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Abstract

Electric—-magnetic dualities are equivalence between strong and weak coupling constants. A standard ex-
ample is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods
to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first
method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form
of an equation of motion after performing the electric-magnetic duality. The second method is to use the
Seiberg—Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength.
The third method is to use the large Neveu Schwarz—Neveu Schwarz (NS-NS) background limit (non-
commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge
theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane
in a large Ramond—Ramond (R-R) background via field redefinition. We also use perturbation to study
the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative
U (1) gauge theory gives different physical implications. The comparison reflects the differences between
the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete
study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a
non-commutative theory with the non-abelian structure.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The M-theory provides useful dualities to unify different kinds of theories and helps us to
understand supergravity solutions [1]. In low-energy limit, the ten dimensional supergravity has
the T-duality and S-duality. The T-duality is a duality on a target space. The T-duality of closed
string theory [2,3] exchanges the momentum and winding modes, and the T-duality of open
string theory exchanges the Dirichlet and Neumann boundary conditions. The T-duality requires
an isometry on a compact torus, but a generic background does not always have an isometry in
closed string theory. In other words, the T-duality maps single valued fields to non-single val-
ued fields and we lose periodicity of the background. Then we obtain the non-geometric flux
after performing the T-duality twice in the case of constant H-flux. This mapping gives rise to a
problem on quantum dynamics. The solution is to use a double space to construct a well-defined
transition function as a diffeomorphism in closed string theory [4-9]. With a global symmetry
description, we sacrifice local symmetry in the double space. Local symmetry in the double space
is still possible, but difficulties come from the closure of the generalized Lie derivative. This dou-
ble construction is also extended to open string theory, and has also been applied to cosmology
[10-17]. These formulations rely on geometric constructions from the Courant bracket or gen-
eralized geometry [18-20]. This bracket comes from the combination of tangent and cotangent
bundles. A theory in a double space with the strong constraints (removing additional coordi-
nates) is equivalent to a theory with the Courant bracket. The S-duality is a non-perturbative
duality by exchanging the strong and weak coupling constants. In four dimensional electro-
magnetism, we have an electric-magnetic duality between electric and magnetic fields. This
duality is a special case of the S-duality. A problem with the S-duality is that it is hard to be
performed exactly due to some issues involving strong couplings. At low-energy level, one suc-
cessful example is a low-energy effective theory with a non-commutativity parameter (inversely
proportional to antisymmetric backgrounds) being a perturbative parameter [21]. The extension
of duality from ten dimensional supergravity to eleven dimensional supergravity is the U-duality
combining T-duality and S-duality. The manifest U-duality is studied in [22] using extended
coordinates.

String theory is described by a two dimensional sigma model. On bulk, the sigma model
describes gravity. When we impose the Dirichlet and Neumann boundary conditions on the
sigma model, the boundary term comes from the gauge principle. This boundary term gives
a picture of open string ending on a D-brane. The ending point of the open string shows the
non-commutativity. Non-commutative geometry is naturally hidden in string theory. The low-
energy effective theory [21,23-29] of open string is the Dirac—Born—Infeld (DBI) model. In the
DBI model, we have the Seiberg—Witten map that maps the commutative theory to the non-
commutative theory. In the non-commutative description, the leading order term in the action is
a non-commutative U (1) gauge theory with the Moyal product. The Moyal product captures all
the effects of the non-commutativity parameters. We find an alternative way to examine the string
theory. Now we have many different kinds of non-commutative geometry generalized from the
DBI model. This generalization helps us to find more interesting field theories and constrain our
low-energy effective field theories from the non-commutative geometry. The first example is the
Nambu—Poisson M5 (NP M5) brane theory. This theory describes a M2—-MS5 system in the large
C field background (only three spatial components) on the non-commutative space at low-energy
level [23,24]. Based on dimensional reduction, we find a Dp-brane in the large (p — 1)-form
background [25,26] and a Dp-brane in the large NS—NS two-form background. Especially for
p = 3, the S-duality relation to all orders is found in [21]. According to the dualities, we find the
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S-duality relation and the non-commutative geometry on the R—R background. The second ex-
ample is the non-commutative geometry in closed string theory. The Seiberg—Witten map and the
Moyal product in the DBI model rely on one-form gauge transformation. A low-energy effective
theory of the double sigma model shows a combination of two-form antisymmetric background
field and two-form field strength on boundary and bulk [11-17]. We have the one-form gauge
transformation on the bulk in the low-energy effective theory without using the strong constraints.
This shows a non-trivial existence of the Seiberg—Witten map and Moyal product on the bulk.
The non-commutative geometry in open string theory can easily describe all background effects
from the Moyal product in the non-commutative descriptions. We should obtain all o’ effects
from the Moyal product or the non-commutative geometry.

A low-energy effective theory of open string at leading order is the abelian Yang—Mills the-
ory. The abelian Yang—Mills theory in four dimensions at classical level describes the famous
Maxwell’s equations. This theory has local gauge symmetry, and its equation of motion is gauge
invariant. An extension of a gauge principle from the abelian gauge group to the non-abelian
gauge group gives the non-abelian Yang—Mills theory. An ordinary derivative operator in the
abelian Yang—Mills theory becomes a covariant derivative operator in the non-abelian Yang—
Mills theory. The gauge invariant property of the field strength and equation of motion are
modified accordingly. The non-abelian Yang—Mills theory has a gauge covariant field strength
and a corresponding equation of motion. The gauge principle also helps us to find open string.
Local gauge symmetry has a very long history in aiding the construction of new theories and
simplifying our analysis. But local gauge symmetry has its own loophole due to redundant de-
scriptions. This situation implies that local gauge symmetry is too restricted. We never observe
gauge symmetry in our nature. The observed fact is that photon has two polarization states.
Violating the local gauge symmetry is not equivalent to violating our experimental results. An
interesting symmetry constraint should contain physical information and should not be too re-
strictive to kill off interactions. Global symmetry is a good candidate. When we gauge fix a
theory, the gauge fixing term does not break the global symmetry. The global symmetry gives
more structures and the Noether currents to our theories. The Noether currents are important
ingredients for the conserved quantities. Double field theory combines diffeomorphism and one-
form gauge transformation to form an O (D, D) global structure in a double space. This is an
example to define the T-duality in a generic background from global symmetry to avoid isome-
try problem. Electric—-magnetic duality for the abelian group in four dimensions only exchanges
electric and magnetic fields. This is a rotation-like symmetry so electric-magnetic duality should
be the global symmetry in the abelian gauge theories. Global symmetry is a physical symmetry,
so a full study of electric—-magnetic dualities should be interesting.

We use three methods to study electric-magnetic dualities in the non-commutative U (1)
gauge theory. The first way is to use covariant field strength as the electric and magnetic fields.
The second method [30-32] is to use the Seiberg—Witten map to change variables in terms of the
abelian field strength. This result is interesting because the non-commutative U (1) gauge theory
has a non-abelian-like structure which comes from the Moyal product. This structure should for-
bid us to perform the electric—-magnetic duality. The Seiberg—Witten map helps us to rewrite the
non-commutative U (1) gauge theory in a suitable form to perform the electric-magnetic duality.
This method sheds light on finding some hidden symmetry structures to understand the electric—
magnetic dualities in the non-abelian gauge theories. The third method is to consider the large
NS-NS and R-R background limit. In these limits, a D3-brane in the large NS—NS background
is equivalent to a D3-brane in the large R-R background under the electric—magnetic duality.
We use field redefinition and perturbation to check the electric-magnetic duality in this method.
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Although they give different physical interpretations in these methods, they are all interesting
to find mappings between a strongly and weakly coupled gauge theories. The non-commutative
U (1) gauge theory is a good toy model to study electric-magnetic dualities. Although this theory
does not have a non-abelian gauge group, the Moyal product produces a non-abelian-like term.
The electric—magnetic dualities are very different between the abelian and non-abelian gauge
theories. Equations of motion do not depend on gauge potentials in abelian gauge theories, but
equations of motion in non-abelian gauge theories do. A standard electric-magnetic duality is to
exchange the electric and magnetic fields. If equations of motion depend on gauge potentials, the
standard electric—magnetic duality should not work. A direct generalization should exchange the
gauge potentials to find a dual action at quantum level [33,34]. We can also put the gauge and dual
gauge fields together to find the manifest electric-magnetic duality in an abelian gauge theory
[17]. This direct generalization is our first method. This method can be performed in the non-
commutative U (1) gauge and non-abelian Yang—Mills theories. The electric and magnetic fields
in the non-abelian gauge and non-commutative U (1) gauge theories are covariant objects. They
are not gauge invariant as abelian gauge theories. In abelian gauge theories, electric and magnetic
fields are physical observables. A magnetic monopole solution in the abelian Yang—Mills theory
should be detectable if magnetic monopoles exist in our nature. But the magnetic monopole solu-
tion for field strength in the non-abelian Yang—Mills theory is not a detectable observable. In our
first method, we can find more differences between abelian and non-abelian gauge theories. In
abelian gauge theories, we have a restriction on dimensionality from the Poincaré lemma. But we
do not have the Poincaré lemma in non-abelian gauge theories. We lose a restriction on dimen-
sionality. This feature possibly reflects the fact that the electric—-magnetic dualities have different
interpretations in interacting theories. The second and third methods are also suitable in the non-
commutative U (1) gauge theory. A good property of these methods is that we have a restriction
on dimensionality for the non-commutative U (1) gauge theory. But they cannot be extended to
the non-abelian gauge theories. The second and third methods imply that the non-abelian-like
term in the non-commutative U (1) gauge theory is still different from the non-abelian term in
the non-abelian Yang—Mills theory. We compactify 2-torus in the multiple MS5-branes theory,
then we should obtain two D3-branes with different backgrounds arising from the ordering of
compactification. There is S-duality or electric-magnetic duality between two theories. More
suitable and consistent electric—-magnetic dualities should help us to probe a consistent multiple
M5-branes theory. We will point out the difficulty in our studies. For a generic study and com-
pleteness, we also define the electric—-magnetic dualities in the simplest p-form gauge theory with
the abelian and non-abelian gauge groups, and a non-commutative theory with the non-abelian
structures.

We first review the electric-magnetic duality of the abelian and non-abelian Yang—Mills
theories in Sec. 2. Then we give three ways to perform the electric—-magnetic dualities of the
non-commutative U (1) gauge theory in Sec. 3. The extension of the electric—magnetic duality
of the p-form gauge theory with abelian and non-abelian groups, and a non-commutative theory
with a non-abelian structure are in Sec. 4. Finally, we conclude and discuss in Sec. 5.

2. Review of the electric—-magnetic duality in the abelian and non-abelian Yang—Mills
theories

We review the electric-magnetic dualities for the abelian and non-abelian Yang—Mills the-
ories [33-36] in this section. The electric—-magnetic dualities in the abelian and non-abelian
Yang—-Mills theories exchange the gauge and dual gauge fields. The gauge field in the equations



984 J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019

of motion is simply replaced by the dual gauge field under electric-magnetic duality. A differ-
ence between the two theories is a restriction on dimensionality from the Poincaré lemma. This
restriction only exists in the abelian gauge theory. Since the non-abelian structure contains an
interaction term, the Poincaré lemma is no longer valid to constrain dimensionality. In the non-
abelian Yang—Mills theory, this approach has one advantage that the electric and magnetic fields
are the covariant field strengths.

2.1. Abelian Yang—Mills theory

The abelian Yang—Mills theory is

1
SaB=—-— /d4x Fu F", (1)
48y m

where F,, =0,A, — 9,A,, and gy is gauge coupling constant. We denote spacetime indices
by the Greek letters.
We introduce an antisymmetric auxiliary field, G, this action is written as

fd4x (g%MG,wG’w - GWFW)

:/d4x (g%MG,wGW — GM (3, A, — 8UAM)). )

Then we integrate out A to obtain

/’DGexp [ig%Mfd“x (G,“,GWHS(&MG“”). (3)

Because of
1 _
G = 27 9,Gpg =0, )
we get
Gy =0,A, — 3,4, (5)

from the Poincaré lemma. Solving the delta function, we obtain
gy - =
—%[d“x GG (©6)
At classical level, we find

3, F* =0 «— 9,G*" =0. (7)

This is the familiar electric-magnetic duality without source. We use the Poincaré lemma
to obtain the restriction on dimensionality. However, we have another method to perform
the electric-magnetic duality for the abelian Yang—Mills theory in all dimensions. We start
from

/DGexp [ig%M/d“x (GWG“”H(S(E)MG‘“). (8)
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Then we introduce an auxiliary field A to rewrite the partition function as

/ DGDAexp [ig%/M f d*x (GWG“” —28MAUG“”>]

:/DGDA exp [ig,z,M/d4x (G,WG“" — (3 Ay — 8U/§M)G’“’>]. )

Hence, we integrate G ,,, out to obtain

gy -
—%/d“x GuGH. (10)

Because we do not use the Poincaré lemma to perform the electric-magnetic duality, we can use
this method to extend the electric—magnetic duality from four to all dimensions. We will also
apply this method to the non-abelian Yang—Mills gauge theory.

2.2. Non-abelian Yang—Mills theory

The action for the Non-abelian Yang—Mills theory is

1

SNAB = — /d4x Fi,FMe, (11)
8ym

where Fd, =0, A% — 9, A% +[A,, A,]*. We define [A,,, A, ] = f9%° Al A¢, and denote the Lie

algebra indices from a to z. By introducing an antisymmetric auxiliary field G¢ ,, this action can

be written as "
fd4x (g%MGZVG‘“”a - G“”*“Fﬁ,,)
= / d*x [g%MGﬁUGW»“ -G (aMAg —0,A% + f“bCAgAﬁ)]
- / d*x (g% G4, G 2G99, A% — A, f“b”G“”’“A;')
= f d*x (g§ wGo,GM—20,GM A% — AD f"bCG’”*“A§>. (12)

The action is quadratic in A, then we can integrate it out in path integral by using the Gaussian
integral

/Dx i Matidx /ﬁe—%ﬂM’lﬁ (13)
(¢

The partition function becomes
_1
z ~/DG (detM) 2 exp [ig)z,M/d4x <GZUG‘“’"’ + BVG“V’“(MI)Z?)B,\G“"’>],

where MHVbe = g%,Mf”bCG“”’“. Let us define AZ = —(M_I)Zl,’) 8pG””’b. Therefore, G*" satis-
fies an equation of motion

avap,,b + M;w,abA‘aj — avau,b + g%MfcabGuv,cAg
=3,G""0 — gb FUPCALGIC = 0. (14)
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Now, we consider

/ d*x GMFf (A) = / d*x GM"(9, A% — 9, A% + [P AD AY)
= / d*x [— 2G"0, A + f/“b”G“”'”AﬂAﬁ]
= / d*x (23UG’”’“AZ + f“"”GW»“A%ﬁ)
= / d*x [—zavGW“(M—l)fj;akap’b

+ M,w,bc(M—l)%appr,d(M—l)]c);apGyp,e]
:/d4x (— 8VG“”’“(M1)%8PGM””>,
where f'eb¢ = g% uf abe Therefore, the partition function becomes
z ~fDGDA (det M)~ exp [ig%M/d4x (GZVG’“’*“ - G“”v“ng(A)ﬂ
x 5<2Aj; + 2(M—1)Z”UapG”P~”>, (15)

where the factor 2 in the delta function is introduced for convenience. We can write the delta
function in exponential form. For the convenience of integration, we can write the delta function
in the other way as

3(2A+2M—136)=3<M—1(2MA+28G)>. (16)
This extracts a factor of det M out of the delta function. Then we get
Z ~ / DGDADA (det M)? exp |:ig12,M f d*x (GZVG’“”“ — G'F4,(A)
+2A% (M*P AL + apGW”“))} . (17)

The last bracket in the exponential can be simplified as

2 f d*x <AZ(M“""”’A_1; + apGWW)> =2 / d*x (AzM’”’abAlj — BPAZG“”‘a)

2/ d*x (AZg)z,Mf"”bG“V’CA’; _ 3pAZG“p’”>
= 2/d4x |:_Guv,a (3\;AZ _ g%beacAlleZ>i|
=2 / d*x <G“”’“(D§A)AM)“)

=2 / d'x (G“”‘“(fo’f\v)“) (18)
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Substitution of this term into (17) gives
7~ / DG (det M)? / DADA exp [ig%M / d*x [G‘”’” (G/w‘a — Fj;,(A)

+2(DLA>Av)”>H. (19)

Let us change the variable to A, = A, — A,,. The field strength can be written as
Fiuo(A) = 0, (A4 + A%) — 0, (A% + ML) + (AL, + AL)(AS + AS)
=0, A% — 9,A% + frc AD AS
+ O AL — A + 2P AL NG + P ASAD 4 Al A
— F4,(A) + DDA — DDA 4 frabe AL AC, (20)
Thus, we obtain

Z~/DG (det M)?
x fD/iDA exp |:ig%,M/d4x |:G’w’a (GZV - F,‘ZV(A) - f/abCAZAﬁ)}}

:/DG (det M)? /DA exp [ig%m/d“x G”“”’“(G,aw - FSU(A))]

X /DA exp ( — jg%Mle,af/abcAZA5>

=/DG (det M)? /DA exp (ig%VM/d“x [G‘“”“(GZU - F,ﬁv(A)ﬂ)
x fDA exp(—ig%MAfLMW’abAﬁ>

~ / DGDA exp [ig% M / d*x G*™ (G;‘w - F,Zv(/i)>]. @21)
To get the last line, we integrate the field A out and get a factor of (det M)~!/2, which cancels
(det M)'/2. This result shows the covariance of the partition function by comparing the partition
functions. We equivalently obtain

DV FM(A)=0 «— DX FH(A)=0 22)

at classical level. In the non-abelian Yang-Mills theory, the equation of motion depends on
the gauge potential. The abelian Yang—Mills theory only relies on the field strength at clas-
sical level. In the abelian Yang—Mills theory, we can use the Poincaré lemma to perform the
electric-magnetic duality at classical level. But we cannot do in the non-abelian Yang—Mills
theory because the equation of motion is related to a gauge potential. This shows that the electric—
magnetic duality is more delicate in the non-abelian Yang—Mills theory than in the abelian
Yang-Mills theory. Although we consider four dimensions in the case of the non-abelian Yang—
Mills theory, we can extend from four dimensions to arbitrary dimensions. Since we do not have



988 J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019

the Poincaré lemma at the non-abelian level, there is no constraint on the number of dimen-
sions. In this method, we use covariant field strength to be the electric and magnetic fields. The
covariant quantities are not physical quantities. This property points out one difference of the
electric—magnetic duality between the non-abelian and abelian gauge theories.

3. Electric-magnetic dualities in the non-commutative U (1) gauge theory

We use three methods to perform the electric—-magnetic dualities for the non-commutative
U (1) gauge theory. The first approach is to use the covariant field strength to be the electric and
magnetic fields. Then we will obtain a similar answer like in the non-abelian Yang—Mills theory.
The non-commutative U (1) gauge theory has a non-abelian-like structure which comes from the
Moyal product so we should obtain a similar answer for the electric-magnetic duality. The sec-
ond method is to implement the electric-magnetic duality by the Seiberg—Witten map. This map
transforms a non-commutative theory to a commutative theory. In the third method, we consider
the large background limit to perform the electric—-magnetic duality from field redefinition and
perturbation. In these three methods, we can observe that the non-commutative U (1) gauge the-
ory is different from the non-abelian Yang—Mills theory because the second and third methods
cannot be applied to the non-abelian Yang—Mills theory.

3.1. The first method

The action for the non-commutative U (1) gauge theory is

1 ..
Sne=—— / d*x Fy s FRY, (23)
48y m

where I:",w = BMAV — BUAH + [Au, AU]* is a non-commutative field strength, A is the non-
commutative gauge potential, and * is the star product. The star product is defined by

O «— —
AxB=Aexp Tauau B,
[A,Bl,=A%B—BxA, (24)

where 6" is a constant non-commutativity parameter. In string theory, the non-commutativity
parameter is inversely proportional to a B-field background if the B-field background is large.
By introducing an antisymmetric auxiliary field G, this action can be rewritten as

5= / dx (ghy G r OF — G1 w ) 25)
Using a formula

/d4x f*g:/d4x fe, (26)
the action becomes

5= [ d (GG - 61 F)

= /d4x I:g%Mélwé’w - GMV <8H,AAU - 8\)Au + [A;u AAV]*>:|
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%

~ ~ ~ ~ ~ 1 ~ ~ ~ ~
d*x |:g)2,MGWG“” - G’“’I:E)MAU — 3,4, + 59” <apAMaaAv — apAvaaA,L)H

d'x (GGG = 20,61 Ay + 07 4,0,6"V 0, A, + 677 4,5 9,0,4,)

/d4x (gYMG,wG” +26m9,A —eﬂ”é“”ap/iuaa/iv)

- / d*x (g§ yGwGH — 20,6 A, + QP“AﬂapGM“aUAU) , 7)

where we just consider the action up to the first order of 8 and ignore total derivative terms. We
used antisymmetric property of G, to get the fourth line from the third line. We integrate by
part from the fourth line to the fifth line. The last term in the fifth line vanishes because of the
antisymmetric property of °°. Now, the action is quadratic in the field A, then we can integrate
this field out in path integral by using the Gaussian integral (13).

The partition function is given by

/DG (det M)~ 2 exp [ngM/d x( wG™ — 8,6 (M ‘)Waxé"*ﬂ, (28)

where M*¥ = g%,Mé”’" 9 G" 9, . Let us define Au = (M_I)M,)Bpé”p, from which this turns out
that GV satisfies the equation of motion up to the first order (in the Poisson limit),

G+ MM A, =0
= 3,G"* +g2,0°°9,G" 9, A, =0
= 3,6 +{A,,G""} =0, (29)

where {A, B} = g3,,0"73,Ad,B =0""3,Ad,B.
Let us consider this term

fd“x é’wﬁuu(A) =/d4x G <3uAv — A, +1{AL, Av})
- /d4x < —2G""9,A, + é“”épaap/iﬂag/iv)
=/d4x <2avG“"AM - A,Lé/’”a,,é“”aaﬁo
- / d*x (2 80,6 (M) ,9,G™
- U730 G O (), 06
- / d*x 9,6 (M™1),,8,G7,

where we used integration by part from the second to the third line and substituted AM =
(M~ w3, G into the fourth line. This term is equal to the second term in the partition func-
tion (28). Therefore, the partition function can be rewritten as
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Z~ / DG (det M)~? / DA exp (ig%w / d*x (Gwé“” - éﬂ”ﬁw(A)»
x 5<2Ap - 2(M1)p,,aké”*>, (30)

where the factor of 2 in the delta function is introduced for convenience. We express the delta
function as

5QA —2M~136) =5(M—1(2MA—2aé)). G1)

This extracts a factor det M out of the delta function after integrating. Therefore, we get
~ / DG (det M)? / DADA exp [ig%m / d*x [G,wéﬂ” — G Ey(A)
— A, <2M“”Av —~ 2apéﬂp> } (32)

The last bracket in the exponential can be simplified as

/ d*x 2[1\# <M“”Av - apéﬂp>

:/d4x <2AMM””AV +zapAMGW>

d*x [2A,0°°8,G" 05 A, + 28, A GW’)

Jo(
/d“x( 2GM0P70, A 105 Ay + 20, A G“p>
[ (oo
[

d*x (26" x {Ay, Ay} + 2(BVAM)G“”)

d*x G‘“’D(A)A )

[ <_ zéwz);fm), (33)

where we define Dl(LA) 0=9,0+ {AM, O}. Substitution of this term into the partition function
gives

z ~/DG (det M)'/?

x / DADA exp |:ig%,M / d*x [éﬂ”(éw — Fu(A) +2ij‘>Av>H. (34)

Let us define a new variable A, = A, — A,. The field strength can be written as
Fru(A) = 9 (A, + M) = 8y(Au + M) + (A + Ay, Ay + A
=0, A, —0,A, + (A, A))
Ay — Ay + (A A} + (A, A} + (Au. Ay}
= Fu(A) + DDA, — DDA, + 6778, A,,8, A 35)
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Thus, we get

ZN/DG (det M)?
X /DADA exp |:ig12,M/d4x [é“” <é,w — ﬁMU(A) —éP“apAﬂagAuﬂ]

=/DG (det M)? /DA exp —ig%,M/d“x [GW <G,w —ﬁ,w(/i)ﬂ-
x /DA exp[—i/d4x (;%MG“”éﬂ“apAuaaAvﬂ _

:/DG (det M)? /DA exp _ig?VM/d“x [éﬂ”(éw - FMU(A))}_
X fDA exp [ifd4x <g)2,A;A,L9~p08pGW85A,,)i| —

= / DG (det M)? / DA exp [ig%m / d*x [éﬂ” (é,w - ﬁW(A))H
x /DAexp (igﬁMfd“x A,LM‘“’AU>

~ / DGDA exp [igiM / d*x [GW (G,w - ﬁw(/{))ﬂ. (36)

1/2

To get the last line, we integrate the field A out and obtain a factor of (det M)~ "/~ which cancels

the factor (det M)'/2 in front of the measure. This calculation shows
DAFM(A)=0 «— DAF®(A)=0 (37)

at classical level. We can also extend the result from four dimensions to all dimensions as in
the case of the non-abelian Yang—Mills theory because we do not use any information related to
the Poincaré lemma. The non-commutative U (1) gauge theory has a non-abelian-like structure,
which comes from the Moyal product so it is not surprising to obtain a similar answer from
this method. We will show two other methods to perform the electric-magnetic dualities in the
non-commutative U (1) gauge theory. We will eventually find that these two methods cannot be
applied to the non-abelian Yang—Mills theory.

3.2. The second method

An equation of motion in the non-commutative U (1) theory depends on a gauge potential.
This property causes some difficulties to define the electric-magnetic dualities. From a point
of view of string theory, the non-commutative geometry can be connected to the commutative
geometry via the Seiberg—Witten map. We can use this Seiberg—Witten map to redefine our the-
ory in terms of abelian field strength on the commutative space. The Seiberg—Witten map is
defined on a commutative diagram. We first use gauge transformation, then redefine (Seiberg—
Witten map) the theory from the commutative to the non-commutative gauge fields. On the other
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hand, we change the ordering. We first redefine the theory from the commutative gauge to non-
commutative gauge fields, then we perform the gauge transformation on the non-commutative
space. These operations should be equivalent because gauge transformation and redefinition do
not change any physical meaning. Then we can find a condition for the Seiberg—Witten map
as

A(A) + 85 (A) = A(A + 8,.A), (38)

where A is the Seiberg—Witten map, §, is a gauge transformation on the commutative space and
d5 is a gauge transformation on the non-commutative space. Let us define the gauge transforma-
tions

S A =0h, S AL =080 —[A ALl (39)
Now we calculate A and A at leading order. For convenience, we define
A=A+ A(A), A=A+ N, (40)

where A" and A’ are higher-order effects. If we consider first order correction with respect to 6,
the condition for the Seiberg—Witten map becomes

AL (A+8A) — AL (A) — 8,0 = —0° 8,00, A, (41)

We find a solution

A~

1 A 1
Auy=A, -0 (ApagAM - EAPBMAU), A=A+ 2077 Agdph. (42)

From this solution, we get

1
AL (A+8,A) =—677 [(Ap + apx>ag (AM + au,\) -3 (Ap + apx>au (Ag + agxﬂ,
1
Al (A)=—0" <A,030A# - EAﬂauAcr),

1 1
dur = 707 (0.0p2) Ag + 5077 920,40 (43)

We can check this solution by plugging these terms into the left hand side of (41) and considering
the first order in A to obtain

—0P7 A5 Ay (44)

Now we use this solution to consider £ in the Poisson limit as

A

Fuy ™ 0,A, —8,A, +60°8,A,0,A,
1 1
~ 3, A, — 0P (aMApa(,AU + Ao Av = S0uApdhAg — 5ApaMaUAa>
. 1 1
— 0y A, + 077 (0,A,0, A+ Apdyds Ay — 50 ApduAs = 5 ApduduAs

+6°70,A,0, A,
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=0, Ay — A, — or° <Ap8(, Fuy+0,A,0,Ay — 0, Ap0,As
— 9y A5 A, — BUAPB(,AM)

=FW+9M(FWFW —Apa,,FW). (45)

‘We find one solution from the Poisson limit to infinite orders as
~ 1 ~ ~ ~ ~ ~ ~
8A, = —180"" |:Ap * <28,,AH — 8MAU) + <280AH - 8MAU) * Ap],

S

L e ST
79077 (Bohx Ao + A% 851 ).

A 1 N A A A A A oA
8Fuy = Zb‘@"” |:2FM, * Fog +2F 6 x Fup — Ap * <86FW + D(,F,w)

- (ag Fw + Dy ﬁ,w> ; Ap}, (46)
where
b)\ﬁuuzakﬁuv‘i‘[A\b ﬁ,uv]*- 47)

Then we use this Seiberg—Witten map to change variables to write the theory in terms of abelian
field strength as

1 /4 "
— d*x F,,F"
48%’/14

1 1 1 1
~—— [ d'x <— P Fuy + S F" Fupf™ Fou + S F A0 0, F,w>. (48)

8ym 4
If we ignore total derivative terms, the final term can be rewritten as

1 1 1
5/d“x F'™ A,0°% 85 Fppy = /d4x (— 500 F"" Ap0°7 Fuy — 5FWaGA,,ef’”FW)

1 1
— /d4x (- P/ Fopt?” Fuy = 505 1 A0 F,w>

1 1
— / d*x (Ztr(GF)tr(Fz) - EBGF““A,,G’)”FW). (49)

Hence, we get

1
f d*x F' A,0°% 8, Fppy = 1 / d*x (0 F)tr(F?). (50)

Therefore, the action is

A 1 1
/ d*x Fp F" ~ —— / d*x (F‘“’F,w + 2t (O F3) — Etr(GF)tr(F2)>.

4g%’M 48y m

(51
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Then we add one additional term to change F to be an unconstrained field as

1 1 1 1 1~
— | d'x (— 3 P! Fuv + S P Fupf" Foy — S F! Fop0”7 Fiuy + EG,WF‘”>,
8ym

(52)

where é,w = %ElwngpU. If we integrate G out, we can obtain dF = 0. Then we solve
dF =0 to go back to the original action. Varying F gets an equation of motion for F
as

— F,w + F,wep“Fw + FMPQVUF”’) + FJVFU’OGPM
1 1 -
2 op0” Fyuv — ZFPUGMVFM + 87 Gur =0

- Fuv =83 Guv — Fupb”° Fry — Fupbyo FOP — Fyy FP0,,

1 1
+ EFUPG”“ Fuv + ZFPUOM‘)FPU' (53)
If we only consider first order with respect to 6, the action is
8o 5 Auv o, 8YM Fuv 5 BYM v <

/d4x < ZM GuG" + YZM G"Gpt”° Gy — EM G“”Ggpeﬂ“Gw). (54)
The first term can be written as

gy - gy

%/d“x GuGH’ = —%/d“x G G™. (55)
Then we define glz, u0°° = _%GPGP”J//ép,,U,, to rewrite the second and third terms in the action.

The second term is

4
Eru / d*x GI G0 G

2
g ~ ~ ~ 13, "1
= —% d*x G G pByon G €7PP 7 €y

1~ ~ ~ " _m 1 -~ ~ - ’
:g%,M/d4x <ZGMUGMV6,0”G”GI) o4 5 MVGM,OG\)U’GU P)

1 ~ 1 ~ 1 o
= g%,M/d4x <— ZGMVGMVG,OGG'DG - ZGquuvepccap + EGM pGM/UGUU Go'/p)
gy -
= _% / d*x w(6G?). (56)
The third term can be rewritten as

4 4
_gléM /d4x Gﬂvéapepa G;w — gi/g/l d4x Gquuveopa’p/epa Go'r

2
- —gYTM f d*x GM Gy GO

2
= -fu / d*x (G (dG). (57)
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Therefore, the action is given by

2
g)Z,M/d4x (— %GWG’” — %tr(§G3) — étr(GZ)tr(éG)> ~ —gYTM/d4x G,wé’w
(58)

after we perform the electric-magnetic duality. The result is very simple and interesting. The
electric-magnetic duality just exchanges 6 and 6 and invert the gauge coupling constant. Here,
6 is not the same as in the first method. The reason possibly comes from the use of the Poincaré
lemma. The lemma gives a standard dual between electric and magnetic fields. In the second
method, we use the Seiberg—Witten map to rewrite the non-commutative theory in terms of the
abelian field strength to let us exchange electric and magnetic fields directly. But the first method
loses some information from the Poincaré lemma, then we map all ordinary field strengths to all
dual field strengths. This is why we can use the first method to perform the electric—magnetic
duality in all dimensions, but the second method is only valid in four dimensions.

The use of the Seiberg—Witten map can rewrite the non-commutative U (1) gauge theory in
terms of the abelian field strength. This is amazing and surprising. An equation of motion in
the non-commutative U (1) gauge theory depends on the gauge potential. Naively, we should en-
counter some difficulties as in the non-abelian gauge theories. But we can use the Seiberg—Witten
map to rewrite our theories in terms of the abelian field strength to avoid these problems in the
non-commutative U (1) gauge theory. This possibly reminds us that we can perform some oper-
ations in the non-abelian gauge theories from some hidden symmetry structures. However, we
cannot use the Seiberg—Witten map in the non-commutative U (N) gauge theory to perform the
same electric-magnetic duality. Although the non-commutative U (1) gauge theory has a non-
abelian-like structure, the non-abelian-like structure comes from the derivative operation. This
non-abelian-like structure is still different from the non-abelian structure. If we can find a way
to relate the gauge potential via field redefinition in the non-commutative U (1) gauge theory, we
might apply this method to the non-abelian gauge theories. We will introduce this method in the
next section.

3.3. The third method

We consider the D3-brane in the large NS-NS two-form background. This theory on the non-
commutative space is described by the non-commutative U (1) gauge theory. A well-known fact
is that we can perform the S-duality or electric—magnetic duality to get the D3-brane in the large
R-R two-form background. These two theories in the Poisson limit come from different orderings
of compactified directions in the Nambu—Poisson MS5-brane. Different orderings of compactified
directions should not change physical meaning. We first perform a field redefinition from the
NS-NS D3-brane theory to R-R D3-brane theory [21]. Then we perform an electric-magnetic
duality from the R—R D3-brane theory to the NS—NS D3 brane theory to show their equivalence.

3.3.1. Field redefinition

In this section, we use field redefinition to connect two D3-brane theories [21], which come
from different orderings of compactified directions in the Nambu—Poisson M5-brane theory. The
Nambu—Poisson M5-brane theory is a well-defined theory under the large C-field background.
After we compactify 2-torus, the D3-brane should be well-defined under the large NS—NS two-
form background or large R-R two-form background. From a string point of view, we should use
the electric—magnetic duality to connect them. In other words, we can have a field redefinition to
connect them. Due to this large background, we have two kinds of spacetime directions in our the-
ories. Our conventions of world-volume indices are o, 8 =0, 1, &, v = i, 2 and A,B=0,1, i, 2.
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The dotted indices denote the directions that the NS—-NS B-field (or R-R field) background is
turned on. The large two-form background only opens on two spatial directions. Other compo-
nents of the two-form background are weaker than the large two-form background under the
decoupling limit [21]. An action of the NS-NS D3-brane in the Poisson limit is

_ 1 Uy g Vo e L s
ﬁNS—NS=%<—Z}—O[ﬂ}—a — E‘Faﬂ}—au_zf;lﬂ}—ﬂv ) (59)

We define the non-commutative field strength at the Poisson limit as
Fap=Fyp+g'{ay, ap), 60)

where F)p = daay — dpdy, g ~ 9’12, a’y can be identified as two-form gauge potential of
the Nambu—Poisson M5-brane directly after we perform dimensional reduction, and the Poisson
bracket is defined by

A1), )} =0, f195 fa, (61)

where € 2 2 —621 = 1. Then we introduce an action of the R-R D3-brane in the Poisson limit as
1 1 o1 . 1
2 2

LRR:gYM<_EHij+§FaﬂfaM_ZF;lﬁFuv"'geaﬂfaﬂ)a (62)
where

His = His + glbj, by}, (63)

Faji = (v—l),ﬁ(Fw + ngéaé), (64)

Fop = Fup + g( — Fo;Bg" — Fig By + gFméaﬂéﬂﬂ), (65)

Hiizaﬂb‘l, Vﬂ") ESﬂﬂ—i—gef)iaﬂbi, Fip=04ap — 0gay, (66)
and éa"‘ satisfies

V" <8“b,; — v%é%) + P Fg + ge®P Fy Bg® = 0. (67)

We will use a flat metric 745 to raise or lower indices. When we perform dimensional reduction
in the Nambu—Poisson M5-brane theory to obtain the R-R D3-brane theory, we need to define
ééf , which satisfies the non-linear equation (67), to identify a,. If we want to explicitly write
l%‘ in terms of other fields, we need to use perturbative method because it satisfies a non-linear
equation. However, we do not need to use perturbative method to find a field redefinition in the
Poisson limit. Our field redefinition gives an exact equivalence between the NS-NS D3-brane
and R-R D3-brane theories.

To see the field redefinition between the NS—NS theory and the R-R theory in the Poisson
limit, b in the R-R theory can be identified with “;/1 in the NS—NS theory according to

gy bt =eMal. (68)
Then we have

Fiy = Fi; +¢'la}. a5} = g7 His, (69)
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where we used g%Mg’ = g. We can also find

Fapi = =8y meio (3abﬁ - VfBai) : (70)
where
8h B =M 3yal,. 1)
Let us define
Tl =eapF P er = €ap (8'317,; - Bﬁ"’V;J,l) , (72)

which will be identified with F; in the R-R theory later after duality transformations. After
some change of variables, the Lagrangian (59) is equivalent to

2 2
§ v 8 i?

Lys—ns=— s FP + —YZM FoF "M = —YzMHii’le. (73)

Ym

The next step is to introduce an auxiliary field to dualize Fug. Then the dynamics of the
Lagrangian above is equivalent to the dynamics of the following Lagrangian

2 2 2
<) __8%wm 8ym 1 8YM 4, 400
LG4 = _T¢ +3 "’3}" g+ ST T = S (74)
An equation of motion of ¢ imposes a constraint

gt =For, (75)

which replaces ¢ by F{), so we go back to (73).
Then we use field strength

Fpup = 0pap — 0pay (76)
to replace ¢. We claim that the Lagrangian
2 & g s i3
'C?viv—zvs = sz Fz +3 E ]:aﬁ Fiz + Y2M FonF" " = YZM HisH'? (77

is still equivalent to (73). An equatlon of motion of a;, implies

%(ﬂz—f&)=0~ (78)
We assume that our fields vanish at infinities of the coordinates x*, then we obtain
Fi3 = Fo;.- 79

The last step is to carry out a duality transformation to get a, from a/,. Before that, we expand
the second term in the Lagrangian (77) as

FoiFis = Fy Fis + 8'{ag. ai} Fi
=gty <e“’3 dpa; By + ge*? FiéBaiBg + total derivatives). (80)
Then we replace B," by B, ™ in this Lagrangian and add an additional term

23 1€% fa (éaﬂ - e’waf,a&) (81)
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to perform a duality transformation. The new Lagrangian is equivalent to the previous one (77)
because By " equals to By (71) when the Lagrange multiplier fg; is integrated out. If we
integrate a,, out, we obtain emMy, fgi = 0. This implies that locally fg; = —0d;ag for some
field ag. Therefore, (81) becomes

— g3 €Pd ag By (82)

Now we integrate B, out by the Gaussian integration. This result of the integration is equivalent
to replacing B, " by the solution of its equation of motion (67).
After integrating By* out, (80) can be rewritten as

Siu B Fop (83)
28
up to total derivatives. According to (72), we find
.7:[;/# = ]:0111« (84)

Dynamics of the Lagrangian (77) is exactly equivalent to the dynamics of (62). This Lagrangian
can also be found from the Nambu—Poisson M5-brane theory by dimensional reduction. This
redefinition should imply the meaning of the S-duality or electric—magnetic duality.

3.3.2. Perturbation

We show an electric—-magnetic duality from the R-R D3-brane theory to the NS—NS D3-brane
theory up to the second order. We first mention how to perform the electric-magnetic duality up
to the second order in a general Yang—Mills type theory by perturbation. If the action is

1
g%M/d“x (— 1 FaBFAY +201(Fap) + ngz(FAB))

we can consider

2
g I
/ d*x (— —QM FapFAB + g3,,801(Fap) + 831,8° Q2(Fap) + EGABFAB) (85)

to do the electric—magnetic duality. We add one additional term to promote F4p to an uncon-
strained field. Integrating G = d B out, we obtain d F' = 0. Therefore, we solve d F = 0 to obtain
F = dA to go back to the original theory. We vary F4p to obtain

) ) 1 -
_FAB 4 g 01 g 0> SGAB =0
3Fap SFaB  gyy
or
I~ 801 2 80>
FAB=2—GAB+85FAB+8 SFAB

8ym
Hence, we obtain an action of the form

| 1 < 1 -
/d4x |:4g2 GapG1B +8%Mng<2—GAB> +8%M82Q2<2—GAB>
YM

8ym 8ym

4 2
5 1.\ -
+ S8 0O ( . GAB)%<2—GAB)}. (86)
4 8Gap 8ym oG 8ym
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We used

1 - 4 F) 1 = F) 1 -
Ql(FAB)wQ1<2—GAB>+gYMg e ( 5 GAB> ~QA‘B< - GAB>
8ym 2 5Gap \8y G 8ym

in the above action. We write the action in terms of G 4p as

1
f d*x <— 7GsG +871801(Ga) + 8718° 02(Gan)

8ym
gyug’ 801 © )8Q1 Gun)
4 §5Gag Psgas AP )

We use the above electric-magnetic duality formula to go from the D3-brane in the large R-R
two form background to the non-commutative U (1) gauge theory or the D3-brane in the large
NS-NS two-form background at the zeroth and first orders. This method relies on the fact that
action does not contain gauge potential variables. For this goal, we fix

Bl =p? 0.

The action at the zeroth order is

1
fd“x(— : GABGAB>
A8y m

after we perform the electric-magnetic duality. We integrate b field out before we perform the
electric-magnetic-duality. This result of integration is equivalent to setting

His ~ —Fop.

Then we consider first order correction. The action at the first order is given by
g%Mfd“x (HiieaﬁFaiHﬂbi - %eaﬂFﬂﬁF“ﬂFﬂ” ¥ Fop F7p1 — Fa,lao‘biF"‘i)
up to total derivative terms. We use
pl=91a"2Hy;

to replace bl by Hj;. Then we perform the electric-magnetic duality on this action at the first
order as

1 4 A A ig—24 1 A faf A
—— [ d*x (6“’3G01Ga18/38 07 2Gor — 5eq,gc;,wc;“#c;ﬂ”

2
8ym

— GojiG9"01972G o1 + Gup G 0%0;0; 2(}‘01>. (87)

For the purpose of rewriting a theory for Hj;, we have non-local operators (inverse derivatives) in
our theory. But we know that the non-commutative U (1) gauge theory at the Poisson limit should
be described by local variables. Naively, this implies that we cannot obtain the non-commutative
U (1) gauge theory from this method. We will show that these non-local operators will be can-
celed.
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The first term of the action at the first order is

— d4x(—e“ﬁeayGlzG”zaﬁBla._ZGlz)
1
8ym
1 4 30 aiag—2
=—— [ d* <—6“ﬂeayBiBiGV 9p0'0; 20, Bs
8ym
1 4 2
=—— [ d* (Gﬂ aiBia,gBi). (88)
8ym

The second tern of the action at the first order is

1 » e
— | d'x (—ealgGiiGalG&)
8ym

[ <6ﬂ5G01Gﬂ.G )
2 2%61
8ym

2

1 1
=— [ d* <— EG“ﬁ{Ba, Bg) — eﬂaGmaiBgaﬂBj). (89)
8ym

The third term of the action at the first order is

1 .o . S ..
—— [ d*x (eaﬂﬁﬁealﬂGﬂ”GﬂaMalai 2012)
8ym
1 . o ..
=—— [ d' <eﬂg6aﬁ6°‘yGﬂ”GﬂB”8181 2G12>
8ym
=—— [ d*x <— 3'B”G30°Bs — Gysziale). (90)
8ym

The fourth term of the action at the first order is

1 Y -~ 1 .
—— [ d*x (Gaicﬂa“ai ai—ZGm) =—— [ d* <— GajGO‘a“Bé)

2
8ym 8ym
1
=—— [ d* (gaﬂGOIaiBﬁa“Bj>. o1
8ym
‘We combine all four terms to obtain
1 ; 1
—— ( — G**{Ba, B3} — 5 G {Ba, Bﬂ}>-
8ym

This is the same as the D3-brane theory in the large NS-NS two-form background or non-
commutative U (1) gauge theory at the first order.

Now we consider the second order calculation of the electric—magnetic duality. This is a non-
trivial consistent check due to the cancellation of the non-local operators.

We first express an equation of motion of Hj; up to first order,

Hiy ~ —Fo1 + g A,

where A is a first order correction. Since A contains many non-local operators, we use A to
denote the full terms instead of writing them explicitly. Now we want to obtain Q1(G 4p) and
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07(G 4p) from the zeroth and first orders action after we use the equation of motion of Hj;.
From the action at the zeroth order

1 4 1 .. 1 .
g%Mfd“x (— EHiéHu — ForHis — g Fun F™ = EFa,;F“"),

we can obtain a term
1 1
> d4x ( — —A2> .
8ym 2
where we redefine A by replacing G by G / g%, 0 Q2(G ap). Then the action at the first order
g%M/d“x (e“ﬂHﬁFaiaﬂbl - EeaﬁFﬂf)F““Fﬂ” + Fou F¥3"b" — Fa,la"‘biFW)
implies

1 - P T " - "
0= 4_<e“ﬂcmcaiaﬁalai 2Go1 — €apG 3G GP? — G 1G* G

8ym
~Go3G*19%01072Goy — Gajéiia“aiai—zé()l), 92)
and one term for Q2(G 4op) as
1
—— d*x (A2>, (93)
8ym

where we also redefine A by replacing G by G/ g% - Now we show that A is canceled in our
calculations.

5 1 sy s .
001 _ — ( — €p G GP? — Gaia“aiafc()l)
6Giy  8ym

i (EaﬁcaiGﬁi - E“ﬁGaiaﬁ&)
8ym
= T(G“ﬂaiBaazBﬂ)
8ym
8 1 ~ ; ~ ~ o~ .~ ~ -
~Q1 = 6“560185818.’2G01 — éaﬂGiiGﬂj — ZGMG()l — Gazaiaiaszm
3G g 1 i
ai YM
L i i2
=4 <6aﬂGiiaﬂBi_G01Ga —2e*PG 3G + € Gyi03B; ),
8ym
5 1 . o )
~Ql =1 EQBGiQGﬁi —G*19%9'0:2Go1 — G309, >Gor
G, & 1 i
%) YM
1 .
=" ( — G1G** — GaﬁGﬂiajBQ + G018a32>
8ym
1
=" (GO]BQB‘I - EaﬁGﬁiaiBi>,
8ym
) 1
01 _ L o

‘SGOI 8ym
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4
8 1) 1

Sy SOV OGO _ L ipe phyp,, By,

2 8Gi38Gj;  48yy

gyy 801 801 1

Z1 02 —Gi5Gis9B50P B + Go1Go GG ;
2 5G,; 86 28§M< 1291298229 P2 ai

—4G 43GP2G12G 5 — G4 GP1a; B33 By — 267 G13Go1G 95 B
; ;

+4Gi5Gi3G**3B5 — 2G5G*' 9, B335 B5

+4¢$ Go1G,iG 3G +4Ga26126“18232>,

gyy 801 801 1
2 5G,58G% 28y

<G01 GmajBa 0By — GajGaiﬁiBéaiBi

+2€*P Gy GajajBﬁaij)

gyw 801 801 1

e A2, (95)
2 §Go §GO! 285y

4
g2 ( 1 A2+gYM 5~Q1 5~Q1>
M\ 268, 4 5Gap 8GAB

1
== {B*, BP}{B,, Bg}

2
8ym

1
2312/M

— GﬁiGﬁlaijaiBj — ZéaﬁGiiGol G,id8B5 ~|—4G12G12Ga28a32

+ ( —Gi3Gi308B39” By + G01G01G*' G, —4G 335G G G5

— ZGiiGaiaaBiaiBi + 46aﬂG01GaiGﬂiGii + 4Ga2GiiGai 05B;

+ G()lG()laiBaajBa — GaiGajaijaij =+ 26“5G01Ga2323ﬁ3232). (96)
After using the equation of motion for Hj;, we have non-local operators (A). Nevertheless,

A vanishes in the final result.
Let us start to calculate the action at the second order.

V' =87 + goub", (Vi) P =5,8,
(Vi)  ~ 8,P — gob? + g*d,b" 9;b° . (97)
My = Vs Vi 8% — gl Fyy
=88 + g<(8,1bf, + 8pby )8 — P F,w> + g%0,,b, 5P,
(MM,0) ™ My = 8%35,7,
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e [<8ibﬁ3f’b"‘ + 00 b b +07b 9 + Fy F “)aya

- [(aibﬁ +APLMYF M+ (9,07 + 8‘lbp)Fi/ii|€yaj|. (98)

Byt = (Mop™")™! (W”aﬂbé + eﬂym),
V,)daﬁb(, + GﬁyFy\) = aﬂb,) + EﬂVF),\', —i—ga‘)bdaﬁbd,
By & 0yb* 4 eqp FPP

+ g< — 3D 0y — €4 0" by FPY — €50, b" FPY
+ EaﬂF'l.“.}aﬁb\} + Fllf)FafJ)

+¢2 (3'{)[)'&8{)[7[38,1@} + eap FPP0PbP3by + €qp FPP 9P b0, by

+6aﬁFﬁf)3’ébﬂ3;)bi) —ea,ng,-,allbﬁaﬁb* —Eaﬁprjap.b/laﬁbﬁ
— EaﬁF’)‘pZ)f)pr)ﬂbf, — Fm',pr)Z)’lbp' — Fm;pr)apb/l
— FaﬂF"“’a,;b" — Fm',Fﬂ'éaf)b/; + F/;I)F’lpaabb

+eap FPUFy; Fﬂf’>. (99)

fa;l = (V;lf))_l (Fozf) +gFf;(§éa5>a
Fup + 8F,;5By® = Foy + g(Ff)(gZ)abS + eaﬂFmFﬁ5>

+ g2< — Fy50Pb° by, — €qp Fy50°by FPP — eqp Fy5050° FPP
+ €ap Fo3 F*P3Pby 4 Fy5 FOP Fa,-,),

Fuip = Fujp + (g<1ﬂl$zawaS + €ap Fps FP — Fwaﬂbﬁ>
+¢° < — F50°b°00b; — €apF30°bp FPP — €qpF50,;b° FPP
teapF o3 FP0Pbs + F s FOP Foy — Fisdub®d;b"

apl s 14 s ap 06 O n

— eapFys FP0,b" + a,lbﬁa,;bﬁFw) (100)

We calculate g3 d*x L F, Fo" ) at the second order.
YM 27 ap
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1 .
g%M/d“x <§faﬁf““)

- g%M/d“x <— F,sF*' Hi5(0%9;0; 7 His) — 3¢*P F, s F*' Fy His

.. 3 3 . . ..
+ 26, F2 Py (99010 His) + 5 Fa ' Fy; 0 — € F i F2 Fys Hi

3 i i (q2n a2

+ S Foi F* His His + Fos F* (97007~ His) His
1 3 2 2

+ 3 F3i F™ (0a010] " Hi3) (990;0; " Hi3)

1 - ) S
5 Foi 1 (9501077 His) (9%0197* Hi)

— F5i F*' (30070, 7 Hi3) (99 9{2Hiz))-

Then we calculate Fg at the third order because we have one term ie”‘ﬂ Fap in our Lagrangian.

Fup = Fup +g< — FopBgh — ﬂﬂéaﬂ> + 82 Fui By Bg". (101)
We first calculate —F; 5 éa"‘ at the second order.
—Fyp Bo"
—  —Fiz0'b'8'bj0ubi — €ay FipF"10"b101b; — cay Fiz F19°b18;b;
i 50y, 31 i

—ewFiﬁFV”a b 0;by ~|—€ayFiﬁF218 b'3"b +6aijﬁF 0 biaybi

+ FigF3 F'20'bj + FigFag FP"0pb" + FipFi F**05b" + Fyz Foiy F*'9b;

— Fi4F3F20b" — €qy FpFV"Fy FP (102)

~

Then we calculate Fj; Ba” élg" at the first order.
Fﬂﬁéa’lé/g{)
- (— € Fi3dab 920 FP1 + €5, Fizdub F2107b; + Fisdub' F2 Fyj
Cpr2eipla b g gl o Fe Fl9plE A

— €y F5{ FY20'0 0pbi — Fuy FgR0 b F,; — Fsi Fg20,b' Fy
+ Fis Fg  F210ybi + €qy Fui FY* F"P Fg s + €q,, Fi0pb" 8%b; F*!
— €ap Fi30pb" F18°bj — Fi305b' F?'F,; + €p, F3i FY3'b' 8,
+ F,-wFa"‘abblFm + FjiFa28pb1F/3'é

— Fi3Fy Flp; — eﬁyF,l,;F”’lFf’pFap>. (103)

Hence, we obtain g%, M f d*x (ﬁe“ﬁ ]-'a,g> at the second order.
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glz,Mfd“x (ée“ﬂfa;;)
N g%M/d“x <—e“ﬂFiﬂHinij(aaaiaszié)+3FiﬂFﬂ1H12HiQ
+2F;, FPL (020,072 His) Hys + Fiy FP1(0%0;072 Hys) (0501972 )
— 2Fj, Fi (020,072 Hy) (070072 Hys) — 2F3u F2 His (99907 Hyy)
+ 66" iy F,y F12 Hy + Fi3 (96010, 2 His) F*' (%010, Hy)
+ 3¢ Fi3 (90002 Hi3) FY Fyi —2F FWFW}FM) (104)

Let us show the term g7,, [ d*x (%fw]—"""‘ + ﬁe“ﬂfaﬂ)

oy / d*x (%faﬂf‘m + ée“ﬁfaﬁ)
— &y / d*x <Fa2FiiH12(8“818;2H12) + 3¢ F s F2 1 Fyg Hys
— P F, FI2Fy; (059,072 Hi3) - %Fa,;F’mFSDF“ﬁ
— i F 2 Fys Hiy — %FaiFaiHiiHii — FF! (0°010, Hi) His
- %inFii(3a313{2Hiz)(3“313f2H12)
- %FaiFai (95019, Hi) (00707 Hi)
+ Fyi F1 (3,070, 2 Hi) (9079, 2 H)
—6""3FiﬁHinij(aaBiBi_zHij)). (105)
Then we use the equation of motion Hj; ~ — Fy; to express our action in terms of F.

ﬁlFOI

g%M/d“x <FaijiF01 (991072 For) — 3¢*P Fs FH1 g
+ P i FI2Fy (99072 For) — %FWFMFMFW +ePF FI2Fys Foy
- %FaiF“iFO]Fm — Fo3 F (820,02 For) For
= %FjiFii (381072 For) (9% 97972 For) — %FaiF"‘i (3591972 For) (6%0; 97 Fon )

+ F3j F*' (96,0077 For) (8%00; % For) + €* Fj 4 For Fon (aaaiai—zFo])). (106)

Now we replace F in terms of G.



1006

2
8ym

J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019
dhx (Gaiéii Gon (60,07 2Gor) — 3¢ G 3G G 4y Goy
+Gaﬂéaiéiiéji(aﬂaiafzéo]) - %Gauéﬂgégbéa‘a +Gaﬂ(~;aiéijéﬁi(~;o1
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+ EGQQG“ZGiQGii ~G,,GY'9?B;G5 — 5Go1Go19eB30" B
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*3
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Then we combine other terms.

1

8ym

d*x [ — €GP G01G 597 Bs — 364p G G01 GP2G 5 + G*2G1 G104 By
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—4G53GP2G12G 3 — G GP ;B335 By — 260 G13Go1G o9 B3
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To sum up, we obtain an expected answer at the second order. The calculations of the electric—
magnetic duality at the second order use the equation of motion to replace H by F. This is not
equivalent to integrating out exactly. At the zeroth and first orders, we can perform the electric—
magnetic duality exactly. At the second order, the electric—-magnetic duality is a consistent check



J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019 1007

at classical level. Even for the classical consistent check, this is a non-trivial check for the equiv-
alence between the R-R D3 and NS—-NS D3 brane theories. The most difficult part is that the
expansion for the R-R D3-brane theory up to the second order in this method. We eventually
obtain the beautiful answer from the magical cancellation. The reason possibly comes from the
covariant field strengths in the R—-R D3-brane theory. Physical answer should only depend on
on-shell degrees of freedom. It is why we have such a magical cancellation. This calculation is
also interesting in the study of the non-local effects. If we do not employ any gauge fixing, we
should find inverse derivative terms in our theory after performing the electric-magnetic duality.
However, we find a consistent answer without the inverse derivative terms after gauge fixing.
This implies that the non-local terms are not real physical non-local effects. These non-local
effects just originated from gauge redundancy. We use gauge fixing to remove these inverse
derivative terms. This result might have more physical implications in the gauge theory. The
electric—magnetic duality is an equivalence between gauge coupling and inverse gauge coupling
constants. This means that electric-magnetic duality is a non-perturbative duality. Our successful
step is that we use g to carry out the expansion. Small g limit is equivalent to a large background
limit. This expansion should avoid strong coupling problems. Although the non-commutative
U (1) gauge theory has a non-abelian-like structure, the non-commutative U (1) gauge theory is
still different from the non-abelian Yang-Mills theory. However, we can use the first method
to perform the electric—magnetic duality on the non-abelian Yang-Mills and non-commutative
U(1) gauge theories. This shows that the first method should be a general way to perform the
electric-magnetic duality. We will give more generic examples to perform the electric-magnetic
duality by using the first method. The most interesting problem is to study the non-abelian gauge
group in the third method. The motivation is a consistent construction of the multiple M5-branes
theory. However, we encounter difficulties to apply this method to the non-abelian gauge group.
When we perform the field redefinition in the non-commutative U (1) gauge theory, we will dual
a scalar field to a new field strength. We cannot use the same method in the non-abelian gauge
group. This technical problem is similar with the Poincaré lemma in the non-abelian gauge the-
ories. In our perturbation study, this method also encounters a similar problem. We believe that
a consistent multiple M5-branes theory should have a totally different construction compared
with the single M5-brane theory. The reason is due to the fact that the electric-magnetic dual-
ity in the non-abelian gauge group is different from the electric—-magnetic duality in the abelian
gauge group. The multiple M5-branes theory should have a consistent electric—-magnetic dual-
ity in four dimensions after performing compactification on 2-torus. Thus, we believe that the
multiple M5-branes theory possibly cannot be extended from the single M5-brane theory di-
rectly.

In the second method, we use the Seiberg—Witten map to rewrite the non-commutative U (1)
gauge theory from the commutative variables. Therefore, we obtain a similar form after we per-
form the electric-magnetic duality. In the third method, we always perform the electric—-magnetic
duality on the non-commutative space without using any commutative variables. Because they
can be connected from the electric-magnetic duality or field redefinition, they should be equiv-
alent theories after we perform the second and or third types electric-magnetic duality in the
large background limit. Because the R-R D3-brane has a complicated action with the non-local
inverse derivative operator. We should expect that we can use the perturbation method with re-
spect to the non-commutativity parameter to find a non-local field redefinition to rewrite the R—R
D3-brane with a compact form rewritten from the Poisson bracket. However, the non-local field
redefinition is very hard to find systematically. When we use the perturbation to perform the
electric—magnetic duality from the R—R D3-brane to the NS-NS D3-brane, we also use some



1008 J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019

techniques to remove non-local operators. If we consider the electric—magnetic duality from the
NS-NS D3-brane to the R—R D3-brane, then the non-local operators will appear in our com-
putation to bother us. Even if we know that it should work, the non-local operators have very
difficult technique problems. In principle, we should determine their relations from perturbation
methods at least up to the first order with respect to the non-commutativity parameter in the large
background limit. We leave this interesting direction to the future.

When we discuss the third method, we identify the NS-NS field with the R-R field. It is an
interesting point because the second method needs to rewrite our theory in terms of the abelian
field strength. Hence, the second method must be failed when you consider the non-abelian
gauge theories. However, we find that the field redefinition and perturbation in the third method
still cannot be extended to the non-abelian gauge theories for some steps because we need to dual
a scalar field to a new field strength.

4. Electric-magnetic duality in p-form gauge theories and a non-commutative theory
with the non-abelian structure

In this section, we extend the first method of the electric-magnetic duality that we used in
the non-commutative U (1) gauge theory to the p-form theories and a non-commutative theory
with the non-abelian structure. These studies should give a general extension to various types of
simple theories.

4.1. Abelian p-form theory
The simplest abelian p-form theory is
1
Samp=—2 57 f AP T2X gty FH2 101 (107)

2¢2y (p+ D!

where F = dA. We introduce an antisymmetric auxiliary field G, y,....,,,,- The action can be
rewritten as
2

(p+1!
Then we integrate A out to obtain

2
m/'DGeXp [ig%M/dszrzx (GMM”_MHIGlllllz'"/h>+1>i|5(3vlGU1V2“'Vp+1>'

242 (2
/d Py (gYMGMIMZ'"MpHGMMZ et — I Mp+lFMlM2"'ﬂp+l)' (108)

(109)

Solving the delta function is equivalent to finding

dG =0. (110)
According to the Poincaré lemma, we get

G =dA. (111)
Hence, we find

8 )2’M 2p+2. A A
TP ED] / PP Gy G112, (112)
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Then we obtain
aﬂlFMlMZ“'H/H—l =0 <« amémuz---ﬂpﬂ =0 (113)

at classical level. Therefore, we generalize the electric-magnetic duality from one-form to
p-form gauge potential in the abelian group. We can extend the electric—magnetic duality of
the abelian p-form to all dimensions. Starting from

2
2 [ DGe it [ #5525 (G ) o600

(114)
Introducing an auxiliary field A to rewrite the partition function as
A : Zg%’M 2p+2 M2 Upt1
DGDACXP lm d X G#IMZ“'H«,;-HG P
+(p+ 1)A/42M3'~Mp+1amemm”"“>]’ (115)
where A is zero-form when p = 0. The last step is integrating G out to get
2
8ym 2p+2 .. Fa LDyt 10
O [ G G (116)

Because we do not use the Poincaré lemma to solve the delta function, we can extend the electric—
magnetic duality to all dimensions for the abelian p-form theory in this method. This method can
also be applied to the non-abelian p-form theory.

4.2. Non-abelian p-form theory
The non-abelian p-form theory is

1 2
- _ p+2 a K12 Up+1,a
SNABp = 2g)2,M TERI /d X FMIFLZ"'IL;H—l F ! , (117)

where F = DB, D =d + A, where A is one-form gauge potential and B is p-form gauge po-
tential (If p =1, B = A). We introduce an antisymmetric auxiliary field, G-y, to rewrite
the action as
2 d2r+2 2. Ga GMHB2 - fpt1,a _ GHIM2 - Ipt1,d @
(p+ D! X A\8YMY pipnppir RikaRpt1 )
(118)

We integrate A out to get

2
/'DG exp |:ig%’M Y /d2p+2x <sz2mup+lGM1M2~"Mp+1»a):|5(Dv1GV1V2"'Vp+1>

(119)

for p # 1. Now we add one auxiliary field A to rewrite the Lagrangian as

2
DGDA exp iﬂ AP (G GRREprna
(p+ 1)! K12 HLp+1

DBy, D G0 ) | e
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Then we integrate G out to obtain the dual Lagrangian

2
8ym 2p4+2 . A - s
_2 (p n 1) ! /d Pr2y GZlu2~~Mp+1GMM Hp+1 a, (12])
where G = DA. We obtain
Dy FMH2lpi1d — () « s D, GHH27Hpi1d — () (122)

at classical level after we have performed the electric—magnetic duality. One can find that the
electric—magnetic duality of the non-abelian one-form theory is more special than non-abelian
higher-form theory. In the non-abelian one-form theory, the covariant derivative is also changed
by the electric-magnetic duality, but the covariant derivative of the non-abelian higher-form the-
ory does not. For a covariant property of the non-abelian higher form theory, we need to introduce
an one-form gauge potential. This gauge potential is not affected by the electric—magnetic du-
ality. But if one integrates this non-dynamical gauge potential out, this gauge potential should
be related to the dynamical gauge potential. The dynamical potential should be affected by the
electric-magnetic duality. We can explain that the electric-magnetic duality only duals the dy-
namical degrees of freedom in this method. Because we do not use the Poincaré lemma in the
non-abelian p-form theory, this method can be applied to all dimensions in the non-abelian
p-form theory although we denote dimensions to be 2p + 2 in our computations for each p.

4.3. Non-commutative theory with the non-abelian structure

We start from

SNCNA = — / dx Fo, s FHe, (123)

2
48y m
where I:“l‘jv = BMA?, — BVAZ + [Aw AU]Z, A,L = AZT", T satisfies

T(lTb _ TbTa — fabcTc’ T(lTb + TbTa :dabcTc’ (124)

[A,L, Av]* = [AM, Av]i T“, and * is the Moyal product.

We rewrite our action by introducing an antisymmetric auxiliary field e

I
S= /d4x (g%MéZV « GHPa _ G ﬁ;jv) . (125)
We ignore the total derivative terms to express our action as
5= [ dx (ghuGl, G - Greky,)
= [ [ uGibene — Goe (s g 41 Aot
~ [ as [g;Mé;;Uéw ~ e fauds i g A

Uvofa 7 a2 <)
+ 5077 (9 Audo Ay — 3,418, Ay
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_ / dtx (g3 G, G +2Gm 3, AL — po e Al A
b Ay, Abg A
_ Jabegpo Guy aapAMBUA,f)
—/d4x ( 2 éa é,uv,a —729 é,uv,aA"a _fabc(";uv,aA"b A"c
= 8ymY v v " nov
_i_dabcepo[izapéuv,aag/i‘c)') , (126)

where we consider the Poisson limit for the Moyal product and ignore total derivative terms. We
used the antisymmetric property of G, and 6”7, and integrate by part in our calculations. The

action is quadratic in the field A so we can use the Gaussian integral (13) to integrate A out.
The partition function is given by

zZ~ f DG (detM)_% exp |:ig)2,M/d4x (éfwé’“”“ — 9, GHra (M_I)Zbl)BAG”)"b>],
(127)

where

Muvibe — _g%Mfabcéuv,a + g%Mdabcgpa apé/w,aaa = _f/abcéuv,a + dabcépd apé/w,aag.
We use AZ = (M_l)ffl’, 8pf}”p'b to let G*"“ satisfies the equation of motion in the Poisson limit
as

avé«vu,a + M;w,abA‘b) =0
=>avévu,a _ f/ach;w,cA€ +dabc§paapéuv,cagAlS =0
=0,G" +[A,,G""]+{A,, G"} =0, (128)

where A, = T“Ag and GV = TeGvia.
Then we ignore total derivative term to rewrite the action as

fd“x GHaFa (A) ~ g%Mfd“x éf”"‘(aufi‘; — 8y AL + fP AL AS +{A,, Av}“)

_ d4 _Zép,u,aa Aa /abcé;w,aAb Ac

= X v M‘l‘f wAy
+d“bcé“”’“§"“apfizagéﬁ>

—/d4x (28 Guv,aAa +f/abcéuv,aA_b A_c

—_ v " Mmooy
_dabcAb épcra éuu,aa A'c

" 4 oty
:/d“x <2avéf”’“(M—1)Z’;apé*ﬂ~”
—1\be o Adp, b —1\¢d o Acs.d

_(M )MaﬂG P C(M )uaa‘SGJ )

- / d*x 9,6 (M8 8,60,
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where we used integration by part, and AZ =M _l)fﬁ BpG”p'b . This term is equal to the second
term in (127). Therefore, we obtain alternative form of the partition function as

Z~ / DG (det M)~ ? / DA exp (ig%/ u / d*x (GZVGW“ - éﬂ”»“ﬁgV(A)D
x 8 <2Aj; —2MH aﬁ”“), (129)
where the factor of 2 does not affect the calculation. The delta function can be expressed as

5Q2A —2M~136) =5(M—1(2MA—236;)), (130)

where A = Aﬁ, M= (M~ I)Zh and 3G = 3, G*%. We used the matrix notation to simplify

our index notations. This extracts an additional factor det M out of the delta function after inte-
grating. Hence, we obtain

7~ / DG (det M)? / DADA exp [ig%m f d*x [é;véﬂ”’“ — GMVFS (A)

— A% <2M‘”’”b/i"j — 2apéﬂpﬁa>”. (131)

Now we simplify the term in the last bracket as

/d4x 2[1\;1 <M‘”’“b,§€ — 3PGW”“)}

4 ,ab 1b Aup,
/d x <2AZM‘“’“ A7 +28,,AZG“” “)
d*x

Jol
foul
j
j

zf/abLAuAbG,uUL+2dabcAl)9,0Ua G/LV La Ab+2a AaGupu

2f /“’”G’”“AbA” 2d“bCé“”vCéP“apAzaaA’;+2apAZc’}ﬂﬂ’“>

d*x [2 ([AV,AM] +{A,, A} >+2(8VAZ)GMv,a]

4 A
d*x <2G’“’ (D )AM)“>

= /d4x (—2@”’“(fo>1\”)“>, (132)

where we define D,(LA) 0=9,0+ [AM, O+ {Aﬂ, O}and A, = AZ T4. Substitution of this term
into the partition function gives

z %/DG (det M)?

X /DADA exp |:ig12/M/.d4x [é””’“ <éfw — ﬁsv(fi) +2(D&A)Av)a)]:|. (133)
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Let us define a variable A W= A w — Ay The field strength can be written as
Fuo(A) 2 0, (Ay + Ay) = 00(A + M) +TAL + Ay Ay + A+ (A + Ay, A+ Ay)
= Ay = 0 A+ [Aus Al + (A Ay} + 83 Ay — B Ay +[Ay, A
(A Au]+ [Aps AT+ (A, A} 4+ (A Ay} 4+ (A, A
= Fun (D) + DDA, = DDA + (A, AT+ {Ap, Ay), (134)

where F = F9T. Thus, we obtain
Z%/DG (detM)% /DADA exp |:ig,2,M/d4x [G‘“”“ <G;’w - I:";jv(A)

- [A;u Av]a - {A[l,a Av}a>i|:|

= / DG (det M)? / DA exp [ig%m / d*x [é“”’“(éj‘w - ﬁ,ﬁfv(fi)ﬂ]
x /DA exp[—ig%m/d“x [éﬂ”’“ ([AM,AU]“ —{—{AM,AU}“)H

=/DG (det M)? /DA exp ig%M/d“x [é““*“(éﬁv - ﬁgV(A)ﬂ]
x/DA exp [ig%M/d“x

:/DG (detM)%/DA exp iglz,M/d4x [G‘“”“(éfw —ﬁﬁV(A)XI]
x / DA exp (ig%,M / d*x AZMW“bA’;>

~ / DGDA exp [ig%M / d*x [GW(GW - ﬁw(ﬁ))ﬂ. (135)

We eventually integrate the field A out and obtain a factor (det M)~!/2 to cancel the factor
(det M)'/2 in front of the measure. This calculation shows

1 T

dabcAZépa apé;w,aaaAlc) _ f/abcAZ(";uv,aAlc})}

DPEM(A)=0 «— DM (A)=0 (136)

at classical level. This method does not use the Poincaré lemma, we can extend from four
dimensions to all dimensions. Although the non-abelian structure is different from the non-
commutative structure, we can use the first method of the electric-magnetic dualities in the
non-commutative U (1) gauge theory to define the electric—magnetic duality for this kind of the-
ory. Other methods cannot be applied to this theory. The second method of the electric-magnetic
dualities in the non-commutative U (1) gauge theory relies on the Seiberg—Witten map. If a theory
has a non-abelian structure, then this theory should have degrees of freedom on gauge potentials.
When we perform the field redefinition to relate two theories for the non-commutative U (1)
gauge theory in the third method, the field redefinition is related to the gauge potentials. From
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this point of view, we can use this method to perform the electric-magnetic duality for a theory
with the non-abelian structure. Unfortunately, this method still relies on a dual. This dual is valid
for the ordinary derivative. When considering the covariant derivative, this dual cannot be used.
For non-abelian gauge theories, we do not know how to define a covariant field strength by using
the ordinary derivative. The third method naively uses a field redefinition, which is related to the
gauge potentials, to perform the electric-magnetic duality, but it still relies on some properties
that exist only in the abelian gauge theories. This study shows that the non-abelian gauge theo-
ries have a more delicate structure than the non-commutative structures in the electric-magnetic
dualities.

The most interesting aspect in the electric-magnetic dualities should be the multiple
M5-branes theory. A low energy effective theory of the multiple M5-branes does not have a
suitable or totally consistent Lagrangian formulation. If we compactify two torus with different
ordering, we obtain two multiple D3-branes theories. Two multiple D3-branes theories should
be related to each other via the electric-magnetic duality or S-duality. A consistent electric—
magnetic duality should motivate us to find the multiple M5-branes theory. In our studies, we
use some ways to find a suitable or workable definition. We should define an electric—magnetic
duality related to gauge potentials, but this is not enough. We also need to understand how
to dual a scalar field to field strength in non-abelian gauge theories. These difficulties should
also appear in the construction of the multiple M5-branes theory. From our results, we find
that the electric—-magnetic dualities of non-abelian gauge theories should be totally different
from the electric-magnetic dualities of abelian gauge theories. This points out the form of the
multiple M5-branes should be very different from the single M5-brane theory. If we perform
the electric-magnetic duality by the first method, it should not be hard to find the consistency
for the Lagrangian formulation between the NS—NS multiple D3-branes and the R—R multiple
D3-branes. Based on the T-duality, we can find the R—R multiple D p-branes for the Lagrangian
formulation. They should be easy to construct. The most difficult thing is how to find the multiple
M5-branes such that we can get the multiple D3-branes in the NS-NS or R—R backgrounds by
compactification. The problem comes from the dualization for the non-abelian gauge theories.
This problem also occurs in the electric-magnetic dualities. A study of the electric—magnetic
duality reveals the main problem for the Lagrangian formulation of the multiple M5-branes. We
leave the further studies in the multiple M5-branes to future works.

5. Discussion and conclusion

We study the electric-magnetic dualities in gauge theories by using path integration. The
electric—magnetic duality for the abelian Yang—Mills theory can be understood as exchanging
electric and magnetic fields in path integration like the Maxwell’s equations. We define the
electric-magnetic duality for the abelian Yang—Mills theory by

~ 1 ~
pF" =0 «— 9, F" =0, dF =0 — F, = EEWWFW. (137)

The first relation is an invariant equation of motion under the electric-magnetic duality and the
second relation relates the field strength to the dual field strength in four dimensions by us-
ing the Poincaré lemma. Especially for the second relation, this is a strong condition to restrict
dimensionality for the electric-magnetic dualities in path integration formulation. If we want
to define the electric—-magnetic dualities without using the second relation, we can extend the
electric-magnetic dualities from four dimensions to all dimensions. Naively, this is still a suit-
able definition for the electric—-magnetic dualities. One should think about the degrees of freedom



J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019 1015

between the electric and magnetic fields. In the abelian one-form Yang—Mills theory, we have an
equal number of degrees of freedom in both the electric and magnetic fields in four dimensions.
This means that the electric—-magnetic dualities lose the standard meaning in other dimensions
(other than four dimensions). In four dimensions, we have possibilities to find a map between the
electric (or magnetic) field and dual magnetic (or electric) field. But we do not have this kind of
map in other dimensions. If we want to maintain the standard meaning of the electric—-magnetic
dualities, the Poincaré lemma should be important. If we only replace d by D =d + A in the
Poincaré lemma, this lemma should not be valid without putting in more conditions. Then a
direct generalization from the abelian Yang—Mills theory to the non-abelian Yang—Mills theory
should be impossible. A definition or operation must have workable or calculable properties.
Before we give a clever definition, we use a workable or calculable definition without using
too restricted conditions. In other words, we only use the first condition to define the electric—
magnetic dualities in non-abelian gauge theories. This might not be a smart definition to define
the electric-magnetic dualities in non-abelian gauge theories, but this should be calculable. A
smart definition should have a restriction on dimensionality without losing the standard meaning
of the electric—-magnetic dualities. However, we do not have this kind of lemma at non-abelian
level. Even without this lemma, the electric—-magnetic dualities still exchange strong and weak
coupling constants for the non-abelian gauge theories in this method. We can map the ordinary
gauge theories to the dual gauge theories by exchanging the ordinary and dual gauge fields, and
using ordinary electric and magnetic fields simultaneously to find the dual electric or magnetic
fields. A main problem in the non-abelian gauge theories comes from the covariant property.
In the abelian gauge theories, the equations of motion do not depend on gauge potentials, but
the non-abelian gauge theories do. This is why we lose the Poincaré lemma in the non-abelian
gauge theories. Dependence on gauge potentials implies that exchanging the electric and mag-
netic fields is not a suitable operation for the electric—-magnetic dualities. But this does not mean
that we cannot have a modified Poincaré lemma to put restrictions on dimensionality. We be-
lieve that the electric-magnetic dualities should work in four dimensions with equal degrees of
freedom between the electric and magnetic fields for the non-abelian Yang—Mills theory. The
non-abelian p-form theory has one interesting feature in the electric—magnetic duality. In order
to have a gauge covariant property, we need to introduce a non-dynamical gauge potential except
for the one-form gauge potential. Then we find that the electric—-magnetic duality does not dual
the non-dynamical degrees of freedom. Since electric—magnetic dualities have different physical
meanings for different methods, we perform three methods on the non-commutative U (1) gauge
theory and compare their different physical implications. The non-commutative U (1) gauge the-
ory has a non-abelian-like structure which comes from the Moyal product and this theory can be
described by the field strength without using gauge potentials. The non-commutative U (1) gauge
theory simultaneously has two interesting properties so we can compare meanings in different
electric-magnetic dualities. In the first method, we do not have restrictions on dimensionality,
but we have the same form of action after performing the electric-magnetic duality. The ordi-
nary electric and magnetic fields, and dual electric and magnetic fields are covariant quantities.
From a symmetry point of view, electric and magnetic fields being covariant field strength should
be nice. In the second method, we use the Seiberg—Witten map to rewrite our theory in terms of
abelian field strength. This symmetry structure helps us to avoid difficulties of the non-abelian-
like structure. Due to this rewriting, we have restrictions on the number of dimensions. In the
third method, we consider large background limit in the non-commutative theories. We use field
redefinition and perturbation to study the electric—magnetic duality. If one naively performs the
electric—magnetic duality, one will find non-locality in the dual action. However, this non-locality
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should not be real because we can use a suitable gauge fixing to remove them. We perform the
exact calculation up to the first order. At the second order, our calculations only concern the
classical information. The electric-magnetic dualities did not extend to this order due to the non-
Gaussian effects being difficult to handle. However, we obtain a consistent result and give a string
interpretation to this duality. The electric-magnetic dualities invert the coupling constant so we
cannot use the perturbation method to study the electric-magnetic duality. The primary reason
is due to the fact that our perturbative parameter is the non-commutativity parameter (large anti-
symmetric background). Even if we go into the strongly coupled regime under electric-magnetic
duality, the dual effective theory is still a well-defined theory under the decoupling limit. In
this comparison, one should find that the non-commutative U (1) gauge theory is different from
the non-abelian gauge theories although they have the similar structure. Due to this reason, we
also perform the electric-magnetic dualities in the non-commutative theory with the non-abelian
structure. The first method we used in the non-commutative U (1) gauge theory is still applicable
in this kind of model. This kind of theory should have some applications in the multiple branes
theory. This is also our motivation to study the non-commutative theory with the non-abelian
structure. However, our studies should provide a generic analysis for electric-magnetic dualities
in path integral formulation.

One important problem related to the electric-magnetic dualities is the multiple M5-branes.
One consistency check in the multiple M5-branes theory is on the multiple D3-branes for the
electric—magnetic dualities after compactifying 2-torus with different orderings. A low energy
effective theory of the multiple D3-branes on the non-commutative space should be the non-
commutative Yang—Mills theory at leading order. If we believe that the first method we used in
the non-commutative U (1) gauge theory is a good definition for the electric-magnetic dualities,
we already obtained the consistency for the electric-magnetic dualities. One problem in the mul-
tiple D p-branes is the effective action in a large R-R background limit. So far we did not have a
consistent action based on gauge symmetry, T-duality and S-duality in the Poisson limit. Based
on these conditions, this model should not be difficult to construct. The main non-trivial consis-
tency is an expected duality between two-form gauge potential in the multiple M5-branes and
one-form gauge potential in the multiple D4-branes. We leave this interesting work to the future.

The Nambu—-Poisson M5-brane provides a R—R D3 brane from dimensional reduction. Be-
cause the Nambu—Poisson M5-brane is valid at the second order, the R—R D3-brane cannot go
beyond this order. A conjecture for the full order is given, but symmetry (gauge symmetry and
supersymmetry) is not totally understood to all orders. A complete study should give a com-
plete action. This should give us a motivation to check the electric-magnetic duality for the R—-R
D3-brane to all orders. This study should motivate many low-energy effective theories in many
different aspects.

The most important and fundamental issue is how to improve definition of the electric—
magnetic dualities for the non-abelian gauge theories. In abelian gauge theories, we relate electric
(magnetic) fields to dual magnetic (electric) fields in path integral formulation. From an equation
of motion in the non-abelian Yang—Mills theory, exchanging electric and magnetic fields should
not be a suitable operation for the electric-magnetic dualities in the non-abelian Yang—Mills
theory. When treating an one-form gauge potential in the electric—magnetic duality, one has a
non-trivial determinant factor in partition function. Based on this non-trivial factor, a modified
Poincaré lemma is difficult to define in path integral formulation. We have a no-go theorem [37]
to show that the electric-magnetic duality cannot be performed on the non-abelian Yang—Mills
theory with an invariant equation of motion and the Poincaré lemma. However, a condition of
restricting dimensionality allows us to keep the standard meaning for electric-magnetic duali-
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ties. The other approach is to modify the definitions of the electric and magnetic fields in the
non-abelian gauge theories. A quantity which can be observed should be gauge invariant. We
do not insist on a gauge covariant definition for field strength. A main problem in the electric—
magnetic dualities of non-abelian gauge theories comes from the gauge covariant property. The
gauge covariant property also lead to the ambiguities of the entanglement entropy. The entan-
glement entropy [38—45] in gauge theories is not a gauge invariant quantity in a tensor product
decomposition of the Hilbert space. A proposal is to consider non-tensor product decomposi-
tion with a non-trivial center between two regions. In the abelian gauge theories, this proposal
should be well-understood. For the non-abelian gauge theories, the entanglement entropy may
suffer from the gauge covariant problem. Defining a gauge invariant entanglement entropy will
be difficult. This direction should help us understand more about holograph, black hole, and
thermal entropy [46—50]. Candidates of gauge invariant quantities are det(F) and Wilson loop.
A full gauge invariant construction should be interesting and could affect our understanding of
gauge theories from different ways. Another approach of electric—magnetic duality is to include
all spin fields with general relativity [51]. In this case, we do not use duality rotation to perform
the electric—magnetic duality.

References

[1] J.P. Gauntlett, D. Martelli, D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002,
http://dx.doi.org/10.1103/PhysRevD.69.086002, arXiv:hep-th/0302158.
[2] B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993)
33-152, http://dx.doi.org/10.1016/0550-3213(93)90388-6, arXiv:hep-th/9206084.
[3] M. Saadi, B. Zwiebach, Closed string field theory from polyhedra, Ann. Phys. 192 (1989) 213, http://dx.doi.
org/10.1016/0003-4916(89)90126-7.
[4] C. Hull, B. Zwiebach, Double field theory, JHEP 09 (2009) 099, http://dx.doi.org/10.1088/1126-6708/2009/09/099,
arXiv:0904.4664.
[5] O. Hohm, C. Hull, B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016,
http://dx.doi.org/10.1007/THEP07(2010)016, arXiv:1003.5027.
[6] W. Siegel, Two-vierbein formalism for string-inspired axionic gravity, Phys. Rev. D 47 (1993) 5453-5459,
http://dx.doi.org/10.1103/PhysRevD.47.5453, arXiv:hep-th/9302036.
[7] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 28262837, http://dx.doi.org/
10.1103/PhysRevD.48.2826, arXiv:hep-th/9305073.
[8] C. Hull, B. Zwiebach, The Gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090,
http://dx.doi.org/10.1088/1126-6708/2009/09/090, arXiv:0908.1792.
[9] O. Hohm, C. Hull, B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008,
http://dx.doi.org/10.1007/THEP08(2010)008, arXiv:1006.4823.
[10] C.-T. Ma, C.-M. Shen, Cosmological implications from O(D,D), Fortschr. Phys. 62 (2014) 921-941, http://dx.doi.
org/10.1002/prop.201400049, arXiv:1405.4073.
[11] C.-T. Ma, One-loop B function of the double sigma model with constant background, JHEP 04 (2015) 026,
http://dx.doi.org/10.1007/JHEP04(2015)026, arXiv:1412.1919.
[12] C.-T. Ma, Gauge transformation of double field theory for open string, Phys. Rev. D 92 (2015) 066004,
http://dx.doi.org/10.1103/PhysRevD.92.066004, arXiv:1411.0287.
[13] M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610, http://dx.doi.org/10.1016/0550-
3213(90)90520-N.
[14] A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991)
395-440, http://dx.doi.org/10.1016/0550-3213(91)90266-Z.
[15] A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163-174,
http://dx.doi.org/10.1016/0370-2693(90)91454-J.
[16] W. Siegel, Manifest Lorentz invariance sometimes requires nonlinearity, Nucl. Phys. B 238 (1984) 307, http://
dx.doi.org/10.1016/0550-3213(84)90453-X.
[17] C.-T. Ma, Boundary conditions and the generalized metric formulation of the double sigma model, Nucl. Phys. B
898 (2015) 30-52, http://dx.doi.org/10.1016/j.nuclphysb.2015.06.019, arXiv:1502.02378.


http://dx.doi.org/10.1103/PhysRevD.69.086002
http://dx.doi.org/10.1016/0550-3213(93)90388-6
http://dx.doi.org/10.1016/0003-4916(89)90126-7
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://dx.doi.org/10.1007/JHEP07(2010)016
http://dx.doi.org/10.1103/PhysRevD.47.5453
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://dx.doi.org/10.1088/1126-6708/2009/09/090
http://dx.doi.org/10.1007/JHEP08(2010)008
http://dx.doi.org/10.1002/prop.201400049
http://dx.doi.org/10.1007/JHEP04(2015)026
http://dx.doi.org/10.1103/PhysRevD.92.066004
http://dx.doi.org/10.1016/0550-3213(90)90520-N
http://dx.doi.org/10.1016/0550-3213(91)90266-Z
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://dx.doi.org/10.1016/0550-3213(84)90453-X
http://dx.doi.org/10.1016/j.nuclphysb.2015.06.019
http://dx.doi.org/10.1016/0003-4916(89)90126-7
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://dx.doi.org/10.1002/prop.201400049
http://dx.doi.org/10.1016/0550-3213(90)90520-N
http://dx.doi.org/10.1016/0550-3213(84)90453-X

1018 J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019

[18] M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford U., 2003, arXiv:math/0401221.

[19] N. Hitchin, Generalized Calabi—Yau manifolds, Q. J. Math. 54 (2003) 281-308, http://dx.doi.org/10.1093/
qjmath/54.3.281, arXiv:math/0209099.

[20] S. Gurrieri, J. Louis, A. Micu, D. Waldram, Mirror symmetry in generalized Calabi—Yau compactifications, Nucl.
Phys. B 654 (2003) 61-113, http://dx.doi.org/10.1016/S0550-3213(03)00045-2, arXiv:hep-th/0211102.

[21] P.-M. Ho, C.-T. Ma, S-duality for D3-brane in NS-NS and R-R backgrounds, JHEP 11 (2014) 142, http://dx.doi.
org/10.1007/JTHEP11(2014)142, arXiv:1311.3393.

[22] D.S. Berman, M.J. Perry, Generalized geometry and M theory, JHEP 06 (2011) 074, http://dx.doi.org/10.1007/
JHEP06(2011)074, arXiv:1008.1763.

[23] P-M. Ho, Y. Matsuo, M5 from M2, JHEP 06 (2008) 105, http://dx.doi.org/10.1088/1126-6708/2008/06/105,
arXiv:0804.3629.

[24] P-M. Ho, C.-T. Ma, C.-H. Yeh, BPS states on M5-brane in large C-field background, JHEP 08 (2012) 076,
http://dx.doi.org/10.1007/THEP08(2012)076, arXiv:1206.1467.

[25] P.-M. Ho, C.-T. Ma, Effective action for Dp-brane in large RR (p-1)-form background, JHEP 05 (2013) 056,
http://dx.doi.org/10.1007/THEP05(2013)056, arXiv:1302.6919.

[26] C.-T. Ma, C.-H. Yeh, Supersymmetry and BPS states on D4-brane in large C-field background, JHEP 03 (2013)
131, http://dx.doi.org/10.1007/THEP03(2013)131, arXiv:1210.4191.

[27] J.-K. Ho, C.-T. Ma, Dimensional reduction of the generalized DBI, Nucl. Phys. B 897 (2015) 479499, http://
dx.doi.org/10.1016/j.nuclphysb.2015.05.026, arXiv:1410.0972.

[28] B. Zwiebach, Curvature squared terms and string theories, Phys. Lett. B 156 (1985) 315, http://dx.doi.org/10.1016/
0370-2693(85)91616-8.

[29] J.G. Russo, M.M. Sheikh-Jabbari, On noncommutative open string theories, JHEP 07 (2000) 052, http://dx.doi.org/
10.1088/1126-6708/2000/07/052, arXiv:hep-th/0006202.

[30] O.J. Ganor, G. Rajesh, S. Sethi, Duality and noncommutative gauge theory, Phys. Rev. D 62 (2000) 125008,
http://dx.doi.org/10.1103/PhysRevD.62.125008, arXiv:hep-th/0005046.

[31] R. Banerjee, A note on duality symmetry in nonlinear gauge theories, Phys. Lett. B 576 (2003) 237-242, http://
dx.doi.org/10.1016/j.physletb.2003.09.094, arXiv:hep-th/0308162.

[32] Y. Abe, R. Banerjee, I. Tsutsui, Duality symmetry and plane waves in noncommutative electrodynamics, Phys. Lett.
B 573 (2003) 248-254, http://dx.doi.org/10.1016/j.physletb.2003.08.057, arXiv:hep-th/0306272.

[33] H. Garcia-Compean, O. Obregon, C. Ramirez, Pursuing gravitational S duality, Chaos Solitons Fractals 10 (1999)
373, http://dx.doi.org/10.1016/S0960-0779(98)00199-4, arXiv:hep-th/9807188.

[34] O. Ganor, J. Sonnenschein, The ‘dual’ variables of Yang—Mills theory and local gauge invariant variables, Int. J.
Mod. Phys. A 11 (1996) 5701-5728, http://dx.doi.org/10.1142/S0217751X96002625, arXiv:hep-th/9507036.

[35] M.B. Halpern, Field strength formulation of quantum chromodynamics, Phys. Rev. D 16 (1977) 1798, http://
dx.doi.org/10.1103/PhysRevD.16.1798.

[36] M.B. Halpern, Gauge invariant formulation of the selfdual sector, Phys. Rev. D 16 (1977) 3515, http://dx.doi.org/
10.1103/PhysRevD.16.3515.

[37] S. Deser, C. Teitelboim, Duality transformations of Abelian and non-Abelian gauge fields, Phys. Rev. D 13 (1976)
1592-1597, http://dx.doi.org/10.1103/PhysRevD.13.1592.

[38] H. Casini, M. Huerta, R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036,
http://dx.doi.org/10.1007/THEP05(2011)036, arXiv:1102.0440.

[39] J. Maldacena, L. Susskind, Cool horizons for entangled black holes, Fortschr. Phys. 61 (2013) 781-811, http://
dx.doi.org/10.1002/prop.201300020, arXiv:1306.0533.

[40] A. Lewkowycz, J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090, http://dx.doi.org/10.1007/
JHEPO08(2013)090, arXiv:1304.4926.

[41] S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006)
181602, http://dx.doi.org/10.1103/PhysRevLett.96.181602, arXiv:hep-th/0603001.

[42] A. Kitaev, J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404, http://dx.doi.org/
10.1103/PhysRevLett.96.110404, arXiv:hep-th/0510092.

[43] M. Levin, X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006)
110405, http://dx.doi.org/10.1103/PhysRevLett.96.110405.

[44] H. Casini, M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007, http://
dx.doi.org/10.1088/1751-8113/42/50/504007, arXiv:0905.2562.

[45] D.V. Fursaev, S.N. Solodukhin, On the description of the Riemannian geometry in the presence of conical defects,
Phys. Rev. D 52 (1995) 21332143, http://dx.doi.org/10.1103/PhysRevD.52.2133, arXiv:hep-th/9501127.

[46] R.C. Myers, M.J. Perry, Black holes in higher dimensional space-times, Ann. Phys. 172 (1986) 304, http://
dx.doi.org/10.1016/0003-4916(86)90186-7.


http://refhub.elsevier.com/S0550-3213(16)30161-4/bib4775616C74696572693A323030336478s1
http://dx.doi.org/10.1093/qjmath/54.3.281
http://dx.doi.org/10.1016/S0550-3213(03)00045-2
http://dx.doi.org/10.1007/JHEP11(2014)142
http://dx.doi.org/10.1007/JHEP06(2011)074
http://dx.doi.org/10.1088/1126-6708/2008/06/105
http://dx.doi.org/10.1007/JHEP08(2012)076
http://dx.doi.org/10.1007/JHEP05(2013)056
http://dx.doi.org/10.1007/JHEP03(2013)131
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.026
http://dx.doi.org/10.1016/0370-2693(85)91616-8
http://dx.doi.org/10.1088/1126-6708/2000/07/052
http://dx.doi.org/10.1103/PhysRevD.62.125008
http://dx.doi.org/10.1016/j.physletb.2003.09.094
http://dx.doi.org/10.1016/j.physletb.2003.08.057
http://dx.doi.org/10.1016/S0960-0779(98)00199-4
http://dx.doi.org/10.1142/S0217751X96002625
http://dx.doi.org/10.1103/PhysRevD.16.1798
http://dx.doi.org/10.1103/PhysRevD.16.3515
http://dx.doi.org/10.1103/PhysRevD.13.1592
http://dx.doi.org/10.1007/JHEP05(2011)036
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1007/JHEP08(2013)090
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1103/PhysRevLett.96.110405
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1103/PhysRevD.52.2133
http://dx.doi.org/10.1016/0003-4916(86)90186-7
http://dx.doi.org/10.1093/qjmath/54.3.281
http://dx.doi.org/10.1007/JHEP11(2014)142
http://dx.doi.org/10.1007/JHEP06(2011)074
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.026
http://dx.doi.org/10.1016/0370-2693(85)91616-8
http://dx.doi.org/10.1088/1126-6708/2000/07/052
http://dx.doi.org/10.1016/j.physletb.2003.09.094
http://dx.doi.org/10.1103/PhysRevD.16.1798
http://dx.doi.org/10.1103/PhysRevD.16.3515
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1007/JHEP08(2013)090
http://dx.doi.org/10.1103/PhysRevLett.96.110404
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1016/0003-4916(86)90186-7

J.-K. Ho, C.-T. Ma / Nuclear Physics B 909 (2016) 980-1019 1019

[47] T. Jacobson, G. Kang, R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587-6598, http://dx.doi.org/
10.1103/PhysRevD.49.6587, arXiv:gr-qc/9312023.

[48] R. Emparan, C.V. Johnson, R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev.
D 60 (1999) 104001, http://dx.doi.org/10.1103/PhysRevD.60.104001, arXiv:hep-th/9903238.

[49] M. Brigante, H. Liu, R.C. Myers, S. Shenker, S. Yaida, Viscosity bound violation in higher derivative gravity, Phys.
Rev. D 77 (2008) 126006, http://dx.doi.org/10.1103/PhysRevD.77.126006, arXiv:0712.0805.

[50] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999)
1113-1133, Adv. Theor. Math. Phys. 2 (1998) 231-252, http://dx.doi.org/10.1023/A:1026654312961, arXiv:hep-th/
9711200.

[51] S. Deser, D. Seminara, Duality invariance of s > % fermions in AdS, Phys. Lett. B 738 (2014) 323-324, http://
dx.doi.org/10.1016/j.physletb.2014.09.058, arXiv:1409.3545.


http://dx.doi.org/10.1103/PhysRevD.49.6587
http://dx.doi.org/10.1103/PhysRevD.60.104001
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/j.physletb.2014.09.058
http://dx.doi.org/10.1103/PhysRevD.49.6587
http://dx.doi.org/10.1016/j.physletb.2014.09.058

	Electric-magnetic dualities in non-abelian and non-commutative gauge theories
	1 Introduction
	2 Review of the electric-magnetic duality in the abelian and non-abelian Yang-Mills theories
	2.1 Abelian Yang-Mills theory
	2.2 Non-abelian Yang-Mills theory

	3 Electric-magnetic dualities in the non-commutative U(1) gauge theory
	3.1 The ﬁrst method
	3.2 The second method
	3.3 The third method
	3.3.1 Field redeﬁnition
	3.3.2 Perturbation


	4 Electric-magnetic duality in p-form gauge theories and a non-commutative theory with the non-abelian structure
	4.1 Abelian p-form theory
	4.2 Non-abelian p-form theory
	4.3 Non-commutative theory with the non-abelian structure

	5 Discussion and conclusion
	References


