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Abstract

Electric–magnetic dualities are equivalence between strong and weak coupling constants. A standard ex-
ample is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods 
to perform electric–magnetic dualities in the case of the non-commutative U(1) gauge theory. The first 
method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form 
of an equation of motion after performing the electric–magnetic duality. The second method is to use the 
Seiberg–Witten map to rewrite the non-commutative U(1) gauge theory in terms of abelian field strength. 
The third method is to use the large Neveu Schwarz–Neveu Schwarz (NS–NS) background limit (non-
commutativity parameter only has one degree of freedom) to consider the non-commutative U(1) gauge 
theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane 
in a large Ramond–Ramond (R–R) background via field redefinition. We also use perturbation to study 
the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative 
U(1) gauge theory gives different physical implications. The comparison reflects the differences between 
the non-abelian and non-commutative gauge theories in the electric–magnetic dualities. For a complete 
study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a 
non-commutative theory with the non-abelian structure.
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1. Introduction

The M-theory provides useful dualities to unify different kinds of theories and helps us to 
understand supergravity solutions [1]. In low-energy limit, the ten dimensional supergravity has 
the T-duality and S-duality. The T-duality is a duality on a target space. The T-duality of closed 
string theory [2,3] exchanges the momentum and winding modes, and the T-duality of open 
string theory exchanges the Dirichlet and Neumann boundary conditions. The T-duality requires 
an isometry on a compact torus, but a generic background does not always have an isometry in 
closed string theory. In other words, the T-duality maps single valued fields to non-single val-
ued fields and we lose periodicity of the background. Then we obtain the non-geometric flux 
after performing the T-duality twice in the case of constant H -flux. This mapping gives rise to a 
problem on quantum dynamics. The solution is to use a double space to construct a well-defined 
transition function as a diffeomorphism in closed string theory [4–9]. With a global symmetry 
description, we sacrifice local symmetry in the double space. Local symmetry in the double space 
is still possible, but difficulties come from the closure of the generalized Lie derivative. This dou-
ble construction is also extended to open string theory, and has also been applied to cosmology 
[10–17]. These formulations rely on geometric constructions from the Courant bracket or gen-
eralized geometry [18–20]. This bracket comes from the combination of tangent and cotangent 
bundles. A theory in a double space with the strong constraints (removing additional coordi-
nates) is equivalent to a theory with the Courant bracket. The S-duality is a non-perturbative 
duality by exchanging the strong and weak coupling constants. In four dimensional electro-
magnetism, we have an electric–magnetic duality between electric and magnetic fields. This 
duality is a special case of the S-duality. A problem with the S-duality is that it is hard to be 
performed exactly due to some issues involving strong couplings. At low-energy level, one suc-
cessful example is a low-energy effective theory with a non-commutativity parameter (inversely 
proportional to antisymmetric backgrounds) being a perturbative parameter [21]. The extension 
of duality from ten dimensional supergravity to eleven dimensional supergravity is the U-duality 
combining T-duality and S-duality. The manifest U-duality is studied in [22] using extended 
coordinates.

String theory is described by a two dimensional sigma model. On bulk, the sigma model 
describes gravity. When we impose the Dirichlet and Neumann boundary conditions on the 
sigma model, the boundary term comes from the gauge principle. This boundary term gives 
a picture of open string ending on a D-brane. The ending point of the open string shows the 
non-commutativity. Non-commutative geometry is naturally hidden in string theory. The low-
energy effective theory [21,23–29] of open string is the Dirac–Born–Infeld (DBI) model. In the 
DBI model, we have the Seiberg–Witten map that maps the commutative theory to the non-
commutative theory. In the non-commutative description, the leading order term in the action is 
a non-commutative U(1) gauge theory with the Moyal product. The Moyal product captures all 
the effects of the non-commutativity parameters. We find an alternative way to examine the string 
theory. Now we have many different kinds of non-commutative geometry generalized from the 
DBI model. This generalization helps us to find more interesting field theories and constrain our 
low-energy effective field theories from the non-commutative geometry. The first example is the 
Nambu–Poisson M5 (NP M5) brane theory. This theory describes a M2–M5 system in the large 
C field background (only three spatial components) on the non-commutative space at low-energy 
level [23,24]. Based on dimensional reduction, we find a Dp-brane in the large (p − 1)-form 
background [25,26] and a Dp-brane in the large NS–NS two-form background. Especially for 
p = 3, the S-duality relation to all orders is found in [21]. According to the dualities, we find the 
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S-duality relation and the non-commutative geometry on the R–R background. The second ex-
ample is the non-commutative geometry in closed string theory. The Seiberg–Witten map and the 
Moyal product in the DBI model rely on one-form gauge transformation. A low-energy effective 
theory of the double sigma model shows a combination of two-form antisymmetric background 
field and two-form field strength on boundary and bulk [11–17]. We have the one-form gauge 
transformation on the bulk in the low-energy effective theory without using the strong constraints. 
This shows a non-trivial existence of the Seiberg–Witten map and Moyal product on the bulk. 
The non-commutative geometry in open string theory can easily describe all background effects 
from the Moyal product in the non-commutative descriptions. We should obtain all α′ effects 
from the Moyal product or the non-commutative geometry.

A low-energy effective theory of open string at leading order is the abelian Yang–Mills the-
ory. The abelian Yang–Mills theory in four dimensions at classical level describes the famous 
Maxwell’s equations. This theory has local gauge symmetry, and its equation of motion is gauge 
invariant. An extension of a gauge principle from the abelian gauge group to the non-abelian 
gauge group gives the non-abelian Yang–Mills theory. An ordinary derivative operator in the 
abelian Yang–Mills theory becomes a covariant derivative operator in the non-abelian Yang–
Mills theory. The gauge invariant property of the field strength and equation of motion are 
modified accordingly. The non-abelian Yang–Mills theory has a gauge covariant field strength 
and a corresponding equation of motion. The gauge principle also helps us to find open string. 
Local gauge symmetry has a very long history in aiding the construction of new theories and 
simplifying our analysis. But local gauge symmetry has its own loophole due to redundant de-
scriptions. This situation implies that local gauge symmetry is too restricted. We never observe 
gauge symmetry in our nature. The observed fact is that photon has two polarization states. 
Violating the local gauge symmetry is not equivalent to violating our experimental results. An 
interesting symmetry constraint should contain physical information and should not be too re-
strictive to kill off interactions. Global symmetry is a good candidate. When we gauge fix a 
theory, the gauge fixing term does not break the global symmetry. The global symmetry gives 
more structures and the Noether currents to our theories. The Noether currents are important 
ingredients for the conserved quantities. Double field theory combines diffeomorphism and one-
form gauge transformation to form an O(D, D) global structure in a double space. This is an 
example to define the T-duality in a generic background from global symmetry to avoid isome-
try problem. Electric–magnetic duality for the abelian group in four dimensions only exchanges 
electric and magnetic fields. This is a rotation-like symmetry so electric–magnetic duality should 
be the global symmetry in the abelian gauge theories. Global symmetry is a physical symmetry, 
so a full study of electric–magnetic dualities should be interesting.

We use three methods to study electric–magnetic dualities in the non-commutative U(1)

gauge theory. The first way is to use covariant field strength as the electric and magnetic fields. 
The second method [30–32] is to use the Seiberg–Witten map to change variables in terms of the 
abelian field strength. This result is interesting because the non-commutative U(1) gauge theory 
has a non-abelian-like structure which comes from the Moyal product. This structure should for-
bid us to perform the electric–magnetic duality. The Seiberg–Witten map helps us to rewrite the 
non-commutative U(1) gauge theory in a suitable form to perform the electric–magnetic duality. 
This method sheds light on finding some hidden symmetry structures to understand the electric–
magnetic dualities in the non-abelian gauge theories. The third method is to consider the large 
NS–NS and R–R background limit. In these limits, a D3-brane in the large NS–NS background 
is equivalent to a D3-brane in the large R–R background under the electric–magnetic duality. 
We use field redefinition and perturbation to check the electric–magnetic duality in this method. 
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Although they give different physical interpretations in these methods, they are all interesting 
to find mappings between a strongly and weakly coupled gauge theories. The non-commutative 
U(1) gauge theory is a good toy model to study electric–magnetic dualities. Although this theory 
does not have a non-abelian gauge group, the Moyal product produces a non-abelian-like term. 
The electric–magnetic dualities are very different between the abelian and non-abelian gauge 
theories. Equations of motion do not depend on gauge potentials in abelian gauge theories, but 
equations of motion in non-abelian gauge theories do. A standard electric–magnetic duality is to 
exchange the electric and magnetic fields. If equations of motion depend on gauge potentials, the 
standard electric–magnetic duality should not work. A direct generalization should exchange the 
gauge potentials to find a dual action at quantum level [33,34]. We can also put the gauge and dual 
gauge fields together to find the manifest electric–magnetic duality in an abelian gauge theory 
[17]. This direct generalization is our first method. This method can be performed in the non-
commutative U(1) gauge and non-abelian Yang–Mills theories. The electric and magnetic fields 
in the non-abelian gauge and non-commutative U(1) gauge theories are covariant objects. They 
are not gauge invariant as abelian gauge theories. In abelian gauge theories, electric and magnetic 
fields are physical observables. A magnetic monopole solution in the abelian Yang–Mills theory 
should be detectable if magnetic monopoles exist in our nature. But the magnetic monopole solu-
tion for field strength in the non-abelian Yang–Mills theory is not a detectable observable. In our 
first method, we can find more differences between abelian and non-abelian gauge theories. In 
abelian gauge theories, we have a restriction on dimensionality from the Poincaré lemma. But we 
do not have the Poincaré lemma in non-abelian gauge theories. We lose a restriction on dimen-
sionality. This feature possibly reflects the fact that the electric–magnetic dualities have different 
interpretations in interacting theories. The second and third methods are also suitable in the non-
commutative U(1) gauge theory. A good property of these methods is that we have a restriction 
on dimensionality for the non-commutative U(1) gauge theory. But they cannot be extended to 
the non-abelian gauge theories. The second and third methods imply that the non-abelian-like 
term in the non-commutative U(1) gauge theory is still different from the non-abelian term in 
the non-abelian Yang–Mills theory. We compactify 2-torus in the multiple M5-branes theory, 
then we should obtain two D3-branes with different backgrounds arising from the ordering of 
compactification. There is S-duality or electric–magnetic duality between two theories. More 
suitable and consistent electric–magnetic dualities should help us to probe a consistent multiple 
M5-branes theory. We will point out the difficulty in our studies. For a generic study and com-
pleteness, we also define the electric–magnetic dualities in the simplest p-form gauge theory with 
the abelian and non-abelian gauge groups, and a non-commutative theory with the non-abelian 
structures.

We first review the electric–magnetic duality of the abelian and non-abelian Yang–Mills 
theories in Sec. 2. Then we give three ways to perform the electric–magnetic dualities of the 
non-commutative U(1) gauge theory in Sec. 3. The extension of the electric–magnetic duality 
of the p-form gauge theory with abelian and non-abelian groups, and a non-commutative theory 
with a non-abelian structure are in Sec. 4. Finally, we conclude and discuss in Sec. 5.

2. Review of the electric–magnetic duality in the abelian and non-abelian Yang–Mills 
theories

We review the electric–magnetic dualities for the abelian and non-abelian Yang–Mills the-
ories [33–36] in this section. The electric–magnetic dualities in the abelian and non-abelian 
Yang–Mills theories exchange the gauge and dual gauge fields. The gauge field in the equations 
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of motion is simply replaced by the dual gauge field under electric–magnetic duality. A differ-
ence between the two theories is a restriction on dimensionality from the Poincaré lemma. This 
restriction only exists in the abelian gauge theory. Since the non-abelian structure contains an 
interaction term, the Poincaré lemma is no longer valid to constrain dimensionality. In the non-
abelian Yang–Mills theory, this approach has one advantage that the electric and magnetic fields 
are the covariant field strengths.

2.1. Abelian Yang–Mills theory

The abelian Yang–Mills theory is

SAB = − 1

4g2
YM

∫
d4x FμνF

μν, (1)

where Fμν = ∂μAν − ∂νAμ, and gYM is gauge coupling constant. We denote spacetime indices 
by the Greek letters.

We introduce an antisymmetric auxiliary field, Gμν , this action is written as∫
d4x

(
g2

YMGμνG
μν − GμνFμν

)

=
∫

d4x

(
g2

YMGμνG
μν − Gμν(∂μAν − ∂νAμ)

)
. (2)

Then we integrate out A to obtain∫
DG exp

[
ig2

YM

∫
d4x

(
GμνG

μν

)]
δ

(
∂μGμν

)
. (3)

Because of

∂μGμν = 1

2
εμνρσ ∂μG̃ρσ = 0, (4)

we get

G̃μν = ∂μÃν − ∂νÃμ (5)

from the Poincaré lemma. Solving the delta function, we obtain

−g2
YM

4

∫
d4x G̃μνG̃

μν. (6)

At classical level, we find

∂μFμν = 0 ←→ ∂μG̃μν = 0. (7)

This is the familiar electric–magnetic duality without source. We use the Poincaré lemma 
to obtain the restriction on dimensionality. However, we have another method to perform 
the electric–magnetic duality for the abelian Yang–Mills theory in all dimensions. We start 
from ∫

DG exp

[
ig2

YM

∫
d4x

(
GμνG

μν

)]
δ

(
∂μGμν

)
. (8)
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Then we introduce an auxiliary field Ã to rewrite the partition function as∫
DGDÃ exp

[
ig2

YM

∫
d4x

(
GμνG

μν − 2∂μÃνG
μν

)]

=
∫

DGDÃ exp

[
ig2

YM

∫
d4x

(
GμνG

μν − (
∂μÃν − ∂νÃμ

)
Gμν

)]
. (9)

Hence, we integrate Gμν out to obtain

−g2
YM

4

∫
d4x G̃μνG̃

μν. (10)

Because we do not use the Poincaré lemma to perform the electric–magnetic duality, we can use 
this method to extend the electric–magnetic duality from four to all dimensions. We will also 
apply this method to the non-abelian Yang–Mills gauge theory.

2.2. Non-abelian Yang–Mills theory

The action for the Non-abelian Yang–Mills theory is

SNAB = − 1

4g2
YM

∫
d4x Fa

μνF
μν,a, (11)

where Fa
μν = ∂μAa

ν − ∂νA
a
μ +[Aμ, Aν]a . We define [Aμ, Aν]a ≡ f abcAb

μAc
ν , and denote the Lie 

algebra indices from a to z. By introducing an antisymmetric auxiliary field Ga
μν , this action can 

be written as∫
d4x

(
g2

YMGa
μνG

μν,a − Gμν,aF a
μν

)

=
∫

d4x

[
g2

YMGa
μνG

μν,a − Gμν,a

(
∂μAa

ν − ∂νA
a
μ + f abcAb

μAc
ν

)]

=
∫

d4x

(
g2

YMGa
μνG

μν,a + 2Gμν,a∂νA
a
μ − Ab

μf abcGμν,aAc
ν

)

=
∫

d4x

(
g2

YMGa
μνG

μν,a − 2∂νG
μν,aAa

μ − Ab
μf abcGμν,aAc

ν

)
. (12)

The action is quadratic in A, then we can integrate it out in path integral by using the Gaussian 
integral∫

Dx e
i
2 xT Mx+iJ x ∼

√
1

detM
e− i

2 JT M−1J . (13)

The partition function becomes

Z ∼
∫

DG
(

detM
)− 1

2 exp

[
ig2

YM

∫
d4x

(
Ga

μνG
μν,a + ∂γ Gμγ,a(M−1)ab

μν∂λG
νλ,b

)]
,

where Mμν,bc = g2
YMf abcGμν,a . Let us define Āa

μ ≡ −(M−1)ab
μν∂ρGνρ,b. Therefore, Gμν satis-

fies an equation of motion

∂νG
νμ,b + Mμν,abĀa

ν = ∂νG
νμ,b + g2

YMf cabGμν,cĀa
ν

= ∂νG
νμ,b − g2

YMf abcĀa
νG

νμ,c = 0. (14)
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Now, we consider∫
d4x Gμν,aF a

μν(Ā) =
∫

d4x Gμν,a
(
∂μĀa

ν − ∂νĀ
a
μ + f ′abcĀb

μĀc
ν

)
=

∫
d4x

[
− 2Gμν,a∂νĀ

a
μ + f ′abcGμν,aĀb

μĀc
ν

]

=
∫

d4x

(
2∂νG

μν,aĀa
μ + f ′abcGμν,aĀb

μĀc
ν

)

=
∫

d4x

[
− 2∂νG

μν,a(M−1)ab
μλ∂ρGλρ,b

+ Mμν,bc(M−1)bd
μλ∂ρGλρ,d(M−1)ceνγ ∂ρGγρ,e

]

=
∫

d4x

(
− ∂νG

μν,a(M−1)ab
μλ∂ρGλρ,b

)
,

where f ′abc = g2
YMf abc . Therefore, the partition function becomes

Z ∼
∫

DGDĀ (detM)−
1
2 exp

[
ig2

YM

∫
d4x

(
Ga

μνG
μν,a − Gμν,aF a

μν

(
Ā

))]

× δ

(
2Āa

μ + 2(M−1)ab
μν∂ρGνρ,b

)
, (15)

where the factor 2 in the delta function is introduced for convenience. We can write the delta 
function in exponential form. For the convenience of integration, we can write the delta function 
in the other way as

δ(2Ā + 2M−1∂G) = δ

(
M−1(2MĀ + 2∂G)

)
. (16)

This extracts a factor of detM out of the delta function. Then we get

Z ∼
∫

DGDĀD� (detM)
1
2 exp

[
ig2

YM

∫
d4x

(
Ga

μνG
μν,a − Gμν,aF a

μν(Ā)

+ 2�a
μ(Mμν,abĀb

ν + ∂ρGμρ,a)

)]
. (17)

The last bracket in the exponential can be simplified as

2
∫

d4x

(
�a

μ(Mμν,abĀb
ν + ∂ρGμρ,a)

)
= 2

∫
d4x

(
�a

μMμν,abĀb
ν − ∂ρ�a

μGμρ,a

)

= 2
∫

d4x

(
�a

μg2
YMf cabGμν,cĀb

ν − ∂ρ�a
μGμρ,a

)

= 2
∫

d4x

[
−Gμν,a

(
∂ν�

a
μ − g2

YMf bacĀb
ν�

c
μ

)]

= −2
∫

d4x

(
Gμν,a

(
D(Ā)

ν �μ

)a
)

= 2
∫

d4x

(
Gμν,a

(
D(Ā)

μ �ν

)a
)

. (18)
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Substitution of this term into (17) gives

Z ∼
∫

DG (detM)
1
2

∫
DĀD� exp

[
ig2

YM

∫
d4x

[
Gμν,a

(
Gμν,a − Fa

μν(Ā)

+ 2
(
D(Ā)

μ �ν

)a
)]]

. (19)

Let us change the variable to Ãμ = Āμ − �μ. The field strength can be written as

Fμν(Ā) = ∂μ(Ãa
ν + �a

ν) − ∂ν(Ã
a
μ + �a

μ) + f ′abc(Ãb
μ + �b

μ)(Ãc
ν + �c

ν)

= ∂μÃa
ν − ∂νÃ

a
μ + f ′abcÃb

μÃc
ν

+ ∂μ�a
ν − ∂ν�

a
μ + 2f ′abcÃb

μ�c
ν + f ′abcÃc

ν�
b
μ + f ′abc�b

μ�c
ν

= Fa
μν(Ã) + D(Ā)

μ �a
ν − D(Ā)

ν �a
μ + f ′abc�b

μ�c
ν. (20)

Thus, we obtain

Z ∼
∫

DG (detM)
1
2

×
∫

DÃD� exp

[
ig2

YM

∫
d4x

[
Gμν,a

(
Ga

μν − Fa
μν(Ã) − f ′abc�b

μ�c
ν

)]]

=
∫

DG (detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x Gμν,a

(
Ga

μν − Fa
μν(Ã)

)]

×
∫

D� exp

(
− ig2

YMGμν,af ′abc�b
μ�c

ν

)

=
∫

DG (detM)
1
2

∫
DÃ exp

(
ig2

YM

∫
d4x

[
Gμν,a

(
Ga

μν − Fa
μν(Ã)

)])

×
∫

D� exp

(
− ig2

YM�a
μMμν,ab�b

ν

)

∼
∫

DGDÃ exp

[
ig2

YM

∫
d4x Gμν,a

(
Ga

μν − Fa
μν(Ã)

)]
. (21)

To get the last line, we integrate the field � out and get a factor of (detM)−1/2, which cancels 
(detM)1/2. This result shows the covariance of the partition function by comparing the partition 
functions. We equivalently obtain

D(A)
μ Fμν(A) = 0 ←→ D(Ã)

μ Fμν(Ã) = 0 (22)

at classical level. In the non-abelian Yang–Mills theory, the equation of motion depends on 
the gauge potential. The abelian Yang–Mills theory only relies on the field strength at clas-
sical level. In the abelian Yang–Mills theory, we can use the Poincaré lemma to perform the 
electric–magnetic duality at classical level. But we cannot do in the non-abelian Yang–Mills 
theory because the equation of motion is related to a gauge potential. This shows that the electric–
magnetic duality is more delicate in the non-abelian Yang–Mills theory than in the abelian 
Yang–Mills theory. Although we consider four dimensions in the case of the non-abelian Yang–
Mills theory, we can extend from four dimensions to arbitrary dimensions. Since we do not have 
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the Poincaré lemma at the non-abelian level, there is no constraint on the number of dimen-
sions. In this method, we use covariant field strength to be the electric and magnetic fields. The 
covariant quantities are not physical quantities. This property points out one difference of the 
electric–magnetic duality between the non-abelian and abelian gauge theories.

3. Electric–magnetic dualities in the non-commutative U(1) gauge theory

We use three methods to perform the electric–magnetic dualities for the non-commutative 
U(1) gauge theory. The first approach is to use the covariant field strength to be the electric and 
magnetic fields. Then we will obtain a similar answer like in the non-abelian Yang–Mills theory. 
The non-commutative U(1) gauge theory has a non-abelian-like structure which comes from the 
Moyal product so we should obtain a similar answer for the electric–magnetic duality. The sec-
ond method is to implement the electric–magnetic duality by the Seiberg–Witten map. This map 
transforms a non-commutative theory to a commutative theory. In the third method, we consider 
the large background limit to perform the electric–magnetic duality from field redefinition and 
perturbation. In these three methods, we can observe that the non-commutative U(1) gauge the-
ory is different from the non-abelian Yang–Mills theory because the second and third methods 
cannot be applied to the non-abelian Yang–Mills theory.

3.1. The first method

The action for the non-commutative U(1) gauge theory is

SNC = − 1

4g2
YM

∫
d4x F̂μν ∗ F̂ μν, (23)

where F̂μν = ∂μÂν − ∂νÂμ + [Âμ, Âν]∗ is a non-commutative field strength, Â is the non-
commutative gauge potential, and ∗ is the star product. The star product is defined by

A ∗ B ≡ A exp

(
θμν

2
←−
∂ μ

−→
∂ ν

)
B,

[A,B]∗ ≡ A ∗ B − B ∗ A, (24)

where θμν is a constant non-commutativity parameter. In string theory, the non-commutativity 
parameter is inversely proportional to a B-field background if the B-field background is large.

By introducing an antisymmetric auxiliary field Ĝμν , this action can be rewritten as

S =
∫

d4x
(
g2

YMĜμν ∗ Ĝμν − Ĝμν ∗ F̂μν

)
. (25)

Using a formula∫
d4x f ∗ g =

∫
d4x fg, (26)

the action becomes

S =
∫

d4x
(
g2

YMĜμνĜ
μν − ĜμνF̂μν

)

=
∫

d4x

[
g2

YMĜμνĜ
μν − Ĝμν

(
∂μÂν − ∂νÂμ + [Âμ, Âν]∗

)]
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≈
∫

d4x

[
g2

YMĜμνĜ
μν − Ĝμν

[
∂μÂν − ∂νÂμ + 1

2
θρσ

(
∂ρÂμ∂σ Âν − ∂ρÂν∂σ Âμ

)]]

=
∫

d4x
(
g2

YMĜμνĜ
μν + 2Ĝμν∂νÂμ − θρσ Ĝμν∂ρÂμ∂σ Âν

)

=
∫

d4x
(
g2

YMĜμνĜ
μν − 2∂νĜ

μνÂμ + θρσ Âμ∂ρĜμν∂σ Âν + θρσ ÂμĜμν∂ρ∂σ Âν

)

=
∫

d4x
(
g2

YMĜμνĜ
μν − 2∂νĜ

μνÂμ + θρσ Âμ∂ρĜμν∂σ Âν

)
, (27)

where we just consider the action up to the first order of θ and ignore total derivative terms. We 
used antisymmetric property of Gμν to get the fourth line from the third line. We integrate by 
part from the fourth line to the fifth line. The last term in the fifth line vanishes because of the 
antisymmetric property of θρσ . Now, the action is quadratic in the field A, then we can integrate 
this field out in path integral by using the Gaussian integral (13).

The partition function is given by

Z ∼
∫

DG (detM)−
1
2 exp

[
ig2

YM

∫
d4x

(
ĜμνĜ

μν − ∂γ Ĝμγ
(
M−1)

μν
∂λĜ

νλ

)]
, (28)

where Mμν = g2
YMθρσ ∂ρĜμν∂σ . Let us define Āμ ≡ (M−1)μν∂ρĜνρ , from which this turns out 

that Ĝμν satisfies the equation of motion up to the first order (in the Poisson limit),

∂νĜ
νμ + MμνĀν = 0

⇒ ∂νĜ
νμ + g2

YMθρσ ∂ρĜμν∂σ Āν = 0

⇒ ∂νĜ
νμ + {Āν, Ĝ

νμ} = 0, (29)

where {A, B} ≡ g2
YMθμν∂μA∂νB ≡ θ̃μν∂μA∂νB .

Let us consider this term∫
d4x ĜμνF̂μν(Ā) =

∫
d4x Ĝμν

(
∂μĀν − ∂νĀμ + {Āμ, Āν}

)

=
∫

d4x

(
− 2Ĝμν∂νĀμ + Ĝμνθ̃ρσ ∂ρĀμ∂σ Āν

)

=
∫

d4x

(
2∂νĜ

μνĀμ − Āμθ̃ρσ ∂ρĜμν∂σ Āν

)

=
∫

d4x

(
2∂νĜ

μν
(
M−1)

μλ
∂ρĜλρ

− (
M−1)

μλ
∂ρĜλρ(M)μν

(
M−1)

νσ
∂δĜ

σδ

)

=
∫

d4x ∂νĜ
μν(M−1)μλ∂ρĜλρ,

where we used integration by part from the second to the third line and substituted Āμ =
(M−1)μν∂ρĜνρ into the fourth line. This term is equal to the second term in the partition func-
tion (28). Therefore, the partition function can be rewritten as
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Z ∼
∫

DG (detM)−
1
2

∫
DĀ exp

(
ig2

YM

∫
d4x

(
ĜμνĜ

μν − ĜμνF̂μν(Ā)
))

× δ

(
2Āρ − 2(M−1)ρσ ∂λĜ

σλ

)
, (30)

where the factor of 2 in the delta function is introduced for convenience. We express the delta 
function as

δ(2Ā − 2M−1∂Ĝ) = δ
(
M−1(2MĀ − 2∂Ĝ)

)
. (31)

This extracts a factor detM out of the delta function after integrating. Therefore, we get

Z ∼
∫

DG (detM)
1
2

∫
DĀD� exp

[
ig2

YM

∫
d4x

[
ĜμνĜ

μν − ĜμνF̂μν(Ā)

− �μ

(
2MμνĀν − 2∂ρĜμρ

)]]
. (32)

The last bracket in the exponential can be simplified as∫
d4x 2

[
�μ

(
MμνĀν − ∂ρĜμρ

)]
=

∫
d4x

(
2�μMμνĀν + 2∂ρ�μĜμρ

)

=
∫

d4x

(
2�μθ̃ρσ ∂ρĜμν∂σ Āν + 2∂ρ�μĜμρ

)

=
∫

d4x

(
− 2Ĝμν θ̃ρσ ∂ρ�μ∂σ Āν + 2∂ρ�μĜμρ

)

=
∫

d4x

(
2Ĝμν × {Āν,�μ} + 2(∂ν�μ)Ĝμν

)

=
∫

d4x

(
2ĜμνD(Ā)

ν �μ

)

=
∫

d4x

(
− 2ĜμνD(Ā)

μ �ν

)
, (33)

where we define D(Ā)
μ O ≡ ∂μO + {Āμ, O}. Substitution of this term into the partition function 

gives

Z ∼
∫

DG (detM)1/2

×
∫

DĀD� exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν(Ā) + 2D(Ā)

μ �ν

)]]
. (34)

Let us define a new variable Ãμ ≡ Āμ − �μ. The field strength can be written as

F̂μν(Ā) = ∂μ(Ãν + �ν) − ∂ν(Ãμ + �μ) + {Ãμ + �μ, Ãν + �ν}
= ∂μÃν − ∂νÃμ + {Ãμ, Ãν}

+ ∂μ�ν − ∂ν�μ + {Ãμ,�ν} + {�μ, Ãν} + {�μ,�ν}
= F̂μν(Ã) + D(Ā)

μ �ν − D(Ā)
ν �μ + θ̃ ρσ ∂ρ�μ∂σ �ν. (35)
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Thus, we get

Z ∼
∫

DG (detM)
1
2

×
∫

DÃD� exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν

(
Ã

) − θ̃ ρσ ∂ρ�μ∂σ �ν

)]]

=
∫

DG (detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν

(
Ã

))]]

×
∫

D� exp

[
− i

∫
d4x

(
g2

YMĜμνθ̃ρσ ∂ρ�μ∂σ �ν

)]

=
∫

DG (detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν

(
Ã

))]]

×
∫

D� exp

[
i

∫
d4x

(
g2

YM�μθ̃ρσ ∂ρĜμν∂σ �ν

)]

=
∫

DG(detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν

(
Ã

))]]

×
∫

D� exp

(
ig2

YM

∫
d4x �μMμν�ν

)

∼
∫

DGDÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν

(
Ã

))]]
. (36)

To get the last line, we integrate the field � out and obtain a factor of (detM)−1/2 which cancels 
the factor (detM)1/2 in front of the measure. This calculation shows

DA
μF̂μν(A) = 0 ←→ DÃ

μF̂μν(Ã) = 0 (37)

at classical level. We can also extend the result from four dimensions to all dimensions as in 
the case of the non-abelian Yang–Mills theory because we do not use any information related to 
the Poincaré lemma. The non-commutative U(1) gauge theory has a non-abelian-like structure, 
which comes from the Moyal product so it is not surprising to obtain a similar answer from 
this method. We will show two other methods to perform the electric–magnetic dualities in the 
non-commutative U(1) gauge theory. We will eventually find that these two methods cannot be 
applied to the non-abelian Yang–Mills theory.

3.2. The second method

An equation of motion in the non-commutative U(1) theory depends on a gauge potential. 
This property causes some difficulties to define the electric–magnetic dualities. From a point 
of view of string theory, the non-commutative geometry can be connected to the commutative 
geometry via the Seiberg–Witten map. We can use this Seiberg–Witten map to redefine our the-
ory in terms of abelian field strength on the commutative space. The Seiberg–Witten map is 
defined on a commutative diagram. We first use gauge transformation, then redefine (Seiberg–
Witten map) the theory from the commutative to the non-commutative gauge fields. On the other 
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hand, we change the ordering. We first redefine the theory from the commutative gauge to non-
commutative gauge fields, then we perform the gauge transformation on the non-commutative 
space. These operations should be equivalent because gauge transformation and redefinition do 
not change any physical meaning. Then we can find a condition for the Seiberg–Witten map 
as

Â(A) + δ̂
λ̂
(A) = Â(A + δλA), (38)

where Â is the Seiberg–Witten map, δλ is a gauge transformation on the commutative space and 
δ̂
λ̂

is a gauge transformation on the non-commutative space. Let us define the gauge transforma-
tions

δλAμ ≡ ∂μλ, δ̂
λ̂
Âμ ≡ ∂μλ̂ − [λ̂, Âμ]∗. (39)

Now we calculate Â and λ̂ at leading order. For convenience, we define

Â ≡ A + A′(A), λ̂ ≡ λ + λ′, (40)

where A′ and λ′ are higher-order effects. If we consider first order correction with respect to θ , 
the condition for the Seiberg–Witten map becomes

A′
μ(A + δλA) − A′

μ(A) − ∂μλ′ = −θρσ ∂ρλ∂σ Aμ. (41)

We find a solution

Âμ = Aμ − θρσ

(
Aρ∂σ Aμ − 1

2
Aρ∂μAσ

)
, λ̂ = λ + 1

2
θρσ Aσ ∂ρλ. (42)

From this solution, we get

A′
μ(A + δλA) = −θρσ

[(
Aρ + ∂ρλ

)
∂σ

(
Aμ + ∂μλ

)
− 1

2

(
Aρ + ∂ρλ

)
∂μ

(
Aσ + ∂σ λ

)]
,

A′
μ(A) = −θρσ

(
Aρ∂σ Aμ − 1

2
Aρ∂μAσ

)
,

∂μλ′ = 1

2
θρσ

(
∂μ∂ρλ

)
Aσ + 1

2
θρσ ∂ρλ∂μAσ . (43)

We can check this solution by plugging these terms into the left hand side of (41) and considering 
the first order in λ to obtain

−θρσ ∂ρλ∂σ Aμ. (44)

Now we use this solution to consider F̂ in the Poisson limit as

F̂μν ≈ ∂μÂν − ∂νÂμ + θρσ ∂ρÂμ∂σ Âν

≈ ∂μAν − θρσ

(
∂μAρ∂σ Aν + Aρ∂μ∂σ Aν − 1

2
∂μAρ∂νAσ − 1

2
Aρ∂μ∂νAσ

)

− ∂νAμ + θρσ

(
∂νAρ∂σ Aμ + Aρ∂ν∂σ Aμ − 1

2
∂νAρ∂μAσ − 1

2
Aρ∂ν∂μAσ

)
+ θρσ ∂ρAμ∂σ Aν
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= ∂μAν − ∂νAμ − θρσ

(
Aρ∂σ Fμν + ∂μAρ∂σ Aν − ∂μAρ∂νAσ

− ∂ρAμ∂σ Aν − ∂νAρ∂σ Aμ

)

= Fμν + θρσ

(
FμρFνσ − Aρ∂σ Fμν

)
. (45)

We find one solution from the Poisson limit to infinite orders as

δÂμ = −1

4
δθρσ

[
Âρ ∗

(
2∂σ Âμ − ∂μÂσ

)
+

(
2∂σ Âμ − ∂μÂσ

)
∗ Âρ

]
,

δλ̂ = 1

4
δθρσ

(
∂ρλ̂ ∗ Âσ + Âρ ∗ ∂σ λ̂

)
,

δF̂μν = 1

4
δθρσ

[
2F̂μρ ∗ F̂νσ + 2F̂νσ ∗ F̂μρ − Âρ ∗

(
∂σ F̂μν + D̂σ F̂μν

)

−
(

∂σ F̂μν + D̂σ F̂μν

)
∗ Âρ

]
, (46)

where

D̂λF̂μν ≡ ∂λF̂μν + [Âλ, F̂μν]∗. (47)

Then we use this Seiberg–Witten map to change variables to write the theory in terms of abelian 
field strength as

− 1

4g2
YM

∫
d4x F̂μνF̂

μν

≈ 1

g2
YM

∫
d4x

(
− 1

4
FμνFμν + 1

2
FμνFμρθρσ Fσν + 1

2
FμνAρθρσ ∂σ Fμν

)
. (48)

If we ignore total derivative terms, the final term can be rewritten as

1

2

∫
d4x FμνAρθρσ ∂σ Fμν =

∫
d4x

(
− 1

2
∂σ FμνAρθρσ Fμν − 1

2
Fμν∂σ Aρθρσ Fμν

)

=
∫

d4x

(
− 1

4
FμνFσρθρσ Fμν − 1

2
∂σ FμνAρθρσ Fμν

)

=
∫

d4x

(
1

4
tr(θF )tr(F 2) − 1

2
∂σ FμνAρθρσ Fμν

)
. (49)

Hence, we get∫
d4x FμνAρθρσ ∂σ Fμν = 1

4

∫
d4x tr(θF )tr(F 2). (50)

Therefore, the action is

− 1

4g2
YM

∫
d4x F̂μνF̂

μν ≈ − 1

4g2
YM

∫
d4x

(
FμνFμν + 2tr(θF 3) − 1

2
tr(θF )tr(F 2)

)
.

(51)
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Then we add one additional term to change F to be an unconstrained field as

1

g2
YM

∫
d4x

(
− 1

4
FμνFμν + 1

2
FμνFμρθρσ Fσν − 1

8
FμνFσρθρσ Fμν + 1

2
G̃μνF

μν

)
,

(52)

where G̃μν ≡ 1
2εμνρσ Gρσ . If we integrate G out, we can obtain dF = 0. Then we solve 

dF = 0 to go back to the original action. Varying F gets an equation of motion for F

as

− Fμν + Fμρθρσ Fσν + Fμρθνσ F σρ + FσνF
σρθρμ

− 1

2
Fσρθρσ Fμν − 1

4
Fρσ θμνFρσ + g2

YMG̃μν = 0

→ Fμν = g2
YMG̃μν − Fμρθρσ Fσν − Fμρθνσ F σρ − FσνF

σρθρμ

+ 1

2
Fσρθρσ Fμν + 1

4
Fρσ θμνFρσ . (53)

If we only consider first order with respect to θ , the action is∫
d4x

(
g2

YM

4
G̃μνG̃

μν + g4
YM

2
G̃μνG̃μρθρσ G̃σν − g4

YM

8
G̃μνG̃σρθρσ G̃μν

)
. (54)

The first term can be written as

g2
YM

4

∫
d4x G̃μνG̃

μν = −g2
YM

4

∫
d4x GμνG

μν. (55)

Then we define g2
YMθρσ ≡ − 1

2ερσρ′′σ ′′
θ̃ρ′′σ ′′ to rewrite the second and third terms in the action. 

The second term is

g4
YM

2

∫
d4x G̃μνG̃μρθρσ G̃σν

= −g2
YM

8

∫
d4x G̃μνG̃μρθ̃ρ′′σ ′′Gσ ′ν′

εσρρ′′σ ′′
εσνσ ′ν′

= g2
YM

∫
d4x

(
1

4
G̃μνG̃μν θ̃ρ′′σ ′′Gρ′′σ ′′ + 1

2
G̃μνG̃μρθ̃νσ ′Gσ ′ρ

)

= g2
YM

∫
d4x

(
− 1

4
GμνGμνθ̃ρσ Gρσ − 1

4
GμνGμνθ̃ρσ Gσρ + 1

2
Gμ′ρGμ′ν θ̃

νσ ′
Gσ ′ρ

)

= −g2
YM

2

∫
d4x tr

(
θ̃G3). (56)

The third term can be rewritten as

−g4
YM

8

∫
d4x G̃μνG̃σρθρσ G̃μν = g4

YM

16

∫
d4x GμνGμνεσρσ ′ρ′θρσ Gσ ′ρ′

= −g2
YM

8

∫
d4x GμνGμνθ̃σ ′ρ′Gσ ′ρ′

= −g2
YM

∫
d4x tr

(
G2)tr

(
θ̃G

)
. (57)
8
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Therefore, the action is given by

g2
YM

∫
d4x

(
− 1

4
GμνG

μν − 1

2
tr
(
θ̃G3) − 1

8
tr
(
G2)tr

(
θ̃G

)) ≈ −g2
YM

4

∫
d4x ĜμνĜ

μν

(58)

after we perform the electric–magnetic duality. The result is very simple and interesting. The 
electric–magnetic duality just exchanges θ and θ̃ and invert the gauge coupling constant. Here, 
θ̃ is not the same as in the first method. The reason possibly comes from the use of the Poincaré 
lemma. The lemma gives a standard dual between electric and magnetic fields. In the second 
method, we use the Seiberg–Witten map to rewrite the non-commutative theory in terms of the 
abelian field strength to let us exchange electric and magnetic fields directly. But the first method 
loses some information from the Poincaré lemma, then we map all ordinary field strengths to all 
dual field strengths. This is why we can use the first method to perform the electric–magnetic 
duality in all dimensions, but the second method is only valid in four dimensions.

The use of the Seiberg–Witten map can rewrite the non-commutative U(1) gauge theory in 
terms of the abelian field strength. This is amazing and surprising. An equation of motion in 
the non-commutative U(1) gauge theory depends on the gauge potential. Naively, we should en-
counter some difficulties as in the non-abelian gauge theories. But we can use the Seiberg–Witten 
map to rewrite our theories in terms of the abelian field strength to avoid these problems in the 
non-commutative U(1) gauge theory. This possibly reminds us that we can perform some oper-
ations in the non-abelian gauge theories from some hidden symmetry structures. However, we 
cannot use the Seiberg–Witten map in the non-commutative U(N) gauge theory to perform the 
same electric–magnetic duality. Although the non-commutative U(1) gauge theory has a non-
abelian-like structure, the non-abelian-like structure comes from the derivative operation. This 
non-abelian-like structure is still different from the non-abelian structure. If we can find a way 
to relate the gauge potential via field redefinition in the non-commutative U(1) gauge theory, we 
might apply this method to the non-abelian gauge theories. We will introduce this method in the 
next section.

3.3. The third method

We consider the D3-brane in the large NS–NS two-form background. This theory on the non-
commutative space is described by the non-commutative U(1) gauge theory. A well-known fact 
is that we can perform the S-duality or electric–magnetic duality to get the D3-brane in the large 
R–R two-form background. These two theories in the Poisson limit come from different orderings 
of compactified directions in the Nambu–Poisson M5-brane. Different orderings of compactified 
directions should not change physical meaning. We first perform a field redefinition from the 
NS–NS D3-brane theory to R–R D3-brane theory [21]. Then we perform an electric–magnetic 
duality from the R–R D3-brane theory to the NS–NS D3 brane theory to show their equivalence.

3.3.1. Field redefinition
In this section, we use field redefinition to connect two D3-brane theories [21], which come 

from different orderings of compactified directions in the Nambu–Poisson M5-brane theory. The 
Nambu–Poisson M5-brane theory is a well-defined theory under the large C-field background. 
After we compactify 2-torus, the D3-brane should be well-defined under the large NS–NS two-
form background or large R–R two-form background. From a string point of view, we should use 
the electric–magnetic duality to connect them. In other words, we can have a field redefinition to 
connect them. Due to this large background, we have two kinds of spacetime directions in our the-
ories. Our conventions of world-volume indices are α, β = 0, 1, μ̇, ν̇ = 1̇, ̇2 and A, B = 0, 1, ̇1, ̇2. 
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The dotted indices denote the directions that the NS–NS B-field (or R–R field) background is 
turned on. The large two-form background only opens on two spatial directions. Other compo-
nents of the two-form background are weaker than the large two-form background under the 
decoupling limit [21]. An action of the NS–NS D3-brane in the Poisson limit is

LNS−NS ≡ 1

g2
YM

(
− 1

4
F ′

αβF ′αβ − 1

2
F ′

αμ̇F ′αμ̇ − 1

4
F ′̇

μν̇F ′μ̇ν̇

)
. (59)

We define the non-commutative field strength at the Poisson limit as

F ′
AB ≡ F ′

AB + g′{a′
A,a′

B}, (60)

where F ′
AB ≡ ∂Aa′

B − ∂Ba′
A, g′ ∼ θ ′1̇2̇, a′

A can be identified as two-form gauge potential of 
the Nambu–Poisson M5-brane directly after we perform dimensional reduction, and the Poisson 
bracket is defined by

{f1(x), f2(x)} ≡ εμ̇ν̇∂μ̇f1∂ν̇f2, (61)

where ε1̇2̇ = −ε2̇1̇ = 1. Then we introduce an action of the R–R D3-brane in the Poisson limit as

LRR = g2
YM

(
− 1

2
H2

1̇2̇
+ 1

2
Fαμ̇Fαμ̇ − 1

4
Fμ̇ν̇F

μ̇ν̇ + 1

2g
εαβFαβ

)
, (62)

where

H1̇2̇ ≡ H1̇2̇ + g{b1̇, b2̇}, (63)

Fαμ̇ ≡ (V −1)μ̇
ν̇

(
Fαν̇ + gFν̇σ̇ B̂α

σ̇

)
, (64)

Fαβ ≡ Fαβ + g

(
− Fαμ̇B̂β

μ̇ − Fμ̇βB̂α
μ̇ + gFμ̇ν̇B̂α

μ̇B̂β
ν̇

)
, (65)

H1̇2̇ ≡ ∂μ̇bμ̇, Vμ̇
ν̇ ≡ δμ̇

ν̇ + gεν̇λ̇∂μ̇bλ̇, FAB ≡ ∂AaB − ∂BaA, (66)

and B̂α
μ̇ satisfies

Vμ̇
ν̇

(
∂αbν̇ − V ρ̇

ν̇ B̂
α

ρ̇

)
+ εαβFβμ̇ + gεαβFμ̇ν̇ B̂β

ν̇ = 0. (67)

We will use a flat metric ηAB to raise or lower indices. When we perform dimensional reduction 
in the Nambu–Poisson M5-brane theory to obtain the R–R D3-brane theory, we need to define 
B̂

μ̇
α , which satisfies the non-linear equation (67), to identify aα . If we want to explicitly write 

B̂
μ̇
α in terms of other fields, we need to use perturbative method because it satisfies a non-linear

equation. However, we do not need to use perturbative method to find a field redefinition in the 
Poisson limit. Our field redefinition gives an exact equivalence between the NS–NS D3-brane 
and R–R D3-brane theories.

To see the field redefinition between the NS–NS theory and the R–R theory in the Poisson 
limit, bμ̇ in the R–R theory can be identified with a ′̇

μ in the NS–NS theory according to

g2
YMbμ̇ ≡ εμ̇ν̇a ′̇

ν . (68)

Then we have

F ′ = F ′ + g′{a′ , a′ } = g2 H˙ ˙ , (69)

1̇2̇ 1̇2̇ 1̇ 2̇ YM 12
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where we used g2
YMg′ = g. We can also find

F ′
αμ̇ = −g2

YMεμ̇ν̇

(
∂αbν̇ − Vλ̇

ν̇Bα
λ̇
)

, (70)

where

g2
YMBα

μ̇ ≡ εμ̇ν̇∂ν̇a
′
α. (71)

Let us define

F ′′
αμ̇ ≡ εαβF ′βν̇εν̇μ̇ = εαβ

(
∂βbμ̇ − Bβν̇Vν̇μ̇

)
, (72)

which will be identified with Fαμ̇ in the R–R theory later after duality transformations. After 
some change of variables, the Lagrangian (59) is equivalent to

LNS−NS = − 1

4g2
YM

F ′
αβF ′αβ + g2

YM

2
F ′′

αμ̇F ′′αμ̇ − g2
YM

2
H1̇2̇H1̇2̇. (73)

The next step is to introduce an auxiliary field to dualize Fαβ . Then the dynamics of the 
Lagrangian above is equivalent to the dynamics of the following Lagrangian

L(1)
NS−NS ≡ −g2

YM

2
φ2 + 1

2
εαβF ′

αβφ + g2
YM

2
F ′′

αμ̇F ′′αμ̇ − g2
YM

2
H1̇2̇H1̇2̇. (74)

An equation of motion of φ imposes a constraint

g2
YMφ =F ′

01, (75)

which replaces φ by F ′
01 so we go back to (73).

Then we use field strength

Fμ̇ν̇ ≡ ∂μ̇aν̇ − ∂μ̇aν̇ (76)

to replace φ. We claim that the Lagrangian

L(2)
NS−NS = −g2

YM

2
F 2

1̇2̇
+ 1

2
εαβF ′

αβF1̇2̇ + g2
YM

2
F ′′

αμ̇F ′′αμ̇ − g2
YM

2
H1̇2̇H1̇2̇ (77)

is still equivalent to (73). An equation of motion of aμ̇ implies

∂μ̇

(
F1̇2̇ −F ′

01

)
= 0. (78)

We assume that our fields vanish at infinities of the coordinates xμ̇, then we obtain

F1̇2̇ =F ′
01. (79)

The last step is to carry out a duality transformation to get aα from a′
α . Before that, we expand 

the second term in the Lagrangian (77) as

F ′
01F1̇2̇ = F ′

01F1̇2̇ + g′{a′
0, a

′
1}F1̇2̇

= g2
YM

(
εαβ∂βaμ̇Bα

μ̇ + gεαβF1̇2̇Bα
1̇B 2̇

β + total derivatives

)
. (80)

Then we replace Bα
μ̇ by B̆α

μ̇ in this Lagrangian and add an additional term

g2
YMεαβfβμ̇

(
B̆α

μ̇ − εμ̇ν̇∂ν̇a
′
α

)
(81)
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to perform a duality transformation. The new Lagrangian is equivalent to the previous one (77)
because B̆α

μ̇ equals to Bα
μ̇ (71) when the Lagrange multiplier fβμ̇ is integrated out. If we 

integrate a′
α out, we obtain εμ̇ν̇∂ν̇fβμ̇ = 0. This implies that locally fβμ̇ = −∂μ̇aβ for some 

field aβ . Therefore, (81) becomes

−g2
YMεαβ∂μ̇aβB̆α

μ̇. (82)

Now we integrate B̆α
μ̇ out by the Gaussian integration. This result of the integration is equivalent 

to replacing B̆α
μ̇ by the solution of its equation of motion (67).

After integrating B̆α
μ̇ out, (80) can be rewritten as

g2
YM

2g
εαβFαβ (83)

up to total derivatives. According to (72), we find

F ′′
αμ̇ =Fαμ̇. (84)

Dynamics of the Lagrangian (77) is exactly equivalent to the dynamics of (62). This Lagrangian 
can also be found from the Nambu–Poisson M5-brane theory by dimensional reduction. This 
redefinition should imply the meaning of the S-duality or electric–magnetic duality.

3.3.2. Perturbation
We show an electric–magnetic duality from the R–R D3-brane theory to the NS–NS D3-brane 

theory up to the second order. We first mention how to perform the electric–magnetic duality up 
to the second order in a general Yang–Mills type theory by perturbation. If the action is

g2
YM

∫
d4x

(
− 1

4
FABFAB + gQ1(FAB) + g2Q2(FAB)

)
,

we can consider∫
d4x

(
− g2

YM

4
FABFAB + g2

YMgQ1(FAB) + g2
YMg2Q2(FAB) + 1

2
G̃ABFAB

)
(85)

to do the electric–magnetic duality. We add one additional term to promote FAB to an uncon-
strained field. Integrating G = dB out, we obtain dF = 0. Therefore, we solve dF = 0 to obtain 
F = dA to go back to the original theory. We vary FAB to obtain

−FAB + g
δQ1

δFAB

+ g2 δQ2

δFAB

+ 1

g2
YM

G̃AB = 0

or

FAB = 1

g2
YM

G̃AB + g
δQ1

δFAB
+ g2 δQ2

δFAB
.

Hence, we obtain an action of the form∫
d4x

[
1

4g2
YM

G̃ABG̃AB + g2
YMgQ1

(
1

g2
YM

G̃AB

)
+ g2

YMg2Q2

(
1

g2
YM

G̃AB

)

+ g4
YMg2

4

δQ1

˜
(

1
2

G̃AB

)
δQ1

˜ AB

(
1
2

G̃AB

)]
. (86)
δGAB gYM δG gYM
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We used

Q1(FAB) ≈ Q1

(
1

g2
YM

G̃AB

)
+ g4

YMg

2

δQ1

δG̃AB

(
1

g2
YM

G̃AB

)
δQ1

δG̃AB

(
1

g2
YM

G̃AB

)

in the above action. We write the action in terms of GAB as∫
d4x

(
− 1

4g2
YM

GABGAB + g2
YMgQ1(GAB) + g2

YMg2Q2(GAB)

+ g4
YMg2

4

δQ1

δG̃AB

(GAB)
δQ1

δG̃AB
(GAB)

)
.

We use the above electric–magnetic duality formula to go from the D3-brane in the large R–R 
two form background to the non-commutative U(1) gauge theory or the D3-brane in the large 
NS–NS two-form background at the zeroth and first orders. This method relies on the fact that 
action does not contain gauge potential variables. For this goal, we fix

B 1̇ = b2̇ = 0.

The action at the zeroth order is∫
d4x

(
− 1

4g2
YM

GABGAB

)

after we perform the electric–magnetic duality. We integrate b field out before we perform the 
electric–magnetic-duality. This result of integration is equivalent to setting

H1̇2̇ ≈ −F01.

Then we consider first order correction. The action at the first order is given by

g2
YM

∫
d4x

(
H1̇2̇ε

αβFα1̇∂βb1̇ − 1

2
εαβFμ̇ν̇F

αμ̇F βν̇ + Fαμ̇Fα
1̇∂

μ̇b1̇ − Fαμ̇∂αb1̇F
μ̇1̇

)

up to total derivative terms. We use

b1̇ = ∂ 1̇∂−2
1̇

H1̇2̇

to replace b1̇ by H1̇2̇. Then we perform the electric–magnetic duality on this action at the first 
order as

1

g2
YM

∫
d4x

(
εαβG̃01G̃α1̇∂β∂ 1̇∂−2

1̇
G̃01 − 1

2
εαβG̃μ̇ν̇G̃

αμ̇G̃βν̇

− G̃αμ̇G̃α
1̇∂

μ̇∂ 1̇∂−2
1̇

G̃01 + G̃αμ̇G̃μ̇1̇∂α∂1̇∂1̇
−2G̃01

)
. (87)

For the purpose of rewriting a theory for H1̇2̇, we have non-local operators (inverse derivatives) in 
our theory. But we know that the non-commutative U(1) gauge theory at the Poisson limit should 
be described by local variables. Naively, this implies that we cannot obtain the non-commutative 
U(1) gauge theory from this method. We will show that these non-local operators will be can-
celed.
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The first term of the action at the first order is

1

g2
YM

∫
d4x

(
− εαβεαγ G1̇2̇Gγ 2̇∂β∂ 1̇∂−2

1̇
G1̇2̇

)

= 1

g2
YM

∫
d4x

(
− εαβεαγ ∂1̇B2̇G

γ 2̇∂β∂ 1̇∂−2
1̇

∂1̇B2̇

)

= 1

g2
YM

∫
d4x

(
Gβ2̇∂1̇B2̇∂βB2̇

)
. (88)

The second tern of the action at the first order is

1

g2
YM

∫
d4x

(
− εαβG̃1̇2̇G̃

α1̇G̃β2̇
)

= 1

g2
YM

∫
d4x

(
εβδG01Gβ

2̇Gδ1̇

)

= 1

g2
YM

∫
d4x

(
− 1

2
Gαβ{Bα,Bβ} − εβδG01∂1̇Bδ∂βB2̇

)
. (89)

The third term of the action at the first order is

1

g2
YM

∫
d4x

(
εαμ̇βν̇ε

α1̇γ 2̇Gβν̇Gγ 2̇∂
μ̇∂ 1̇∂−2

1̇
G1̇2̇

)

= 1

g2
YM

∫
d4x

(
εμ̇ν̇εαβεαγ Gβν̇Gγ 2̇∂

μ̇∂ 1̇∂−2
1̇

G1̇2̇
)

= 1

g2
YM

∫
d4x

(
− ∂ 1̇Bγ Gγ 2̇∂

2̇B2̇ − Gγ 2̇Gγ 2̇∂
1̇B 2̇

)
. (90)

The fourth term of the action at the first order is

1

g2
YM

∫
d4x

(
G̃α2̇G̃

2̇1̇∂α∂1̇∂
−2
1̇

G̃01

)
= 1

g2
YM

∫
d4x

(
− G̃α2̇G

01∂αB2̇

)

= 1

g2
YM

∫
d4x

(
εαβG01∂1̇B

β∂αB2̇

)
. (91)

We combine all four terms to obtain

1

g2
YM

(
− Gα2̇{Bα,B2̇} − 1

2
Gαβ{Bα,Bβ}

)
.

This is the same as the D3-brane theory in the large NS–NS two-form background or non-
commutative U(1) gauge theory at the first order.

Now we consider the second order calculation of the electric–magnetic duality. This is a non-
trivial consistent check due to the cancellation of the non-local operators.

We first express an equation of motion of H1̇2̇ up to first order,

H1̇2̇ ≈ −F01 + gA,

where A is a first order correction. Since A contains many non-local operators, we use A to 
denote the full terms instead of writing them explicitly. Now we want to obtain Q1(GAB) and 
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Q2(GAB) from the zeroth and first orders action after we use the equation of motion of H1̇2̇. 
From the action at the zeroth order

g2
YM

∫
d4x

(
− 1

2
H1̇2̇H

1̇2̇ − F01H1̇2̇ − 1

4
Fμ̇ν̇F

μ̇ν̇ − 1

2
Fαμ̇Fαμ̇

)
,

we can obtain a term

1

g2
YM

∫
d4x

(
− 1

2
A2

)
,

where we redefine A by replacing G by G̃/g2
YM in Q2(GAB). Then the action at the first order

g2
YM

∫
d4x

(
εαβH1̇2̇Fα1̇∂βb1̇ − 1

2
εαβFμ̇ν̇F

αμ̇F βν̇ + Fαμ̇Fα
1̇∂

μ̇b1̇ − Fαμ̇∂αb1̇F
μ̇1̇

)
implies

Q1 = 1

g4
YM

(
εαβG̃01G̃α1̇∂β∂ 1̇∂−2

1̇
G̃01 − εαβG̃1̇2̇G̃

α1̇G̃β2̇ − G̃α1̇G̃
α

1̇G̃01

− G̃α2̇G̃
α

1̇∂
2̇∂ 1̇∂−2

1̇
G̃01 − G̃α2̇G̃

1̇2̇∂α∂1̇∂1̇
−2G̃01

)
, (92)

and one term for Q2(GAB) as

1

g2
YM

∫
d4x

(
A2

)
, (93)

where we also redefine A by replacing G by G̃/g2
YM . Now we show that A is canceled in our 

calculations.

δQ1

δG̃1̇2̇

= 1

g4
YM

(
− εαβG̃α1̇G̃β2̇ − G̃α2̇∂

α∂1̇∂
−2
1̇

G̃01

)

= 1

g4
YM

(
εαβGα1̇Gβ2̇ − εαβGα1̇∂βB2̇

)

= 1

g4
YM

(
εαβ∂1̇Bα∂2̇Bβ

)
,

δQ1

δG̃α1̇

= 1

g4
YM

(
εαβG̃01∂β∂ 1̇∂−2

1̇
G̃01 − εαβG̃1̇2̇G̃β2̇ − 2G̃α1̇G̃01 − G̃α2̇∂2̇∂1̇∂

−2
1̇

G̃01

)

= 1

g4
YM

(
εαβG1̇2̇∂βB2̇ − G01G

α1̇ − 2εαβGβ2̇G
1̇2̇ + εαβGβ1̇∂2̇B2̇

)
,

δQ1

δG̃α2̇

= 1

g4
YM

(
εαβG̃1̇2̇G̃β1̇ − G̃α1̇∂ 2̇∂ 1̇∂−2

1̇
G̃01 − G̃1̇2̇∂

α∂1̇∂
−2
1̇

G̃01

)

= 1

g4
YM

(
− G01G

α2̇ − εαβGβ2̇∂2̇B2̇ + G01∂
αB2̇

)

= 1

g4
YM

(
G01∂2̇B

α − εαβGβ2̇∂2̇B2̇

)
,

δQ1

˜ = 1
4

A. (94)

δG01 gYM
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g4
YM

2

δQ1

δG̃1̇2̇

δQ1

δG̃1̇2̇

= − 1

4g4
YM

{Bα,Bβ}{Bα,Bβ},

g4
YM

2

δQ1

δG̃α1̇

δQ1

δG̃α1̇
= 1

2g4
YM

(
− G1̇2̇G1̇2̇∂βB2̇∂

βB2̇ + G01G01G
α1̇Gα1̇

− 4Gβ2̇G
β2̇G1̇2̇G1̇2̇ − Gβ1̇G

β1̇∂2̇B2̇∂2̇B2̇ − 2εαβG1̇2̇G01Gα1̇∂βB2̇

+ 4G1̇2̇G1̇2̇G
α2̇∂αB2̇ − 2G1̇2̇G

α1̇∂αB2̇∂2̇B2̇

+ 4εαβG01Gα1̇Gβ2̇G1̇2̇ + 4Gα2̇G1̇2̇G
α1̇∂2̇B2̇

)
,

g4
YM

2

δQ1

δG̃α2̇

δQ1

δG̃α2̇
= 1

2g4
YM

(
G01G01∂2̇B

α∂2̇Bα − Gα2̇Gα2̇∂2̇B2̇∂2̇B2̇

+ 2εαβG01Gα2̇∂2̇Bβ∂2̇B2̇

)
,

g4
YM

2

δQ1

δG̃01

δQ1

δG̃01
= − 1

2g4
YM

A2. (95)

g2
YM

(
1

2g4
YM

A2 + g4
YM

4

δQ1

δG̃AB

δQ1

δG̃AB

)

= − 1

4g2
YM

{Bα,Bβ}{Bα,Bβ}

+ 1

2g2
YM

(
− G1̇2̇G1̇2̇∂βB2̇∂

βB2̇ + G01G01G
α1̇Gα1̇ − 4Gβ2̇G

β2̇G1̇2̇G1̇2̇

− Gβ1̇G
β1̇∂2̇B2̇∂2̇B2̇ − 2εαβG1̇2̇G01Gα1̇∂βB2̇ + 4G1̇2̇G1̇2̇G

α2̇∂αB2̇

− 2G1̇2̇G
α1̇∂αB2̇∂2̇B2̇ + 4εαβG01Gα1̇Gβ2̇G1̇2̇ + 4Gα2̇G1̇2̇G

α1̇∂2̇B2̇

+ G01G01∂2̇B
α∂2̇Bα − Gα2̇Gα2̇∂2̇B2̇∂2̇B2̇ + 2εαβG01Gα2̇∂2̇Bβ∂2̇B2̇

)
. (96)

After using the equation of motion for H1̇2̇, we have non-local operators (A). Nevertheless, 
A vanishes in the final result.

Let us start to calculate the action at the second order.

Vμ̇
ν̇ = δμ̇

ν̇ + g∂μ̇bν̇ , (Vμ̇
ν̇)−1Vν̇

ρ̇ = δμ̇
ρ̇ ,

(Vμ̇
ρ̇)−1 ≈ δμ̇

ρ̇ − g∂μ̇bρ̇ + g2∂μ̇bν̇∂ν̇b
ρ̇ . (97)

Mμ̇ν̇
αβ = Vμ̇ρ̇Vν̇

ρ̇δαβ − gεαβFμ̇ν̇

= δμ̇ν̇δ
αβ + g

(
(∂μ̇bν̇ + ∂ν̇bμ̇)δαβ − εαβFμ̇ν̇

)
+ g2∂μ̇bρ̇∂ν̇b

ρ̇δαβ,

(Mλ̇μ̇
γ α)−1Mμ̇ν̇

αβ = δλ̇
ν̇δγ

β,

(Mλ̇μ̇
γ α)−1 = δλ̇μ̇δγ α − g

[(
∂λ̇bμ̇ + ∂μ̇bλ̇

)
δγα − εγαF λ̇μ̇

]
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+g2

[(
∂λ̇bρ̇∂ρ̇bμ̇ + ∂ρ̇bλ̇∂ρ̇bμ̇ + ∂ρ̇bλ̇∂μ̇bρ̇ + Fρ̇

μ̇F λ̇ρ̇

)
δγα

−
[(

∂λ̇bρ̇ + ∂ρ̇bλ̇)Fρ̇
μ̇ + (∂ρ̇bμ̇ + ∂μ̇bρ̇

)
F λ̇ρ̇

]
εγα

]
. (98)

B̂α
μ̇ = (Mαβ

μ̇ν̇)−1
(

Vν̇
σ̇ ∂βbσ̇ + εβγ Fγ ν̇

)
,

Vν̇
σ̇ ∂βbσ̇ + εβγ Fγ ν̇ = ∂βbν̇ + εβγ Fγ ν̇ + g∂ν̇b

σ̇ ∂βbσ̇ ,

B̂α
μ̇ ≈ ∂αbμ̇ + εαβFβμ̇

+ g

(
− ∂ν̇bμ̇∂αbν̇ − εαβ∂μ̇bν̇F

βν̇ − εαβ∂ν̇b
μ̇F βν̇

+ εαβF μ̇ν̇∂βbν̇ + F μ̇ν̇Fαν̇

)

+ g2
(

∂ρ̇bμ̇∂ν̇bρ̇∂αbν̇ + εαβFβν̇∂μ̇bρ̇∂ρ̇bν̇ + εαβFβν̇∂ρ̇bμ̇∂ρ̇bν̇

+ εαβFβν̇∂ρ̇bμ̇∂ν̇bρ̇ − εαβFρ̇ν̇∂
μ̇bρ̇∂βbν̇ − εαβFρ̇ν̇∂

ρ̇bμ̇∂βbν̇

− εαβF μ̇ρ̇∂ν̇bρ̇∂βbν̇ − Fαν̇F
ρ̇ν̇∂μ̇bρ̇ − Fαν̇F

ρ̇ν̇∂ρ̇bμ̇

− Fαν̇F
μ̇ρ̇∂ρ̇bν̇ − Fαν̇F

μ̇ρ̇∂ν̇bρ̇ + Fρ̇ν̇F
μ̇ρ̇∂αbν̇

+ εαβFβν̇Fρ̇ν̇F
μ̇ρ̇

)
. (99)

Fαμ̇ = (Vμ̇
ν̇)−1

(
Fαν̇ + gFν̇δ̇B̂α

δ̇

)
,

Fαν̇ + gFν̇δ̇B̂α
δ̇ = Fαν̇ + g

(
Fν̇δ̇∂αbδ̇ + εαβFν̇δ̇F

βδ̇

)

+ g2
(

− Fν̇δ̇∂
ρ̇bδ̇∂αbρ̇ − εαβFν̇δ̇∂

δ̇bρ̇F βρ̇ − εαβFν̇δ̇∂ρ̇bδ̇F βρ̇

+ εαβFν̇δ̇F
δ̇ρ̇∂βbρ̇ + Fν̇δ̇F

δ̇ρ̇Fαρ̇

)
,

Fαμ̇ ≈ Fαμ̇ + g

(
Fμ̇δ̇∂αbδ̇ + εαβFμ̇δ̇F

βδ̇ − Fαν̇∂μ̇bν̇

)

+ g2
(

− Fμ̇δ̇∂
ρ̇bδ̇∂αbρ̇ − εαβFμ̇δ̇∂

δ̇bρ̇F βρ̇ − εαβFμ̇δ̇∂ρ̇bδ̇F βρ̇

+ εαβFμ̇δ̇F
δ̇ρ̇∂βbρ̇ + Fμ̇δ̇F

δ̇ρ̇Fαρ̇ − Fν̇δ̇∂αbδ̇∂μ̇bν̇

− εαβFν̇δ̇F
βδ̇∂μ̇bν̇ + ∂μ̇bρ̇∂ρ̇bν̇Fαν̇

)
. (100)

We calculate g2
YM

∫
d4x

(
1
2Fαμ̇Fαμ̇

)
at the second order.
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g2
YM

∫
d4x

(
1

2
Fαμ̇Fαμ̇

)

→ g2
YM

∫
d4x

(
− Fα2̇F

2̇1̇H1̇2̇

(
∂α∂1̇∂

−2
1̇

H1̇2̇

) − 3εαβFα2̇F
2̇1̇Fβ1̇H1̇2̇

+ 2εαβFα1̇F
1̇2̇F2̇1̇

(
∂β∂1̇∂

−2
1̇

H1̇2̇

) + 3

2
Fαμ̇F μ̇δ̇Fδ̇ρ̇F αρ̇ − εαβFα1̇F

1̇2̇Fβ2̇H1̇2̇

+ 3

2
Fα1̇F

α1̇H1̇2̇H1̇2̇ + Fα2̇F
α1̇(∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)
H1̇2̇

+ 1

2
F2̇1̇F

2̇1̇(∂α∂1̇∂
−2
1̇

H1̇2̇

)(
∂α∂1̇∂

−2
1̇

H1̇2̇

)
+ 1

2
Fα1̇F

α1̇(∂2̇∂1̇∂
−2
1̇

H1̇2̇

)(
∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)
− F2̇1̇F

α1̇(∂α∂1̇∂
−2
1̇

H1̇2̇

)(
∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

))
.

Then we calculate Fαβ at the third order because we have one term 1
2g

εαβFαβ in our Lagrangian.

Fαβ = Fαβ + g

(
− Fαμ̇B̂β

μ̇ − Fμ̇βB̂α
μ̇

)
+ g2Fμ̇ν̇B̂α

μ̇B̂β
ν̇ . (101)

We first calculate −Fμ̇βB̂α
μ̇ at the second order.

−Fμ̇βB̂α
μ̇

→ −F1̇β∂ 1̇b1̇∂ 1̇b1̇∂αb1̇ − εαγ Fμ̇βF γ 1̇∂μ̇b1̇∂1̇b1̇ − εαγ F1̇βF γ 1̇∂ρ̇b1̇∂ρ̇b1̇

− εαγ F1̇βF γ ν̇∂ 1̇b1̇∂ν̇b1̇ + εαγ F1̇βF2̇1̇∂
2̇b1̇∂γ b1̇ + εαγ F2̇βF 2̇1̇∂ 1̇b1̇∂

γ b1̇

+ F1̇βFα2̇F
1̇2̇∂ 1̇b1̇ + F1̇βFαν̇F

ρ̇ν̇∂ρ̇b1̇ + Fμ̇βFα1̇F
μ̇ρ̇∂ρ̇b1̇ + F2̇βFαν̇F

2̇1̇∂ν̇b1̇

− F1̇βF2̇1̇F
1̇2̇∂αb1̇ − εαγ Fμ̇βF γ ν̇Fρ̇ν̇F

μ̇ρ̇ . (102)

Then we calculate Fμ̇ν̇B̂α
μ̇B̂β

ν̇ at the first order.

Fμ̇ν̇B̂α
μ̇B̂β

ν̇

→
(

− εβρF1̇2̇∂αb1̇∂ 2̇b1̇F
ρ1̇ + εβρF1̇2̇∂αb1̇F 2̇1̇∂ρb1̇ + F1̇2̇∂αb1̇F 2̇1̇Fβ1̇

− εαγ F2̇1̇F
γ 2̇∂ 1̇b1̇∂βb1̇ − Fμ̇ν̇Fβ

μ̇∂ν̇b1̇Fα1̇ − F2̇1̇Fβ
2̇∂ρ̇b1̇Fα

ρ̇

+ F1̇2̇Fβ
1̇F 2̇1̇∂αb1̇ + εαγ Fμ̇ν̇F

γ μ̇F ν̇ρ̇Fβρ̇ + εαρF1̇2̇∂βb1̇∂ 2̇b1̇F
ρ1̇

− εαρF1̇2̇∂βb1̇F 2̇1̇∂ρb1̇ − F1̇2̇∂βb1̇F 2̇1̇Fα1̇ + εβγ F2̇1̇F
γ 2̇∂ 1̇b1̇∂αb1̇

+ Fμ̇ν̇Fα
μ̇∂ν̇b1̇Fβ1̇ + F2̇1̇Fα

2̇∂ρ̇b1̇Fβ
ρ̇

− F1̇2̇Fα
1̇F 2̇1̇∂βb1̇ − εβγ Fμ̇ν̇F

γ μ̇F ν̇ρ̇Fαρ̇

)
. (103)

Hence, we obtain g2
YM

∫
d4x

(
1

2g
εαβFαβ

)
at the second order.
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g2
YM

∫
d4x

(
1

2g
εαβFαβ

)

→ g2
YM

∫
d4x

(
− εαβF1̇βH1̇2̇H1̇2̇

(
∂α∂1̇∂

−2
1̇

H1̇2̇

) + 3F1̇βFβ1̇H1̇2̇H1̇2̇

+ 2F2̇βFβ1̇(∂ 2̇∂1̇∂
−2
1̇

H1̇2̇

)
H1̇2̇ + F1̇βFβ1̇(∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)(
∂2̇∂1̇∂

−2
1̇

H1̇2̇

)
− 2F1̇βF2̇1̇

(
∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)(
∂β∂1̇∂

−2
1̇

H1̇2̇

) − 2F2̇βF 2̇1̇H1̇2̇

(
∂β∂1̇∂

−2
1̇

H1̇2̇

)
+ 6εαβF1̇βFα2̇F

1̇2̇H1̇2̇ + F1̇2̇

(
∂α∂1̇∂

−2
1̇

H1̇2̇

)
F 2̇1̇(∂α∂1̇∂

−2
1̇

H1̇2̇

)
+ 3εαβF1̇2̇

(
∂α∂1̇∂

−2
1̇

H1̇2̇

)
F 2̇1̇Fβ1̇ − 2Fμ̇ν̇F

βμ̇F ν̇ρ̇Fβρ̇

)
. (104)

Let us show the term g2
YM

∫
d4x

(
1
2Fαμ̇Fαμ̇ + 1

2g
εαβFαβ

)
.

g2
YM

∫
d4x

(
1

2
Fαμ̇Fαμ̇ + 1

2g
εαβFαβ

)

→ g2
YM

∫
d4x

(
Fα2̇F

2̇1̇H1̇2̇

(
∂α∂1̇∂

−2
1̇

H1̇2̇

) + 3εαβFα2̇F
2̇1̇Fβ1̇H1̇2̇

− εαβFα1̇F
1̇2̇F2̇1̇

(
∂β∂1̇∂

−2
1̇

H1̇2̇

) − 1

2
Fαμ̇F μ̇δ̇Fδ̇ρ̇F αρ̇

− εαβFα1̇F
1̇2̇Fβ2̇H1̇2̇ − 3

2
Fα1̇F

α1̇H1̇2̇H1̇2̇ − Fα2̇F
α1̇(∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)
H1̇2̇

− 1

2
F2̇1̇F

2̇1̇(∂α∂1̇∂
−2
1̇

H1̇2̇

)(
∂α∂1̇∂

−2
1̇

H1̇2̇

)
− 1

2
Fα1̇F

α1̇(∂2̇∂1̇∂
−2
1̇

H1̇2̇

)(
∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)
+ F2̇1̇F

α1̇(∂α∂1̇∂
−2
1̇

H1̇2̇

)(
∂ 2̇∂1̇∂

−2
1̇

H1̇2̇

)
− εαβF1̇βH1̇2̇H1̇2̇

(
∂α∂1̇∂

−2
1̇

H1̇2̇

))
. (105)

Then we use the equation of motion H1̇2̇ ≈ −F01 to express our action in terms of F .

g2
YM

∫
d4x

(
Fα2̇F

2̇1̇F01
(
∂α∂1̇∂

−2
1̇

F01
) − 3εαβFα2̇F

2̇1̇Fβ1̇F01

+ εαβFα1̇F
1̇2̇F2̇1̇

(
∂β∂1̇∂

−2
1̇

F01
) − 1

2
Fαμ̇F μ̇δ̇Fδ̇ρ̇F αρ̇ + εαβFα1̇F

1̇2̇Fβ2̇F01

− 3

2
Fα1̇F

α1̇F01F01 − Fα2̇F
α1̇(∂ 2̇∂1̇∂

−2
1̇

F01
)
F01

− 1

2
F2̇1̇F

2̇1̇(∂α∂1̇∂
−2
1̇

F01
)(

∂α∂1̇∂
−2
1̇

F01
) − 1

2
Fα1̇F

α1̇(∂2̇∂1̇∂
−2
1̇

F01
)(

∂ 2̇∂1̇∂
−2
1̇

F01
)

+ F2̇1̇F
α1̇(∂α∂1̇∂

−2
1̇

F01
)(

∂ 2̇∂1̇∂
−2
1̇

F01
) + εαβF1̇βF01F01

(
∂α∂1̇∂

−2
1̇

F01
))

. (106)

Now we replace F in terms of G̃.
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1

g2
YM

∫
d4x

(
G̃α2̇G̃

2̇1̇G̃01
(
∂α∂1̇∂

−2
1̇

G̃01
) − 3εαβG̃α2̇G̃

2̇1̇G̃β1̇G̃01

+ εαβG̃α1̇G̃
1̇2̇G̃2̇1̇

(
∂β∂1̇∂

−2
1̇

G̃01
) − 1

2
G̃αμ̇G̃μ̇δ̇G̃δ̇ρ̇ G̃αρ̇ + εαβG̃α1̇G̃

1̇2̇G̃β2̇G̃01

− 3

2
G̃α1̇G̃

α1̇G̃01G̃01 − G̃α2̇G̃
α1̇(∂ 2̇∂1̇∂

−2
1̇

G̃01
)
G̃01

− 1

2
G̃2̇1̇G̃

2̇1̇(∂α∂1̇∂
−2
1̇

G̃01
)(

∂α∂1̇∂
−2
1̇

G̃01
) − 1

2
G̃α1̇G̃

α1̇(∂2̇∂1̇∂
−2
1̇

G̃01
)(

∂ 2̇∂1̇∂
−2
1̇

G̃01
)

+ G̃2̇1̇G̃
α1̇(∂α∂1̇∂

−2
1̇

G̃01
)(

∂ 2̇∂1̇∂
−2
1̇

G̃01
) + εαβG̃1̇βG̃01G̃01

(
∂α∂1̇∂

−2
1̇

G̃01
))

= 1

g2
YM

∫
d4x

(
− εαβGβ1̇G01G1̇2̇∂

αB2̇ − 3εαβGα1̇G01G
β2̇G1̇2̇ + Gβ2̇G01G01∂βB2̇

− 1

2
G01G01∂1̇B

α∂1̇Bα − 1

2
G01G01G

α2̇Gα2̇ − εαβGα2̇G01G
β1̇G1̇2̇

+ 3

2
Gα2̇G

α2̇G1̇2̇G1̇2̇ − Gα2̇G
α1̇∂ 2̇B2̇G1̇2̇ − 1

2
G01G01∂αB2̇∂

αB2̇

+ 1

2
Gα2̇G

α2̇∂2̇B2̇∂2̇B2̇ + εαβG01Gβ2̇∂αB2̇∂
2̇B2̇ − Gα2̇G1̇2̇G1̇2̇∂αB2̇

)
.

Then we combine other terms.

1

g2
YM

∫
d4x

[
− εαβGβ1̇G01G1̇2̇∂

αB2̇ − 3εαβGα1̇G01G
β2̇G1̇2̇ + Gα2̇G01G01∂αB2̇

− 1

2
G01G01∂1̇B

α∂1̇Bα − 1

2
G01G01G

α2̇Gα2̇ − εαβGα2̇G01G
β1̇G1̇2̇

+ 3

2
Gα2̇G

α2̇G1̇2̇G1̇2̇ − Gα2̇G
α1̇∂ 2̇B2̇G1̇2̇ − 1

2
G01G01∂αB2̇∂

αB2̇

+ 1

2
Gα2̇G

α2̇∂2̇B2̇∂2̇B2̇ + εαβG01Gβ2̇∂αB2̇∂
2̇B2̇ − Gα2̇G1̇2̇G1̇2̇∂αB2̇

− 1

4
{Bα,Bβ}{Bα,Bβ} + 1

2

(
− G1̇2̇G1̇2̇∂βB2̇∂

βB2̇ + G01G01G
α1̇Gα1̇

− 4Gβ2̇G
β2̇G1̇2̇G1̇2̇ − Gβ1̇G

β1̇∂2̇B2̇∂2̇B2̇ − 2εαβG1̇2̇G01Gα1̇∂βB2̇

+ 4G1̇2̇G1̇2̇G
α2̇∂αB2̇ − 2G1̇2̇G

α1̇∂αB2̇∂2̇B2̇ + 4εαβG01Gα1̇Gβ2̇G1̇2̇

+ 4Gα2̇G1̇2̇G
α1̇∂2̇B2̇G01G01∂2̇B

α∂2̇Bα − Gα2̇Gα2̇∂2̇B2̇∂2̇B2̇

+ 2εαβG01Gα2̇∂2̇Bβ∂2̇B2̇

)]

= 1

g2
YM

∫
d4x

(
− 1

4
{Bα,Bβ}{Bα,Bβ} − 1

2
{Bα,B 2̇}{Bα,B2̇}

)
.

To sum up, we obtain an expected answer at the second order. The calculations of the electric–
magnetic duality at the second order use the equation of motion to replace H by F . This is not 
equivalent to integrating out exactly. At the zeroth and first orders, we can perform the electric–
magnetic duality exactly. At the second order, the electric–magnetic duality is a consistent check 
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at classical level. Even for the classical consistent check, this is a non-trivial check for the equiv-
alence between the R–R D3 and NS–NS D3 brane theories. The most difficult part is that the 
expansion for the R–R D3-brane theory up to the second order in this method. We eventually 
obtain the beautiful answer from the magical cancellation. The reason possibly comes from the 
covariant field strengths in the R–R D3-brane theory. Physical answer should only depend on 
on-shell degrees of freedom. It is why we have such a magical cancellation. This calculation is 
also interesting in the study of the non-local effects. If we do not employ any gauge fixing, we 
should find inverse derivative terms in our theory after performing the electric–magnetic duality. 
However, we find a consistent answer without the inverse derivative terms after gauge fixing. 
This implies that the non-local terms are not real physical non-local effects. These non-local 
effects just originated from gauge redundancy. We use gauge fixing to remove these inverse 
derivative terms. This result might have more physical implications in the gauge theory. The 
electric–magnetic duality is an equivalence between gauge coupling and inverse gauge coupling 
constants. This means that electric–magnetic duality is a non-perturbative duality. Our successful 
step is that we use g to carry out the expansion. Small g limit is equivalent to a large background 
limit. This expansion should avoid strong coupling problems. Although the non-commutative 
U(1) gauge theory has a non-abelian-like structure, the non-commutative U(1) gauge theory is 
still different from the non-abelian Yang–Mills theory. However, we can use the first method 
to perform the electric–magnetic duality on the non-abelian Yang–Mills and non-commutative 
U(1) gauge theories. This shows that the first method should be a general way to perform the 
electric–magnetic duality. We will give more generic examples to perform the electric–magnetic 
duality by using the first method. The most interesting problem is to study the non-abelian gauge 
group in the third method. The motivation is a consistent construction of the multiple M5-branes 
theory. However, we encounter difficulties to apply this method to the non-abelian gauge group. 
When we perform the field redefinition in the non-commutative U(1) gauge theory, we will dual 
a scalar field to a new field strength. We cannot use the same method in the non-abelian gauge 
group. This technical problem is similar with the Poincaré lemma in the non-abelian gauge the-
ories. In our perturbation study, this method also encounters a similar problem. We believe that 
a consistent multiple M5-branes theory should have a totally different construction compared 
with the single M5-brane theory. The reason is due to the fact that the electric–magnetic dual-
ity in the non-abelian gauge group is different from the electric–magnetic duality in the abelian 
gauge group. The multiple M5-branes theory should have a consistent electric–magnetic dual-
ity in four dimensions after performing compactification on 2-torus. Thus, we believe that the 
multiple M5-branes theory possibly cannot be extended from the single M5-brane theory di-
rectly.

In the second method, we use the Seiberg–Witten map to rewrite the non-commutative U(1)

gauge theory from the commutative variables. Therefore, we obtain a similar form after we per-
form the electric–magnetic duality. In the third method, we always perform the electric–magnetic 
duality on the non-commutative space without using any commutative variables. Because they 
can be connected from the electric–magnetic duality or field redefinition, they should be equiv-
alent theories after we perform the second and or third types electric–magnetic duality in the 
large background limit. Because the R–R D3-brane has a complicated action with the non-local 
inverse derivative operator. We should expect that we can use the perturbation method with re-
spect to the non-commutativity parameter to find a non-local field redefinition to rewrite the R–R 
D3-brane with a compact form rewritten from the Poisson bracket. However, the non-local field 
redefinition is very hard to find systematically. When we use the perturbation to perform the 
electric–magnetic duality from the R–R D3-brane to the NS–NS D3-brane, we also use some 
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techniques to remove non-local operators. If we consider the electric–magnetic duality from the 
NS–NS D3-brane to the R–R D3-brane, then the non-local operators will appear in our com-
putation to bother us. Even if we know that it should work, the non-local operators have very 
difficult technique problems. In principle, we should determine their relations from perturbation 
methods at least up to the first order with respect to the non-commutativity parameter in the large 
background limit. We leave this interesting direction to the future.

When we discuss the third method, we identify the NS–NS field with the R–R field. It is an 
interesting point because the second method needs to rewrite our theory in terms of the abelian 
field strength. Hence, the second method must be failed when you consider the non-abelian 
gauge theories. However, we find that the field redefinition and perturbation in the third method 
still cannot be extended to the non-abelian gauge theories for some steps because we need to dual 
a scalar field to a new field strength.

4. Electric–magnetic duality in p-form gauge theories and a non-commutative theory 
with the non-abelian structure

In this section, we extend the first method of the electric–magnetic duality that we used in 
the non-commutative U(1) gauge theory to the p-form theories and a non-commutative theory 
with the non-abelian structure. These studies should give a general extension to various types of 
simple theories.

4.1. Abelian p-form theory

The simplest abelian p-form theory is

SABp = − 1

2g2
YM (p + 1) !

∫
d2p+2x Fμ1μ2···μp+1F

μ1μ2···μp+1, (107)

where F = dA. We introduce an antisymmetric auxiliary field Gμ1μ2···μp+1 . The action can be 
rewritten as

2

(p + 1) !
∫

d2p+2x
(
g2

YMGμ1μ2···μp+1G
μ1μ2···μp+1 − Gμ1μ2···μp+1Fμ1μ2···μp+1

)
. (108)

Then we integrate A out to obtain

2

(p + 1) !
∫

DG exp

[
ig2

YM

∫
d2p+2x

(
Gμ1μ2···μp+1G

μ1μ2···μp+1

)]
δ

(
∂ν1G

ν1ν2···νp+1

)
.

(109)

Solving the delta function is equivalent to finding

dG̃ = 0. (110)

According to the Poincaré lemma, we get

G̃ = dÃ. (111)

Hence, we find

− g2
YM

∫
d2p+2x G̃μ1μ2···μp+1G̃

μ1μ2···μp+1 . (112)

2 (p + 1) !
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Then we obtain

∂μ1F
μ1μ2···μp+1 = 0 ←→ ∂μ1G̃

μ1μ2···μp+1 = 0 (113)

at classical level. Therefore, we generalize the electric–magnetic duality from one-form to 
p-form gauge potential in the abelian group. We can extend the electric–magnetic duality of 
the abelian p-form to all dimensions. Starting from

2

(p + 1) !
∫

DG exp

[
ig2

YM

∫
d2p+2x

(
Gμ1μ2···μp+1G

μ1μ2···μp+1

)]
δ

(
∂ν1G

ν1ν2···νp+1

)
.

(114)

Introducing an auxiliary field Ã to rewrite the partition function as∫
DGDÃ exp

[
i

2g2
YM

(p + 1) !
∫

d2p+2x

(
Gμ1μ2···μp+1G

μ1μ2···μp+1

+ (p + 1)Ãμ2μ3···μp+1∂μ1G
μ1μ2···μp+1

)]
, (115)

where Ã is zero-form when p = 0. The last step is integrating G out to get

− g2
YM

2 (p + 1) !
∫

d2p+2x G̃a
μ1μ2···μp+1

G̃μ1μ2···μp+1,a. (116)

Because we do not use the Poincaré lemma to solve the delta function, we can extend the electric–
magnetic duality to all dimensions for the abelian p-form theory in this method. This method can 
also be applied to the non-abelian p-form theory.

4.2. Non-abelian p-form theory

The non-abelian p-form theory is

SNABp = − 1

2g2
YM (p + 1) !

∫
d2p+2x Fa

μ1μ2···μp+1
Fμ1μ2···μp+1,a, (117)

where F = DB , D ≡ d + A, where A is one-form gauge potential and B is p-form gauge po-
tential (If p = 1, B = A). We introduce an antisymmetric auxiliary field, Gμ1μ2···μp+1 to rewrite 
the action as

2

(p + 1) !
∫

d2p+2x
(
g2

YMGa
μ1μ2···μp+1

Gμ1μ2···μp+1,a − Gμ1μ2···μp+1,aF a
μ1μ2···μp+1

)
.

(118)

We integrate A out to get∫
DG exp

[
ig2

YM

2

(p + 1) !
∫

d2p+2x

(
Ga

μ1μ2···μp+1
Gμ1μ2···μp+1,a

)]
δ

(
Dν1G

ν1ν2···νp+1

)
(119)

for p 
= 1. Now we add one auxiliary field Ã to rewrite the Lagrangian as∫
DGDÃ exp

[
i

2g2
YM

(p + 1) !
∫

d2p+2x

(
Ga

μ1μ2···μp+1
Gμ1μ2···μp+1,a

+ (p + 1)Ãa
μ2μ3···μp+1

Dμ1G
μ1μ2···μp+1,a

)]
. (120)
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Then we integrate G out to obtain the dual Lagrangian

− g2
YM

2 (p + 1) !
∫

d2p+2x G̃a
μ1μ2···μp+1

G̃μ1μ2···μp+1,a, (121)

where G̃ ≡ DÃ. We obtain

Dμ1F
μ1μ2···μp+1,a = 0 ←→ Dμ1G̃

μ1μ2···μp+1,a = 0 (122)

at classical level after we have performed the electric–magnetic duality. One can find that the 
electric–magnetic duality of the non-abelian one-form theory is more special than non-abelian 
higher-form theory. In the non-abelian one-form theory, the covariant derivative is also changed 
by the electric–magnetic duality, but the covariant derivative of the non-abelian higher-form the-
ory does not. For a covariant property of the non-abelian higher form theory, we need to introduce 
an one-form gauge potential. This gauge potential is not affected by the electric–magnetic du-
ality. But if one integrates this non-dynamical gauge potential out, this gauge potential should 
be related to the dynamical gauge potential. The dynamical potential should be affected by the 
electric–magnetic duality. We can explain that the electric–magnetic duality only duals the dy-
namical degrees of freedom in this method. Because we do not use the Poincaré lemma in the 
non-abelian p-form theory, this method can be applied to all dimensions in the non-abelian 
p-form theory although we denote dimensions to be 2p + 2 in our computations for each p.

4.3. Non-commutative theory with the non-abelian structure

We start from

SNCNA = − 1

4g2
YM

∫
d4x F̂ a

μν ∗ F̂ μν,a, (123)

where F̂ a
μν = ∂μÂa

ν − ∂νÂ
a
μ + [Âμ, Âν]a∗ , Âμ ≡ Âa

μT a , T a satisfies

T aT b − T bT a = f abcT c, T aT b + T bT a = dabcT c, (124)

[Âμ, Âν]∗ ≡ [Âμ, Âν]a∗T a , and ∗ is the Moyal product.
We rewrite our action by introducing an antisymmetric auxiliary field Ĝa

μν ,

S =
∫

d4x
(
g2

YMĜa
μν ∗ Ĝμν,a − Ĝμν,a ∗ F̂ a

μν

)
. (125)

We ignore the total derivative terms to express our action as

S =
∫

d4x
(
g2

YMĜa
μνĜ

μν,a − Ĝμν,aF̂ a
μν

)

=
∫

d4x

[
g2

YMĜa
μνĜ

μν,a − Ĝμν,a

(
∂μÂa

ν − ∂νÂ
a
μ + [Âμ, Âν]a∗

)]

≈
∫

d4x

[
g2

YMĜa
μνĜ

μν,a − Ĝμν,a

[
∂μÂa

ν − ∂νÂ
a
μ + f abcÂb

μÂc
ν

+ 1

2
θρσ

(
∂ρÂμ∂σ Âν − ∂ρÂν∂σ Âμ

)a]]
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=
∫

d4x
(
g2

YMĜa
μνĜ

μν,a + 2Ĝμν,a∂νÂ
a
μ − f abcĜμν,aÂb

μÂc
ν

− dabcθρσ Ĝμν,a∂ρÂb
μ∂σ Âc

ν

)
=

∫
d4x

(
g2

YMĜa
μνĜ

μν,a − 2∂νĜ
μν,aÂa

μ − f abcĜμν,aÂb
μÂc

ν

+ dabcθρσ Âb
μ∂ρĜμν,a∂σ Âc

ν

)
, (126)

where we consider the Poisson limit for the Moyal product and ignore total derivative terms. We 
used the antisymmetric property of Ĝa

μν and θρσ , and integrate by part in our calculations. The 

action is quadratic in the field Â so we can use the Gaussian integral (13) to integrate Â out.
The partition function is given by

Z ∼
∫

DG (detM)−
1
2 exp

[
ig2

YM

∫
d4x

(
Ĝa

μνĜ
μν,a − ∂γ Ĝμγ,a

(
M−1)ab

μν
∂λĜ

νλ,b

)]
,

(127)

where
Mμν,bc = −g2

YMf abcĜμν,a + g2
YMdabcθρσ ∂ρĜμν,a∂σ ≡ −f ′abcĜμν,a + dabcθ̃ρσ ∂ρĜμν,a∂σ . 

We use Āa
μ ≡ (M−1)ab

μν∂ρĜνρ,b to let Ĝμν,a satisfies the equation of motion in the Poisson limit 
as

∂νĜ
νμ,a + Mμν,abĀb

ν = 0

⇒∂νĜ
νμ,a − f ′abcGμν,cĀb

ν + dabcθ̃ρσ ∂ρĜμν,c∂σ Āb
ν = 0

⇒∂νĜ
νμ + [Āν, Ĝ

νμ] + {Āν, Ĝ
νμ} = 0, (128)

where Āν ≡ T aĀa
ν and Ĝνμ ≡ T aĜνμ,a .

Then we ignore total derivative term to rewrite the action as∫
d4x Ĝμν,aF̂ a

μν(Ā) ≈ g2
YM

∫
d4x Ĝμν,a

(
∂μĀa

ν − ∂νĀ
a
μ + f ′abcĀb

μĀc
ν + {Āμ, Āν}a

)

=
∫

d4x

(
− 2Ĝμν,a∂νĀ

a
μ + f ′abcĜμν,aĀb

μĀc
ν

+ dabcĜμν,aθ̃ρσ ∂ρĀb
μ∂σ Āc

ν

)

=
∫

d4x

(
2∂νĜ

μν,aĀa
μ + f ′abcĜμν,aĀb

μĀc
ν

− dabcĀb
μθ̃ρσ ∂ρĜμν,a∂σ Āc

ν

)

=
∫

d4x

(
2∂νĜ

μν,a
(
M−1)ab

μλ
∂ρĜλρ,b

− (
M−1)be

μλ
∂ρĜλρ,e(M)μν,bc

(
M−1)cd

νσ
∂δĜ

σδ,d

)

=
∫

d4x ∂νĜ
μν,a(M−1)ab

μλ∂ρĜλρ,b,
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where we used integration by part, and Āa
μ = (M−1)ab

μν∂ρĜνρ,b. This term is equal to the second 
term in (127). Therefore, we obtain alternative form of the partition function as

Z ∼
∫

DG (detM)−
1
2

∫
DĀ exp

(
ig2

YM

∫
d4x

(
Ĝa

μνĜ
μν,a − Ĝμν,aF̂ a

μν(Ā)
))

× δ

(
2Āa

ρ − 2(M−1)ab
ρσ ∂λĜ

σλ,b

)
, (129)

where the factor of 2 does not affect the calculation. The delta function can be expressed as

δ(2Ā − 2M−1∂Ĝ) = δ
(
M−1(2MĀ − 2∂Ĝ)

)
, (130)

where Ā ≡ Āa
μ, M−1 ≡ (

M−1
)ab

μν
and ∂Ĝ ≡ ∂λĜ

μλ,a . We used the matrix notation to simplify 
our index notations. This extracts an additional factor detM out of the delta function after inte-
grating. Hence, we obtain

Z ∼
∫

DG (detM)
1
2

∫
DĀD� exp

[
ig2

YM

∫
d4x

[
Ĝa

μνĜ
μν,a − Ĝμν,aF̂ a

μν(Ā)

− �a
μ

(
2Mμν,abĀb

ν − 2∂ρĜμρ,a

)]]
. (131)

Now we simplify the term in the last bracket as∫
d4x 2

[
�a

μ

(
Mμν,abĀb

ν − ∂ρĜμρ,a

)]

=
∫

d4x

(
2�a

μMμν,abĀb
ν + 2∂ρ�a

μĜμρ,a

)

=
∫

d4x

(
2f ′abc�a

μĀb
νG

μν,c + 2dabc�a
μθ̃ρσ ∂ρĜμν,c∂σ Āb

ν + 2∂ρ�a
μĜμρ,a

)

=
∫

d4x

(
2f ′abcGμν,aĀb

μ�c
ν − 2dabcĜμν,cθ̃ρσ ∂ρ�a

μ∂σ Āb
ν + 2∂ρ�a

μĜμρ,a

)

=
∫

d4x

[
2Ĝμν,a ×

(
[Āν,�μ]a + {Āν,�μ}a

)
+ 2(∂ν�

a
μ)Ĝμν,a

]

=
∫

d4x

(
2Ĝμν,a

(
D(Ā)

ν �μ

)a
)

=
∫

d4x

(
− 2Ĝμν,a

(
D(Ā)

μ �ν

)a
)

, (132)

where we define D(Ā)
μ O ≡ ∂μO +[Āμ, O] +{Āμ, O} and �μ ≡ �a

μT a . Substitution of this term 
into the partition function gives

Z ≈
∫

DG (detM)
1
2

×
∫

DĀD� exp

[
ig2

YM

∫
d4x

[
Ĝμν,a

(
Ĝa

μν − F̂ a
μν(Ā) + 2

(
D(Ā)

μ �ν

)a
)]]

. (133)
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Let us define a variable Ãμ ≡ Āμ − �μ. The field strength can be written as

F̂μν(Ā) ≈ ∂μ(Ãν + �ν) − ∂ν(Ãμ + �μ) + [Ãμ + �μ, Ãν + �ν] + {Ãμ + �μ, Ãν + �ν}
= ∂μÃν − ∂νÃμ + [Ãμ, Ãν] + {Ãμ, Ãν} + ∂μ�ν − ∂ν�μ + [Ãμ,�ν]

+ [�μ, Ãν] + [�μ,�ν] + {Ãμ,�ν} + {�μ, Ãν} + {�μ,�ν}
= F̂μν(Ã) + D(Ā)

μ �ν − D(Ā)
ν �μ + [�μ,�ν] + {�μ,�ν}, (134)

where F̂ ≡ F̂ aT a . Thus, we obtain

Z ≈
∫

DG (detM)
1
2

∫
DÃD� exp

[
ig2

YM

∫
d4x

[
Ĝμν,a

(
Ĝa

μν − F̂ a
μν

(
Ã

)

− [�μ,�ν]a − {�μ,�ν}a
)]]

=
∫

DG (detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν,a

(
Ĝa

μν − F̂ a
μν

(
Ã

))]]

×
∫

D� exp

[
− ig2

YM

∫
d4x

[
Ĝμν,a

(
[�μ,�ν]a + {�μ,�ν}a

)]]

=
∫

DG (detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν,a

(
Ĝa

μν − F̂ a
μν

(
Ã

))]]

×
∫

D� exp

[
ig2

YM

∫
d4x

(
dabc�b

μθ̃ρσ ∂ρĜμν,a∂σ �c
ν − f ′abc�b

μĜμν,a�c
ν

)]

=
∫

DG (detM)
1
2

∫
DÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν,a

(
Ĝa

μν − F̂ a
μν

(
Ã

))]]

×
∫

D� exp

(
ig2

YM

∫
d4x �a

μMμν,ab�b
ν

)

∼
∫

DGDÃ exp

[
ig2

YM

∫
d4x

[
Ĝμν

(
Ĝμν − F̂μν

(
Ã

))]]
. (135)

We eventually integrate the field � out and obtain a factor (detM)−1/2 to cancel the factor 
(detM)1/2 in front of the measure. This calculation shows

D(A)
μ F̂ μν(A) = 0 ←→ D

˜(A)
μ F̂ μν(Ã) = 0 (136)

at classical level. This method does not use the Poincaré lemma, we can extend from four 
dimensions to all dimensions. Although the non-abelian structure is different from the non-
commutative structure, we can use the first method of the electric–magnetic dualities in the 
non-commutative U(1) gauge theory to define the electric–magnetic duality for this kind of the-
ory. Other methods cannot be applied to this theory. The second method of the electric–magnetic 
dualities in the non-commutative U(1) gauge theory relies on the Seiberg–Witten map. If a theory 
has a non-abelian structure, then this theory should have degrees of freedom on gauge potentials. 
When we perform the field redefinition to relate two theories for the non-commutative U(1)

gauge theory in the third method, the field redefinition is related to the gauge potentials. From 
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this point of view, we can use this method to perform the electric–magnetic duality for a theory 
with the non-abelian structure. Unfortunately, this method still relies on a dual. This dual is valid 
for the ordinary derivative. When considering the covariant derivative, this dual cannot be used. 
For non-abelian gauge theories, we do not know how to define a covariant field strength by using 
the ordinary derivative. The third method naively uses a field redefinition, which is related to the 
gauge potentials, to perform the electric–magnetic duality, but it still relies on some properties 
that exist only in the abelian gauge theories. This study shows that the non-abelian gauge theo-
ries have a more delicate structure than the non-commutative structures in the electric–magnetic 
dualities.

The most interesting aspect in the electric–magnetic dualities should be the multiple 
M5-branes theory. A low energy effective theory of the multiple M5-branes does not have a 
suitable or totally consistent Lagrangian formulation. If we compactify two torus with different 
ordering, we obtain two multiple D3-branes theories. Two multiple D3-branes theories should 
be related to each other via the electric–magnetic duality or S-duality. A consistent electric–
magnetic duality should motivate us to find the multiple M5-branes theory. In our studies, we 
use some ways to find a suitable or workable definition. We should define an electric–magnetic 
duality related to gauge potentials, but this is not enough. We also need to understand how 
to dual a scalar field to field strength in non-abelian gauge theories. These difficulties should 
also appear in the construction of the multiple M5-branes theory. From our results, we find 
that the electric–magnetic dualities of non-abelian gauge theories should be totally different 
from the electric–magnetic dualities of abelian gauge theories. This points out the form of the 
multiple M5-branes should be very different from the single M5-brane theory. If we perform 
the electric–magnetic duality by the first method, it should not be hard to find the consistency 
for the Lagrangian formulation between the NS–NS multiple D3-branes and the R–R multiple 
D3-branes. Based on the T-duality, we can find the R–R multiple Dp-branes for the Lagrangian 
formulation. They should be easy to construct. The most difficult thing is how to find the multiple 
M5-branes such that we can get the multiple D3-branes in the NS–NS or R–R backgrounds by 
compactification. The problem comes from the dualization for the non-abelian gauge theories. 
This problem also occurs in the electric–magnetic dualities. A study of the electric–magnetic 
duality reveals the main problem for the Lagrangian formulation of the multiple M5-branes. We 
leave the further studies in the multiple M5-branes to future works.

5. Discussion and conclusion

We study the electric–magnetic dualities in gauge theories by using path integration. The 
electric–magnetic duality for the abelian Yang–Mills theory can be understood as exchanging 
electric and magnetic fields in path integration like the Maxwell’s equations. We define the 
electric–magnetic duality for the abelian Yang–Mills theory by

∂μFμν = 0 ←→ ∂μF̃ μν = 0, dF = 0 → Fμν = 1

2
εμνρσ F̃ρσ . (137)

The first relation is an invariant equation of motion under the electric–magnetic duality and the 
second relation relates the field strength to the dual field strength in four dimensions by us-
ing the Poincaré lemma. Especially for the second relation, this is a strong condition to restrict 
dimensionality for the electric–magnetic dualities in path integration formulation. If we want 
to define the electric–magnetic dualities without using the second relation, we can extend the 
electric–magnetic dualities from four dimensions to all dimensions. Naively, this is still a suit-
able definition for the electric–magnetic dualities. One should think about the degrees of freedom 
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between the electric and magnetic fields. In the abelian one-form Yang–Mills theory, we have an 
equal number of degrees of freedom in both the electric and magnetic fields in four dimensions. 
This means that the electric–magnetic dualities lose the standard meaning in other dimensions 
(other than four dimensions). In four dimensions, we have possibilities to find a map between the 
electric (or magnetic) field and dual magnetic (or electric) field. But we do not have this kind of 
map in other dimensions. If we want to maintain the standard meaning of the electric–magnetic 
dualities, the Poincaré lemma should be important. If we only replace d by D = d + A in the 
Poincaré lemma, this lemma should not be valid without putting in more conditions. Then a 
direct generalization from the abelian Yang–Mills theory to the non-abelian Yang–Mills theory 
should be impossible. A definition or operation must have workable or calculable properties. 
Before we give a clever definition, we use a workable or calculable definition without using 
too restricted conditions. In other words, we only use the first condition to define the electric–
magnetic dualities in non-abelian gauge theories. This might not be a smart definition to define 
the electric–magnetic dualities in non-abelian gauge theories, but this should be calculable. A 
smart definition should have a restriction on dimensionality without losing the standard meaning 
of the electric–magnetic dualities. However, we do not have this kind of lemma at non-abelian 
level. Even without this lemma, the electric–magnetic dualities still exchange strong and weak 
coupling constants for the non-abelian gauge theories in this method. We can map the ordinary 
gauge theories to the dual gauge theories by exchanging the ordinary and dual gauge fields, and 
using ordinary electric and magnetic fields simultaneously to find the dual electric or magnetic 
fields. A main problem in the non-abelian gauge theories comes from the covariant property. 
In the abelian gauge theories, the equations of motion do not depend on gauge potentials, but 
the non-abelian gauge theories do. This is why we lose the Poincaré lemma in the non-abelian 
gauge theories. Dependence on gauge potentials implies that exchanging the electric and mag-
netic fields is not a suitable operation for the electric–magnetic dualities. But this does not mean 
that we cannot have a modified Poincaré lemma to put restrictions on dimensionality. We be-
lieve that the electric–magnetic dualities should work in four dimensions with equal degrees of 
freedom between the electric and magnetic fields for the non-abelian Yang–Mills theory. The 
non-abelian p-form theory has one interesting feature in the electric–magnetic duality. In order 
to have a gauge covariant property, we need to introduce a non-dynamical gauge potential except 
for the one-form gauge potential. Then we find that the electric–magnetic duality does not dual 
the non-dynamical degrees of freedom. Since electric–magnetic dualities have different physical 
meanings for different methods, we perform three methods on the non-commutative U(1) gauge 
theory and compare their different physical implications. The non-commutative U(1) gauge the-
ory has a non-abelian-like structure which comes from the Moyal product and this theory can be 
described by the field strength without using gauge potentials. The non-commutative U(1) gauge 
theory simultaneously has two interesting properties so we can compare meanings in different 
electric–magnetic dualities. In the first method, we do not have restrictions on dimensionality, 
but we have the same form of action after performing the electric–magnetic duality. The ordi-
nary electric and magnetic fields, and dual electric and magnetic fields are covariant quantities. 
From a symmetry point of view, electric and magnetic fields being covariant field strength should 
be nice. In the second method, we use the Seiberg–Witten map to rewrite our theory in terms of 
abelian field strength. This symmetry structure helps us to avoid difficulties of the non-abelian-
like structure. Due to this rewriting, we have restrictions on the number of dimensions. In the 
third method, we consider large background limit in the non-commutative theories. We use field 
redefinition and perturbation to study the electric–magnetic duality. If one naively performs the 
electric–magnetic duality, one will find non-locality in the dual action. However, this non-locality 
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should not be real because we can use a suitable gauge fixing to remove them. We perform the 
exact calculation up to the first order. At the second order, our calculations only concern the 
classical information. The electric–magnetic dualities did not extend to this order due to the non-
Gaussian effects being difficult to handle. However, we obtain a consistent result and give a string 
interpretation to this duality. The electric–magnetic dualities invert the coupling constant so we 
cannot use the perturbation method to study the electric–magnetic duality. The primary reason 
is due to the fact that our perturbative parameter is the non-commutativity parameter (large anti-
symmetric background). Even if we go into the strongly coupled regime under electric–magnetic 
duality, the dual effective theory is still a well-defined theory under the decoupling limit. In 
this comparison, one should find that the non-commutative U(1) gauge theory is different from 
the non-abelian gauge theories although they have the similar structure. Due to this reason, we 
also perform the electric–magnetic dualities in the non-commutative theory with the non-abelian 
structure. The first method we used in the non-commutative U(1) gauge theory is still applicable 
in this kind of model. This kind of theory should have some applications in the multiple branes 
theory. This is also our motivation to study the non-commutative theory with the non-abelian 
structure. However, our studies should provide a generic analysis for electric–magnetic dualities 
in path integral formulation.

One important problem related to the electric–magnetic dualities is the multiple M5-branes. 
One consistency check in the multiple M5-branes theory is on the multiple D3-branes for the 
electric–magnetic dualities after compactifying 2-torus with different orderings. A low energy 
effective theory of the multiple D3-branes on the non-commutative space should be the non-
commutative Yang–Mills theory at leading order. If we believe that the first method we used in 
the non-commutative U(1) gauge theory is a good definition for the electric–magnetic dualities, 
we already obtained the consistency for the electric–magnetic dualities. One problem in the mul-
tiple Dp-branes is the effective action in a large R–R background limit. So far we did not have a 
consistent action based on gauge symmetry, T-duality and S-duality in the Poisson limit. Based 
on these conditions, this model should not be difficult to construct. The main non-trivial consis-
tency is an expected duality between two-form gauge potential in the multiple M5-branes and 
one-form gauge potential in the multiple D4-branes. We leave this interesting work to the future.

The Nambu–Poisson M5-brane provides a R–R D3 brane from dimensional reduction. Be-
cause the Nambu–Poisson M5-brane is valid at the second order, the R–R D3-brane cannot go 
beyond this order. A conjecture for the full order is given, but symmetry (gauge symmetry and 
supersymmetry) is not totally understood to all orders. A complete study should give a com-
plete action. This should give us a motivation to check the electric–magnetic duality for the R–R 
D3-brane to all orders. This study should motivate many low-energy effective theories in many 
different aspects.

The most important and fundamental issue is how to improve definition of the electric–
magnetic dualities for the non-abelian gauge theories. In abelian gauge theories, we relate electric 
(magnetic) fields to dual magnetic (electric) fields in path integral formulation. From an equation 
of motion in the non-abelian Yang–Mills theory, exchanging electric and magnetic fields should 
not be a suitable operation for the electric–magnetic dualities in the non-abelian Yang–Mills 
theory. When treating an one-form gauge potential in the electric–magnetic duality, one has a 
non-trivial determinant factor in partition function. Based on this non-trivial factor, a modified 
Poincaré lemma is difficult to define in path integral formulation. We have a no-go theorem [37]
to show that the electric–magnetic duality cannot be performed on the non-abelian Yang–Mills 
theory with an invariant equation of motion and the Poincaré lemma. However, a condition of 
restricting dimensionality allows us to keep the standard meaning for electric–magnetic duali-
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ties. The other approach is to modify the definitions of the electric and magnetic fields in the 
non-abelian gauge theories. A quantity which can be observed should be gauge invariant. We 
do not insist on a gauge covariant definition for field strength. A main problem in the electric–
magnetic dualities of non-abelian gauge theories comes from the gauge covariant property. The 
gauge covariant property also lead to the ambiguities of the entanglement entropy. The entan-
glement entropy [38–45] in gauge theories is not a gauge invariant quantity in a tensor product 
decomposition of the Hilbert space. A proposal is to consider non-tensor product decomposi-
tion with a non-trivial center between two regions. In the abelian gauge theories, this proposal 
should be well-understood. For the non-abelian gauge theories, the entanglement entropy may 
suffer from the gauge covariant problem. Defining a gauge invariant entanglement entropy will 
be difficult. This direction should help us understand more about holograph, black hole, and 
thermal entropy [46–50]. Candidates of gauge invariant quantities are det(F ) and Wilson loop. 
A full gauge invariant construction should be interesting and could affect our understanding of 
gauge theories from different ways. Another approach of electric–magnetic duality is to include 
all spin fields with general relativity [51]. In this case, we do not use duality rotation to perform 
the electric–magnetic duality.
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