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Abstract

We calculate correlation functions for vertex operators with negative integer exponentials of a periodic Liouville field, and
derive the general case by continuing them as distributions. The path-integral based conjectures of Dorn and Otto prove to be
conditionally valid only. We formulate integral representations for the generic vertex operators and indicate structures which
are related to the Liouvill§-matrix.
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1. Introduction

The Liouville theory has fundamentally contributed to the development of both mathematics [1,2] and
physics [3], and beyond it fascinated with a wide range of applications as a conformal field theory. Nevertheless,
its quantum description is still incomplete. By canonical quantisation [4-8] it could be shown that the operator
Liouville equation and the Poisson structure of the theory, including the causal non-equal time properties, are
consistent with conformal invariance and locality [6,8], but exact results for Liouville correlation functions
remained rare [9] despite of ambitious programmes [10,11].

In this Letter we calculate correlation functions for vertex operators with generic exponentials of a periodic
Liouville field. The vertex operators are given in terms of the asymptatiteld of the Liouville theory [12],
and we formulate for them an integral representation as an alternative to the formal but still useful infinite
sum of [6]. However, there is so far no reliable recipe to use such integral operators directly since the complex
powers of the screening charge operators describing them are not constructed yet, a problem related to the exac
knowledge of the LiouvilleS-matrix. We calculate therefore first correlation functions for vertex operators of [6]
with negative integer exponentials and continue the result analytically as a distribution, as is required by the zero
mode contributions of the Liouville theory [13]. We prove so that the correlation functions suggested in [14] are
conditionally applicable only. This is indeed a surprise because the conjecture of [14] was obtained by standard
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analytical continuation of a path-integral result for minimal models [15], which describes nothing but a special
part of the operator based correlation function [9]. In this respect it is worth mentioning that already the Liouville
reflection amplitudes [16] proved to be identical with those obtained from the Liowitheatrix [13,17].

We parametrise the vertex operators by a free field which allows to avoid the use of quantum group
representations, and we define the approach on which both, the derivation of the correlation functions and the
formulation of the integral representation of the vertex operators are based. The structures needed to understanc
the Liouville S-matrix are indicated, and in the conclusions we stress the importance of the results for the related
WZNW cosets.

2. Free-field parametrisation

We use Minkowskian light-cone coordinates-  + o, x = t — o and select from Ref. [1] that general solution
of the Liouville equation

1 A'()A(X)
Q== |Og 2 VENTE (1)
2 T[4 pu2AMX)AG)]
which has a particularly utilisable physical interpretation. For periodic boundaries
o(t,0 + 2n) = ¢(1,0), (2)
one can parametrise the non-canonical and quasi-periodic parameter furgtiond (x)
A(x +27) = e"? A(x), AG =2n)=e "PAX), 3)
by the canonical free field@t, o) = log A’ (x) A’ (x) with standard mode expansion
Yp iy an _; iy an iz
¢(r,o)=yq+ =T+ —e "M + —e ", (4)
21 VA r; n VA ,; n
and the chiral decomposition
1 1 I
p.o)=(zva+Lx o))+ (Zra+ Li+ém ). 5)
2 47 2 47

Note the rescalings of the fieldsand¢ by the Liouville couplingy. We obtain so the canonical transformation
between the Liouville and the free field of [6} there is 2 here!)

e ?T0) — =0 (To) 4 w €7¢(T’U)A(X)A()f), (6)
and by integratingl’(x) (correspondinglyd’(x)) using (3)
va 2
Yp Yy f
A —— | dyvez €=+t 7
0= 2 iz / ve (")
0

€(z) is the stair-step function, and as preconceived, the non-vanishing paramedtére hyperbolic monodromy
relation (3) becomes identical with the momentum zero mode of the free field (4), and we ghodsft].
Since for asymptotic ‘timet the two terms of the Liouville exponential (6) behave as

e T Lo m T 2P A AR) ~ e T, 8)
they can be interpreted as-coming respectivelput-going contributions so that

e 9 (00) — o=in(7.0) 4 ,—dbou(r.0) (9)
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As a consequence the chosen canonical free field (4) has a physical meaning, it is the asymfddiof the
Liouville theory [12], and theout-field which is given by then-field too

e~ Pout(1,0) _ /Lze_"’(f’g)A(x)A(i), (10)

defines likewise the classical form of the Liouviematrix.
Two related forms of the Liouville exponential are relevant for canonical quantisation, the formal expansion in
powers of the conformal weight zero functioAgx) A(x) [6]

20.0(t,0) _ ,2:$(x,0) N (D" T@2h4m), , o
eP0(T0) > ) [W2A)A®]", (11)

m=0

and the integral representation for positive

+00
T+ k)T — ik) D
20¢(t,0) — 20 ¢p(t,0) dk 2A A . 12
e e f 22T (2 [1“AC)A®)] (12)
—00

The last equation follows from the Liouville solution (6) by using the Fourier transformati¢haxishy) =2+ [18]

(e + ey)fz}h for Rea > 0. (13)

+OO . .
/ gx FOFIOTG—ik) i, _
2 T(2)0)
—00
If we continue this equation from positive to negativand consider the kernel of that integral as a generalised
function, forA — —n/2 we obtain [13]

n

T+ k)T — ik) n ,
2T 20 — Z (m>6(k—l(n/2—m)). (14)

m=0

In this manner (12) becomes in fact identical with the corresponding finite sum of (11).

It might be interesting to notice here that the investigations initiated by Refs. [4,5] are based on Liouville's
second form of the general solution [1]. This approach led [4] to a parametrisation of the Liouville theory in terms
of a canonically related [19] but pseudo-scalar free field which is asymptotically neithier aar anout-field,
whereas the work of [5,10] mainly treats the singular elliptic monodromy for which we do not know whether there
exists a parametrisation in terms of a real free field at all.

3. Vertex operators

The quantum Liouville theory will be defined by canonically quantising the free field (4)

[qv p] = lh1 [am, an] = hm6m+n,0, (15)

and requiring that the vertex operators are primary and local. Such a procedure gives an anomaly-free quantum
Liouville theory only if additional guantum deformations are taken into consideration [4-8]. A quantum realisation
of (11), consistent with the operator Liouville equation and the canonical commutation relations, was so constructed
in [6]. But the infinite sum is not a useful vertex operator. It is its finite form for negative integer 2n which
presents a well-defined basis for the calculation of correlation functions.

Let us review the needed elements, and €gl(z, o) the vertex operator af?-¢(-:%), Taking, for simplicity, the
same notations for the classical and the corresponding normal ordered quantum expressions, the vertex operatol
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for A = —1/2 can be written as

V. — o ¢(.0) 2 0o gz, ] 16
ur.o)=e +M“2$inthe (r G)Zsinth (16)
Hereug is the renormalised ‘cosmological constant’ and we introduced short notations
i 2
2 >SN hy yp
= , = -, P = 17
Ho =W =] *=on 2 (17)
and defined the conformal weight zero screening charge operator as
S(r.0) = "I ITAL () A (@) T, (18)
where
2
Apx) = / dy 24+ +PO-) (19)
0
is the integral (7) rewritten by using the periodicity arn@d) = sign(z) for z € (—2x, 27).
The useful factorised form of the operatdr,, can be constructed easily by induction
Vop_1(x, %) = |imo Vo (x, X)V_1(x + €, X — €)™, (20)
€—
where the regularising factef” just removes the short distance singularity, and it results
n m 1 m 1
V. , — ol 2m i 7n¢(r,r7)Sm , : ) 21
n(7.0) mz_o mha EZSInhn(P+ila)e (@ G)E 2sinhr (P — ila) (21)
The shift of the momenta is a consequence of locality, and the same holds for the deformed binomial coefficients
m .
sint(n — [ + 1«
ca=l— 22
" H sinmlo (22)

=1
whereas the hidden short distance contributions of (21) are due to the conformal properties.

Note that[e=?(™?) S(r,o)] = 0 provides hermiticity of (16). The vertex operators for arbitrarill be
described jointly with the correlation functions in the next section.

4. Correlation functions
Owning to conformal invariance we have to calculate 3-point correlation functions only. They are defined by

matrix elements of vertex operataps; 0|V2, (0, 0)| p’; 0) between the highest weight vacuum stigie0) (p > 0)
which gets annihilated by the operatasswith » > 0. Using (21) the correlation function fon2= —n becomes

(p; 0|V_,(0,0)|p; 0) = Z cruZm (P, a)(18 (P, a))28(P — P —i(n—2m)a), (23)
m=0

whereJ! (P, @) summarises the-dependent factors of the sinh-terms of (21)
- 1

JHP,a) = - - ,
m(P. @) g4smhn(P+ila)smhn(P—i(n—2m+l)a)

(24)
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and I (P, «) is the (anti-)chiral matrix elemer{d|e~"¢ [T/L1 Ap—im—20+1)2|0) Which is given by the integrals
over the conformal short-distance deformations of (21)

2 2w m no —a
= [as [as Tl (2" ] (a5 252) e,
0 0

1=1 1<k<I<m
(25)
Fortunately these integrals can be expressed [10] by Dotsenko—Fateev integrals [20]
; T T4+ n—1+1Da) 27T (1+ @)
Loy =[]—F7 . 5 —. (26)
1 1+la) Frl+la—iPTA+m®—-2m+Da+iP)
If we replace the sin- (sinh-) functions of (22) (respectively, (24))bfunctions
Y P+ x0T —x), 27)
sinzx
we find for the correlation function the result
n m
n rl+a) ,
:0|V_,(0,0)|p'; 0) = 2_—_ ) v(P,P)S(P—P —i(n—2ma), 28
(p; 0IV_,(0,0)|p’; 0) mzzo(m)(u m_a)) (P, PH3( i(n —2m)a) (28)
with
2 TGP —Ila)(—iP —Ila)['(1 — I+ Da)r(1—
VP, P/)zl—[ (i la)T(—i la)TA+ -1+ Da)I'( la) (29)

LATA—iP+I)T(A+iP +1)T L+ —n —Da)T L +1e)’

Our aimis to continue these functions from the negative value 2-n to positiver. We apply Eg. (14) and obtain,
with 2ak = P — P’ from the continued-function of (28),

raA+ik)L(x —ik) ( Sr(l+a)

(p; 01V2:.(0,0)[p’; 0) = dral (20 i

ik—M\
) V.2 (P, P'), (30)

where Vi;ﬂ(P, P’) is the analytical continuation of (29). This continuation will be performed by means of the
integral representation of tHe-function [18]

oo

—xt _ ,—t
ogrco = [ 5 v ey
0

and the following summation under that integral

m—1

fCe.alm)=""logT (x + la)
1=0
_ oodt e (1 — ey me™* _ m(m—1) _,
_/T[(l—e_’)(l—e_“’) T +m(x — e +aTe ] (32)

The functionf (x, «|m) has a natural analytical continuation with respeatfa: andx, and the useful property
fx —ma,alm) = f(x —a, —a|m). To simplify our result we rewrite a factor of (29)

m 1 12 1 " 1
Hr(1+(1—n—1)a):a_mgz—n—lnr((z—n—l)a)’ (33)

=1 =1
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and continue it separately

1 F(Z)‘) —f(2ra,x|m)
alk =2 T'(ik + 1) '

After analytically continuing the remaining terms of (29), and obvious cancellations, we obtain finally the generic

correlation function we are looking for as

(34)

(p; 0|V2,(0,0)|p’; 0) = F(Zﬂ_aik) <%2 Eﬁtg;)ikl li[lef(x_/,alm)f()’_/,alm)’ (35)
j=
where
x1=iP —ma, X2 =—iP —ma, x3=14+m—m+ Da, x4=1—ma;
yi=1l4+a—iP, yo=1+a+iP, y3 = —ha, va=14+a;
m=ik—r, a=-2n. k=t=F _hE e (36)

20 =2 N

It is worth mentioning here that the function (32) was used for the parametrisation of the 3-point correlation
functions suggested in [14], and it is easy to show that with Egs. (35), (36) we have rederived that result (see
Eq. (14) of the second reference of [14] with obvious changes of the notation and overall renormalization).

However, there are some further remarks in order. Dorn and Otto [14] started their analytical continuation
from a path-integral result for minimal models [15] which is just the one teen2m of the operator calculated
correlation function (28) proportional & P — P’). This single term would be selected in our calculations if and
only if screening charge conservation could be operative [9]. However, the Liouville theory is Mdbius non-invariant
and all the(n + 1) terms of (28) together characterise this theory foe2xn. Moreover, for odd: the correlation
functions of [14] vanish and only the neglectederms guarantee the necessary non-vanishing of the Liouville
correlation functions in those points. Vice versa, by analytically continuing the correlation functions of [14,16] as
generalised functions, in the manner explicitely described for the zero modes in Ref. [13], one finds the correlation
function for negative. which for i = —n/2 just reproduces (28).

We should, furthermore, mention that the functions (32) #ndf [16] are related by

f(bu, b?|s) — f(bv, b?|s) =109 7, (v) — 109 T (u) + sb(u — v) logb,
75 (1/b)
T(—s5)Y)(—sb)

whereb? = «, andu + v = Q — sb with Q = b + 1/b. With these equations we can derive from (35) the more
heuristically motivated alternative, but to [14] equivalent, correlation functions of [16] as follows

(1= sb2b?|s) — f(1+ b2 b?|s) = log + (s +1)(1 - sb?) logb, (37)

4ra(p; 0|V2.(0,0)|p"; 0) = C(%(Q —iP/b),bA, %(Q +iP//b))- (38)

By the same procedure of analytical continuation as used before, and by taking into consideration the results of
this section, we obtain from (21) the vertex operator for positias an integral representation

+00 .
_ LA+ ik)[ (A — ik) 42 ik—.
sz(r,o)—fdk 27T (2)) (2naF(1+a)F(1_a)>

—00

X Yo (O, k)Xo (p, ik = )P TS (1, 0) X5 (pLik — ), (39)

with
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of Qtaalik—n)+f (A—(ik—)a.alik—h)

Yo(A k) = (40)

of (T 2ah,alik—0)+ f(I— (A +ik—Daalik—1) ’

Xo(p,A) = o i P=(ik=M)er,atlik—2)+ f (1~i P+a,alik—) '1+ik— A —iP/a) (41)
I(1—iP/x)

But we should emphasize here that we do not have so far a recipe at hand to calculate the Liouville correlation
functions for positiver directly from this integral. It would require the knowledge of complex powers of the
screening charge operat§#—*(z, o), which incidentally would give thé-matrix in compact form too. But this
problem is at present under investigation only, and that is the reason why we cannot compare our vertex operator
(39) with the ansatz of [11] for which corresponding screening charge operators are not given either, and as well
no recipe how to treat that vertex for an operator calculation of correlation functions directly.

5. Conclusions

With a suitable free-field parametrisation at hand, canonical quantisation proves to be a straightforward and
reliable approach for a description of the quantum Liouville theory. We have calculated the correlation functions
for generic vertex operators by using known algebraic quantum structures of the theory and their distributional
properties. But the derived integral vertex operators could not be applied directly since the complex powers of
screening charge operators are not yet constructed. The$xaatrix is therefore not available too. Nevertheless,
it is known that self-adjointness of the Liouville theory as well as the reflection amplitudes follow from the
S-matrix [17], which can be derived at least level by level. We can so conclude that we have got, in principle, a
complete understanding of quantum Liouville theory. The remaining problems to be solved are mostly of technical
nature.

Since the Liouville theory and th8_(2; R)/ U (1), respectivelyS(2; R)/ R, black hole cosets can be derived
from the samesL(2; R) WZNW theory by Hamiltonian reduction [21], we expect also a joint quantum treatment
of them. While doing so, the Liouville theory is an important ingredient of the other cosets, so that its quantum
description is a prerequisite for the quantisation of the other cosets. This might be relevad&fand string
theory too, and different boundary conditions should be taken into consideration.

Moreover, we believe that the observed causal non-equal time structures of the cosets are important for field
theory in general, and that these two-dimensional conformal field theories will remain outstanding examples of
mathematical physics even in the next future.
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