′-Hall subgroup of X. Then G∩N is a 2′-Hall subgroup of N. By Lemma 5.2, N is
nonabelian simple. By Lemma 2.6, N = PSL(2, p), G∩N = Zp�Z p−1

2
, and N1 = Dp+1,

where p = 2e − 1 is a prime. If e > 3, then N1 is a maximal subgroup of N. Thus N is a
primitive permutation group on V � and has a self-paired suborbit of length 4, which is not
possible, see [28] or [18]. Thus e = 3, N = PSL(2, 7), G = Z7�Z3, and N1 = D8. So
X = PSL(2, 7) or PGL(2, 7).



C.H. Li et al. / Journal of Combinatorial Theory, Series B 96 (2006) 164–181 175

Suppose that X = PSL(2, 7). Now write � as coset graph Cos(X, H, H {x, x−1}H),
where H = X1 = D8, and x ∈ X is such that 〈H, x〉 = X. Let P = H ∩ Hx . Then
|H : P | = 2 or 4.

Assume that |H : P | = 4. Then � is X-arc-transitive and P = Z2. By Lemma 2.1, we
may assume that x2 ∈ P = H ∩ Hx and x normalises P. If P�H , then P�〈H, x〉 = X =
PSL(2, 7), which is a contradiction. Thus P is not normal in H, and so Z2

2�NH (P )�H .
Since NX(P )�D8, we have NX(P ) �= H . So NH (P )�〈H, NX(P )〉 = X, which is a
contradiction. Thus |H : P | = 2, and hence P�L := 〈H, Hx〉. We conclude that L�S4.
Then H and Hx are two Sylow 2-subgroups of L, and hence Hx = Hy for some y ∈ L. Thus
Hxy−1 = H , that is, xy−1 ∈ NX(H) = H , hence x ∈ Hy ⊆ L. Then 〈x, H 〉�L �= X,
which is a contradiction. Thus X �= PSL(2, 7), and so X = PGL(2, 7). �

5.2. The case where N is intransitive

Assume now that the minimal normal subgroup N�X is intransitive on V �. We are going
to prove that part (3) of Theorem 1.1 occurs.

Lemma 5.5. The minimal normal subgroup N is soluble, and N < G.

Proof. Suppose that N is insoluble. Then N = T k and N�G, where T is nonabelian simple
and k�1. Let Y = NG. Then by Lemma 2.4 Y is transitive on both of V � and E�. Let
L�N be a non-trivial normal subgroup of Y. Then L is intransitive, and since |V �| is odd,
L is not semi-regular on V �. Thus the valency of the quotient graph �L is less than 4. Since
|V �| is odd, �L is a cycle of size m�3. Let K be the kernel ofY acting on the L-orbits in V �.
Then Y/K �Aut�L�D2m, where m = |V �L|. Further, since NK/K�N/(N ∩ K)�T l

for some l, we conclude that l = 0 and N �K . Considering the action of N on an arbitrary
L-orbit, we have that L = N . This particularly shows that N is a minimal normal subgroup
of Y. As �N is a cycle, � is not (X, 2)-arc-transitive, and X1 is a nontrivial 2-group. In
particular, K1 is a 2-group. Since K = NK1 �Y and |Y : N | is odd, we know that K = N .
Thus N itself is the kernel of X acting on V �N . It follows that Y/N is the cyclic regular
subgroup of Aut�N acting on V �N . Thus Y = NG = N〈a〉�N.Zm for some a ∈ G \ N .

Since X1 is a nontrivial 2-group, it is easily shown that G ∩ N is a 2′-Hall subgroup of
N, and N = (G ∩ N)N1. Then G ∩ T = G ∩ N ∩ T is a 2′-Hall subgroup of T. By Lemma
2.6, T = PSL(2, p) for a prime p = 2e − 1. In particular, Out(T )�Z2. By Lemma 5.1,
CX(N) = 1, and hence CY (N) = 1. Then N is the only minimal normal subgroup of Y and
of X. So the element a ∈ Y �X�Aut(N) = Aut(T ) � Sk . Write N = T1 × · · · × Tk , where
Ti�T . Then Aut(N) = (Aut(T1) × Aut(T2) × · · · × Aut(Tk))�Sk , and a = b�, where
b ∈ Aut(T1) × Aut(T2) × · · · × Aut(Tk) and � ∈ Sk .

Since N is a minimal normal subgroup of Y, we have that 〈a〉 acts by conjugation tran-
sitively on {T1, T2, . . . , Tk}, and hence the permutation � is a k-cycle of Sk . Relabeling if
necessary, we may assume � = (12 . . . k) ∈ Sk . Then T a

k = T1 and T a
i = Ti+1, where

i = 1, . . . , k−1. Further, ak = b�k · · · b� ∈ Aut(T1)×Aut(T2)×· · ·×Aut(Tk) = N�Zk
2.

Since ak is of odd order, it follows that ak ∈ N . Thus Y/N�Zk , and hence m = k.
Set ak = t1t2 · · · tk , where ti ∈ Ti . Since a centralises ak , we have t1t2 · · · tk = ak =
(ak)a = ta1 ta2 · · · tak . Since tak ∈ T a

k = T1 and tai ∈ T a
i = Ti+1, it follows that tak = t1
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and tai = ti+1, where i = 1, . . . , k − 1. Let g = t−1
1 a. Then Ti = T

g
i−1 = T

gi−1

1 and

gi = ait−1
i+1t

−1
i . . . t−1

2 (reading the subscripts modular k), where 2� i�k. In particular,

gk = akt−1
1 t−1

k . . . t−1
2 = 1, and so the order of g is a divisor of k. Noting that Y/N�Zk

and N〈g〉 = 〈N, g〉 = 〈N, t−1
1 a〉 = 〈N, a〉 = Y , it follows that Y = N�〈g〉.

Let H1 = (T1)1 and Hi := H
gi−1

1 for 1� i�k, and let H = H1×· · ·×Hk . Then Hi�D2e

is a Sylow 2-subgroup of Ti , H is a Sylow 2-subgroup of N, and Hg = H . Since �N is a
k-cycle and Y/N�Zk , it follows that � is not Y-arc-transitive. Since � is Y-edge-transitive,
we may write � as a coset graph � = Cos(Y, H, H {gjx, (gj x)−1}H), where 1�j < k

and x = x1 · · · xk ∈ N for xi ∈ Ti , such that |H : (H ∩Hgj x)| = 2 and 〈H, gjx〉 = Y . Now
Hgj x = Hx = H

x1
1 ×H

x2
2 × · · ·×H

xk

k and H ∩Hgj x = (H1 ∩H
x1
1 )× · · ·× (Hk ∩H

xk

k ).
Thus we may assume that |H1 : (H1 ∩ H

x1
1 )| = 2 and Hi ∩ H

xi

i = Hi . Then H
xi

i = Hi

for i = 2, . . . , k. Since NTi
(Hi) = Hi , we know that xi ∈ Hi for i�2. If e > 3, then

H1 is maximal in T1, and hence H1 ∩ H
x1
1 �〈H1, H

x1
1 〉 = T1, which is a contradiction.

Thus e = 3, T1�PSL(2, 7). Let U1 = 〈H1, x1〉 and Ui = U
gi−1

1 for i = 2, 3, . . . , k.
Then S4�Ui < Ti . It follows that 〈U1, g〉 = (U1 × · · · × Uk)�〈g〉�(S4)

k�Zk . Since
� is connected, Y = 〈H, gjx〉�〈H1, x1, g〉 = 〈U1, g〉�(S4)

k�Zk , which is again a
contradiction.

Thus N is soluble. Then by Lemma 2.4, we have N < G, completing the proof. �

We notice that, since N is intransitive on V �, the N-orbits in V � form an X-invariant
partition V �N . The next lemma determines the structure of X.

Lemma 5.6. Let K be the kernel of X acting on V �N . Then the following statements hold:

(i) X/K�Zm or D2m for an odd integer m > 1, K1 �= 1, and � is X-arc-transitive if and
only if X/K�D2m;

(ii) G = N�R, X = N�((K1�R).O) and R does not centralise K1, where R�Zm, and
O = 1 or Z2;

(iii) N�Zk
p for an odd prime p, and K1�Zl

2, where 2� l�k;
(iv) there exist x1, . . . , xk ∈ N and �1, . . . , �k ∈ K1 such that N = 〈x1, . . . , xk〉, 〈xi, �i〉

�D2p and K1 = 〈�i〉 × CK1(xi) for 1� i�k.
(v) N is the unique minimal normal subgroup of X;

Proof. By Lemma 5.5, N < G is soluble, hence N�Zk
p for an odd prime p and an

integer k�1. In particular, N is semi-regular on V �. Since �N is a cycle of size m say,
X/K �Aut�N = D2m. Thus K = N�K1, K1 is a 2-group, and X/K�Zm or D2m.
It follows that G/N�GK/K�Zm. If K1 = 1, then K = N , and hence G�X, which
contradicts that G is not normal in X. Thus K1 �= 1. Further, � is X-arc-transitive if and
only if X/K�D2m, so we have part (i).

Set U = NX(K1). Then U �= X since K1 is not normal in X. Noting that (|N |, |K1|) = 1,
it follows that NX/N(K/N) = NX/N(NK1/N) = NX(K1)N/N = UN/N . Since K/N is
normal in X/N , it follows that X = UN . Since N�X, N ∩U�U . Further N ∩U�N as N is
abelian. Then N ∩U�〈U, N〉 = UN = X. If N �U , then K = NK1 = N ×K1, and hence
K1�X, a contradiction. Thus N ∩ U < N . Further, since N is a minimal normal subgroup
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of X, we know that N ∩ U = 1, and hence K ∩ U = NK1 ∩ U = (N ∩ U)K1 = K1.
Now X/K = UN/K = UK/K�U/(K ∩ U) = U/K1, and so U = (K1�R).O, where
R�Zm and O = 1 or Z2. Then G = N�R, and X1 = K1.O. Further, since G is not
normal in X, we conclude that R does not centralise K1, as in part (ii).

Let Y = KR = N�(K1�R). Then Y has index at most 2 in X, and � is Y-edge-transitive
by Lemma 2.4, but it is not Y-arc-transitive. Thus � = Cos(Y, K1, K1{y, y−1}K1), where
y ∈ Y is such that 〈K1, y〉 = Y and K1 ∩ K

y

1 has index 2 in K1. We may choose y ∈
N�R = G such that R = 〈�〉 and y = �x where x ∈ N . Then K1 ∩ K

y

1 = K1 ∩ Kx
1 has

index 2 in K1.
We claim that K1 ∩Kx

1 = CK1(x). Let � ∈ K1 ∩Kx
1 . Then �x−1 ∈ K1, and so �−1�x−1 ∈

K1. Since x ∈ N and N�NK1, we have �−1�x−1 = (�−1x�)x−1 ∈ N . Thus �−1�x−1 ∈
N ∩ K1 = 1, and so �x−1 = �. Then � centralises x. It follows that K1 ∩ Kx

1 �CK1(x).
Clearly, CK1(x)�K1 ∩ Kx

1 . Thus CK1(x) = K1 ∩ Kx
1 as claimed.

Since N is a minimal normal subgroup of X and X = NU , we have that N = 〈x〉×〈x�2〉×
· · · × 〈x�k 〉 where �i ∈ U . Then CK1(x

�i ) = CK1(x)�i < K
�i

1 = K1. The intersection
∩k

i=1CK1(x
�i )�CK(N) = N , and hence ∩k

i=1CK1(x
�i ) = 1. Since each CK1(x

�i ) is a
maximal subgroup of K1, the Frattini subgroup �(K1)� ∩k

i=1 CK1(x
�i ) = 1. Hence K1 is

an elementary abelian 2-group, say K1�Zl
2 for some l�1. Noting that ∩k

i=1CK1(x
�i ) = 1,

it follows that l�k. Suppose that l = 1. Then K1�Z2 and hence |Y : G| = 2. Then G�Y ,
and hence GcharY�X. So G�X, which contradicts the assumption that G is not normal
in X. Thus l > 1, as in part (iii).

Since |K1 : CK1(x)| = 2, there is �1 ∈ K1 such that K1 = 〈�1〉 × CK1(x). Let x1 =
x−1x�1 . Then x1 �= 1, x

�1
1 = x−1

1 and CK1(x) = CK1(x1), and so K1 = 〈�1〉 × CK1(x1).
Since N is a minimal normal subgroup of X = NU , there are 	1 = 1, 	2, . . . , 	k ∈ U such
that N = 〈x	1

1 〉 × · · · × 〈x	k

1 〉. Let xi = x
	i

1 and �i = �
	i

1 , where i = 1, 2, . . . , k. Then
Zl−1

2 �(CK1(x1))
	i = C

K
	i
1

(x
	i

1 ) = CK1(xi), and K1 = K
	i

1 = 〈�i〉 × CK1(xi). Further,

x
�i

i = x
�1	i

1 = (x−1
1 )	i = x−1

i , and hence 〈xi, �i〉�D2p, as in part (iv).
Now N�Zk

p for an odd prime p and an integer k > 1. Suppose that X has a minimal
normal subgroup L �= N . Then N ∩L = 1, and LK/K�X/K�Zm or D2m. It follows that
either L�K , or L is cyclic and hence |L| is an odd prime. If L�K , then L is a 2-group, it
is not possible. Hence L is cyclic. It follows that L is intransitive and semiregular on V �.
Then �L is a cycle, and hence N is isomorphic a subgroup of Aut�L. It follows that N is
cyclic, which is a contradiction. Thus N is the unique minimal normal subgroup of X, as in
part (v). �

5.3. Proof of Theorem 1.1

If G�X, then by Lemma 2.3, we have X1 �D8. Thus by Lemma 3.1, S = {a, a−1, a�,

(a�)−1} for some involution � ∈ Aut(G), as in Theorem 1.1(1).
We assume that G is not normal in X in the following. Let M�X be maximal subject to

that � is a normal cover of �M . By Lemma 2.2, M is semiregular on V � and equals the
kernel of X acting on V �M . Thus, setting Y = X/M and � = �M , � is Y-edge-transitive.
Since |M| is odd, by Lemma 2.3, we have M �G. Therefore, � is aY-edge-transitive Cayley
graph of G/M , as in Theorem 1.1(2).
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We note that for the normal subgroup defined in the previous paragraph, we have that
G�X if and only if G/M�X/M . Thus, to complete the proof of Theorem 1.1, we only
need to deal with the case where M = 1, that is, � has no non-trivial normal quotients
of valency 4. Let N be a minimal normal subgroup of X. If N is intransitive on V �, then
by Lemmas 5.5 and 5.6, part (3) of Theorem 1.1 occurs. If N is transitive on V �, then by
Lemmas 5.2–5.3, Theorem 1.1(4) occurs. �

6. Proof of Theorem 1.4

Let p be an odd prime, and let k > 1 be an odd integer. Let m be the largest odd divisor
of pk − 1, and let

G = N�〈g〉 = Zk
p�Zm < AGL(1, pk).

It is easily shown that 〈g〉 acts by conjugation transitively on the set of subgroups of N of
order p. We first construct a family of Cayley graphs of valency 4 of the group G.

Construction 6.1. Let i be such that 1� i�m − 1, and let a ∈ N \ {1}. Let

Si = {agi, a−1gi, (agi)−1, (a−1gi)−1},
�i = Cay(G, Si).

The following lemma gives some basic properties about G and �i .

Lemma 6.2. Let G be the group and let �i be the graphs defined above. Then, we have the
following statements:

(i) Aut(G) = A�L(1, pk)�Zk
p��L(1, pk);

(ii) �i is edge-transitive, and �i is connected if and only if i is coprime to m;
(iii) �i��m−i , and if pri ≡ j (mod m), then �i��j .

Proof. See [5, Proposition 12.10] for part (i).
Since Aut(G) = A�L(1, pk) and G < AGL(1, pk), there is an automorphism � ∈

Aut(G) such that a� = a−1 and g� = g. Thus S�
i = Si and (agi)� = a−1gi and

((agi)−1)� = (a−1gi)−1. It follows that �i is edge-transitive. It is easily shown that
〈agi, a−1gi〉 = G if and only if (m, i) = 1. Hence �i is connected if and only if i is
coprime to m.

Since g normalises N, there exists a′ ∈ N such that (agi)−1 = a′g−i and (a−1gi)−1 =
(a′)−1g−i . Thus Si = {a′g−i , (a′)−1g−i , (a′g−i )−1, ((a′)−1g−i )−1}. Since GL(1, pk) acts
transitively on N \{1}, there exists an element 
 ∈ Aut(G) such that (a′)
 = a and g
 = g.
Thus S



i = {agm−i , a−1gm−i , (agm−i )−1, (a−1gm−i )−1} = Sj . So �i��m−i .

Suppose that pri ≡ j or −j (mod m) for some r �0. Noting that �m−j��j , we may as-
sume that pri ≡ j (mod m). Since g ∈ GL(1, pk) < �L(1, pk), there exists � ∈ �L(1, pk)

such that � normalises N and g� = gp. Thus S�r

i = {a′gpr i , a′−1gpr i , (a′gpr i)−1, (a′−1

gpr i)−1}, where a′ = a�r ∈ N . Since GL(1, pk) is transitive on N \ {1} and fixes g, there
exists c ∈ GL(1, pk) such that (S�r

i )c = Sj , and so �i��j . �
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In the rest of this section, we aim to prove that every connected edge-transitive Cayley
graph of G of valency 4 is isomorphic to some �i , so completing the proof of Theorem 1.4.

Let � = Cay(G, S) be connected, edge-transitive and of valency 4. We will complete the
proof of Theorem 1.4 by a series of steps, beginning with determining the automorphism
group Aut�.

Step 1: G is normal in Aut�, and Aut� = G�Aut(G, S).
Suppose that G is not normal in Aut�. Since N is the unique minimal normal subgroup of

G, it follows from Theorem 1.1 that either part (3) of Theorem 1.1 occurs with X = Aut�,
or �N is a Cayley graph of G/N and isomorphic to one of the graphs in part (4) of Theorem
1.1. Assume that the latter case holds. Then G/N�Z5, Z7�Z3, Z11�Z5 or Z23�Z11.
Therefore, as G/N�Zm, we have that G/N�Zm�Z5. By definition, m = 5 is the largest
odd divisor of pk − 1, which is not possible since p is an odd prime and k > 1 is odd. Thus
the former case occurs, and Aut� = N�((H�〈g〉).O)�Zk

p�((Zl
2�Zm).Zt ), satisfying

the properties in part (3) of Theorem 1.1. In particular, 2� l�k, and CH (N) = 1.
By Theorem 1.1(3), there exist �0 ∈ H \ {1} and z0 ∈ N such that H = 〈�0〉 × CH (z0).

It follows that for each � ∈ H , we have z�
0 = z0 or z−1

0 . Since g normalises H and 〈g〉
acts transitively on the set of subgroups of N of order p, it follows that for each x ∈ N and
each � ∈ H , we have x� = x or x−1. Suppose that there exist x1, x2 ∈ N \ {1} such that
x�

1 = x1 and x�
2 = x−1

2 . Then (x1x2)
� = x1x

−1
2 , which equals neither x1x2 nor (x1x2)

−1,
a contradiction. Thus, as � does not centralise N, we have x� = x−1 for all x ∈ N . Since
H�Zl

2 with l�2, there exists � ∈ H \ 〈�〉. Then similarly, � inverts all elements of N, that
is, x� = x−1 for all elements x ∈ N . However, now x�� = x for all x ∈ N , and hence
�� ∈ CH (N) = 1, which is a contradiction.

Therefore, G is normal in Aut�, and by Lemma 2.3, we have that Aut� = G�Aut(G, S).

Step 2: Aut� = G�〈�〉 = Zk
p�(〈�〉 × 〈f 〉)�N�Z2m�G�Z2, and S = {af i, a−1f i,

(af i)−1, (a−1f i)−1} where a ∈ N and f ∈ G has order m such that a� = a−1; in
particular, � is not arc-transitive.

By Lemma 6.2, we haveAut(G)�A�L(1, pk)�N�(Zpk−1�Zk). Since k is odd,Aut(G)

has a cyclic Sylow 2-subgroup, and thus all involutions of Aut(G) are conjugate. It is easily
shown that every involution of Aut(G) inverts all elements of N. Since � is edge-transitive
and Aut� = G�Aut(G, S), Aut(G, S) has even order. On the other hand, since G is of odd
order, by Lemma 2.3, we have that Aut(G, S) is isomorphic to a subgroup of D8. Further,
since a Sylow 2-subgroup of Aut(G) is cyclic, we have that Aut(G, S) = 〈�〉�Z2 or Z4.
It follows that � fixes an element of G of order m, say f ∈ G such that o(f ) = m and
f � = f . Then G = N�〈f 〉, and X = Aut� = G�〈�〉 = N�〈f, �〉.

Since � is connected, 〈S〉 = G and Aut(G, S) is faithful on S. Hence, we may write S =
{x, y, x−1, y−1} such that either o(�) = 2 and (x, y)� = (y, x), or o(�) = 4 and (x, y)� =
(y, x−1), refer to Lemma 3.1. Now x = af i , where a ∈ N and i is an integer. Suppose that
o(�) = 4. Then y = x� = (af i)� = a�f i , and a′f −i = f −ia−1 = (af i)−1 = x−1 =
x�2 = a�2

f i = a−1f i . It follows that f 2i = 1, and since f has odd order, f i = 1. Thus
x = a and y = x� = a�, belonging to N, and so 〈S〉�N < G, which is a contradiction.
Thus � is an involution, and so (x, y)� = (y, x), x = af i , and y = x� = a�f i = a−1f i .
In particular, � is not arc-transitive, and S = {af i, a−1f i, (af i)−1, (a−1f i)−1}.
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Step 3: ���j for some j such that 1�j � m−1
2 and (j, m) = 1.

By Step 2, we may assume that Aut� = N�〈f, �〉�AGL(1, pk). Since g ∈ G has
order m, it follows from Hall’s theorem that there exists b ∈ N such that gb ∈ 〈f, �〉. So
f b−1 = gr for some integer r. Let � = �b−1

. Then 〈g, �〉�〈f, �〉�Z2m, and G = N�〈g〉
and Aut� = N�〈g, �〉. Further, T := Sb−1 = {agir , a−1gir , (agir )−1, (a−1gir )−1}. Let
j ≡ ir (mod m) and 1�j �m − 1. Then T = {agj , a−1gj , (agj )−1, (a−1gj )−1}, and
(j, m) = 1 as ��Cay(G, T ) is connected. By Lemma 6.2(iii), �j��m−j , and so the
statement in Step 3 is true.

Step 4: Let �i and �j be as in Construction 6.1 with (i, m) = (j, m) = 1. Then �i��j

if and only if pri ≡ j or −j (mod m) for some r �0.
By Lemma 6.2, we only need to prove that if �i��j then pri ≡ j or −j (mod m) for

some r �0. Thus suppose that �i��j . By Step 2, we have Aut�i�Aut�j�G�Z2. It
follows that �i and �j are so-called CI-graphs, see [14, Theorem 6.1]. Thus S

�
i = Sj for

some � ∈ Aut(G). Since N is a characteristic subgroup of G, this � induces an automorphism
of G/N = 〈g〉 such that S

�
i = Sj , where Si = {gi, g−i} and Sj = {gj , g−j } are the images

of Si and Sj under G → G/N , respectively. Thus (gi)� = gj or g−j . Since Aut(G) =
A�L(1, pk), it follows that for each element 
 ∈ Aut(G), we have g
 = cgpr

for some
c ∈ N and some integer r with 0�r �k − 1. Thus (gi)� = gpr i , and hence pri ≡ j or
−j (mod m).

This completes the proof of Theorem 1.4. �
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