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The structures of calcium-activated neutral protease (CANP) and its endogenous inhibitor elucidated re- 
cently have revealed novel features with respect to their structure-function relationship and enzyme activity 
regulation. The protease is regarded as a proenzyme which can be activated at the cell membrane in the 
presence of Ca 2 + and phospholipid, and presumably regulates the functions of proteins, especially mem- 
brane-associated proteins, by limited proteolysis. Protein kinase C is hydrolysed and activated by CANP 
at the cell membrane to a cofactor-independent form. These results are reviewed and the possible involve- 

ment of  CANP in signal transduction is discussed. 

Ca 2 +-dependent protease; Enzyme inhibitor; Proenzyme activation; Protein kinase C 

1. I N T R O D U C T I O N  

C A N P  is a typical intracellular cysteine protease 
and absolutely requires Ca 2+ for  activity (for 
reviews see II-61 and references cited thereink 
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Abbreviations: CANP, calcium-activated neutral pro- 
tease. The terms calpain, calcium-dependent protease 
(CDP), and calcium-activated protease (CAP) are also 
used. To denote the two isozymes, I and II are some- 
times used in place of/z and m, respectively. Calpastatin 
is another name for the CANP inhibitor 

C A N P  exists ubiqui tously in fairly large amounts  
in various tissues and cells o f  vertebrates and is 
presumed to  funct ion in various fundamenta l  
cellular events mediated by Ca 2+, e.g. activation o f  
enzymes like kinases, turnover  o f  myofibri l lar  pro-  
teins, regulation o f  funct ion o f  cytoskeletal pro- 
teins, receptors for  hormones  or  growth factors,  
etc. [1-6]. Recently,  studies on C A N P  have been 
st imulated significantly by the recognit ion o f  im- 
por tan t  roles for  Ca 2+ as a second cellular messen- 
ger. This review will summarise  mainly recent 
results (since 1985) on the structure and funct ion 
o f  C A N P  and its endogenous  inhibitor,  a long with 
the activation o f  p r o C A N P  at the cell membrane ,  
and hypothesise about  its biological funct ion in the 
activation o f  protein kinase C. 
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2. GENERAL P R O P E R T I E S  OF CANP 

At least two isozymes with different calcium sen- 
sitivities exist: /z- and mCANPs  active at micro- 
and millimolar Ca 2÷, respectively [1-61. Both 
CANP isozymes have been isolated f rom various 
tissues and cells of  mammals .  The concentration of  
Ca 2÷ for 50°7o activity is 2-75/zM for /zCANP and 
0.2-0.8 mM for m C A N P  [2]. Their properties, 
other than calcium sensitivity, are quite similar. 
CANP is fully active in the neutral pH region only 
in the presence of  reducing reagents such as mer- 
captoethanol.  The activity is inhibited by thiol 
group-modifying reagents and Ca2÷-chelating 
reagents (e.g. EGTA).  Leupeptin, antipain, and 
E64 (an epoxysuccinyl derivative) are potent in- 
hibitors [7]. It should be noted that the active-site 
SH group is buried in the molecule and exposed to 
the surface by a conformational  change induced 
upon binding of  Ca 2÷ [21. The presence of  Ca 2÷ is 
essential for the reaction of  CANP with inhibitors 
as well as substrates. 

Limited proteolysis is a typical feature of  the ac- 
tion of CANP [3,6]. It hydrolyses protein sub- 
strates only to large fragments, not to small 
peptides or amino acids. It has no strict require- 
ment for the sequence of  the cleavage sites, 
although a relative preference for large 
hydrophobic residues such as leucine and valine in 
the P2 site is suggested [8,9]. CANP apparently 
recognises higher-order structures of  protein 
substrates. 

3. STRUCTURE OF CANP 

CANP is a heterodimer composed of  a large (80 
kDa) catalytic and a small (30 kDa) regulatory 
subunit [1-6]. /~- and mCANPs  f rom the same 
source have distinct but similar 80 kDa subunits, 
whereas their 30 kDa subunits are identical [10]. 
The structures of  rabbit [ l l ]  and human/~-  [12] 
and mCANPs  [6], chicken [13] 80 kDa subunits, 
and rabbit [14], human [6] and porcine [15] 30 kDa 
subunits have been established by cDNA cloning. 
The gene structures of  the chicken 80 kDa [16] and 
human 30 kDa [17] subunits have also been deter- 
mined. 

The 80 kDa subunit ( - 7 0 0  residues) comprises 
4 domains ( I - IV from the N-terminus) [13] and the 
30 kDa subunit ( - 2 7 0  residues) is composed of  at 

least two domains (V and IV '  from the N-ter- 
minus) [14]. Domain I (residues 1-80 in the 
chicken 80 kDa subunit) masks the active-site cys- 
teine residue and is processed during activation of 
the proenzyme. The 80 kDa subunit o f /~CANP is 
larger than that of  mCANP,  a fact that is ascribed 
to a difference in the size of  domain I. Domain II 
(residues 81-330) is a cysteine protease domain 
containing the active-site Cys-108 and His-265 
residues that are highly conserved among various 
other cysteine proteases. The protease activity of  
C A N P  is ascribed to domain II but the function of 
domain III  (residues 331-560) is not clear. Do- 
mains IV (residues 561-705) and IV '  (residues 
99-268 of  the human 30 kDa subunit), calmodulin- 
like domains with 4 EF hand structures, are related 
with 50°7o sequence homology. These domains 
bind Ca 2+ and regulate the activity of  domain II. 
Domain V (residues 1-70) is a glycine-rich 
hydrophobic domain. The glycine content in this 
region is about  6007o and the amino acids other 
than glycine are mostly hydrophobic.  This domain 
is essential for the interaction with micelles of  
phospholipids, potential activators of  CANP in 
vivo. 

Studies on the binding of  C a  2+ t o  intact CANP 
are difficult due to rapid autolysis of  the enzyme in 
the presence of  Ca 2+. Experiments with CANP 
fragments corresponding to the calmodulin-like 
domains expressed in E. coli have shown that two 
molecules of  Ca 2+ bind to each of the three 
calmodulin-like domains in rabbit CANP,  and that 
their apparent  average binding constants decrease 
in the order of  t h e / t C A N P  80 kDa, m C A N P  80 
kDa, and 30 kDa subunits [18]. Thus, the calcium 
sensitivity of  CANP is essentially ascribed to the 
amino acid sequence of  the EF hand structure. 

Domain II,  like other cysteine proteases, should 
be active without C a  2+ when it is isolated from the 
whole CANP molecule. However,  integration of  
this domain into the whole molecule represses or 
inhibits the protease activity through interaction 
with other domains.  A conformational  change in- 
duced by the binding of  C a  2+ to domains IV and 
IV '  removes the repression so that the intrinsic 
protease activity is expressed. To confirm this 
working hypothesis on the role of  Ca 2+ in the ac- 
tivation of  CANP,  it is essential to show that do- 
main II itself has proteolytic activity in the absence 
of  Ca 2+ . 
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4. ACTIVATION OF THE PROENZYME 

CANP,  as judged from its calcium sensitivity, is 
inactive at physiological intracellular Ca 2+ concen- 
trations. However, CANP undergoes very rapid 
autolysis in vitro in the presence of  Ca z+ to 
generate an autolysed CANP with increased 
calcium sensitivity that is presumably active in 
vivo. This autocatalytic activation is observed in 
CANPs from various sources [19]. Native CANP 
appears to be an inactive proenzyme that can be 
converted to an active enzyme by autolysis. In fact, 
native CANP exhibits a lag phase in the hydrolysis 
of  substrate, whereas the autolysed active form 
shows linear rates of  substrate degradation [20,21]. 
Moreover, under appropriate conditions, autolysis 
of CANP precedes hydrolysis of  substrates [22]. 
These results are consistent with the assumption 
that native CANP is an inactive proenzyme. Treat- 
ment with other proteases does not mimic this 
autocatalytic activation of CANP. The calcium 
sensitivity of native CANP observed in vitro cor- 
responds to the concentration of  Ca z+ required for 
autolysis and not for actual proteolysis. The 
autolysed CANP requires micromolar Ca 2+ for ac- 
tivity. 

The autocatalytic activation of  CANP is not af- 
fected by the presence of  substrate or the concen- 
tration of  CANP, indicating that the activation is 
an intramolecular process [20,21]. During auto- 
lysis, the N-terminal regions of  both subunits (do- 
mains I and V) are modified [19]. In the case of  
rabbit CANP,  about 20 residues are removed from 
the N-terminus of  the 80 kDa subunit, and domain 
V is completely removed from the 30 kDa subunit. 
Hybridisation experiments between native and 
autolysed CANPs have shown that modification of  
the 80 kDa subunit is obligatory for the change in 
calcium sensitivity [19]. Modification of the 30 
kDa subunit does not alter the enzyme activity, 
although contradictory results suggesting the im- 
portance of  the 30 kDa subunit in the CaZ+-de - 
pendent regulation of enzyme activity have been 
obtained, mainly from kinetic studies [20,21]. 

In vitro, mCANP requires millimolar Ca 2+ for 
autolysis, making autolysis unlikely under physio- 
logical conditions. Coolican and Hathaway [23], 
however, found that phospholipid reduces the 
Ca z+ concentration needed for autolysis from a 
millimolar to a near micromolar level. Phospho- 

lipid has no effect on the autolysis of CANP 
devoid of  domain V, indicating the importance of 
this domain for interaction with phospholipid 
liposomes and probably with biological mem- 
branes [24]. The following mechanism for the ac- 
tivation of CANP in vivo has been hypothesised 
(see fig.l) [25,26]. CANP,  i.e. proCANP,  exists 
mainly in the cytosol. When the concentration of  
Ca 2+ increases to a near micromolar level, the 
hydrophobic regions of  CANP are exposed to the 
surface by binding of  Ca 2+ and the enzyme 
translocates to the cell membrane. Autolysis of  
CANP occurs at the membrane in the presence of 
Ca 2+ and phospholipid, and CANP becomes ac- 
tive as a membrane-bound enzyme. Association of  
CANP with the membrane is inhibited by EDTA 
or an endogenous CANP inhibitor. For the in- 
teraction of CANP with the cell membrane, do- 
main V may also be important [19]. Bound CANP 
can be dissociated from the membrane by EDTA 
or endogenous CANP inhibitor. The activation of 
CANP at the membrane is inhibited by lowering 
the temperature or by the presence of  leupeptin. 
The activated form of CANP has never been 
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Fig.l. A model for the proteolytic activation of 
proCANP and protein kinase C (PKC) at the cell 
membrane. Stimulation of receptor (R) by outer stimuli 
(a) induces hydrolysis (b) of inositol phospholipids (PI) 
to generate diacylglycerol (DAG) and inositol phosphate 
(IP3), which releases Ca 2+ from an internal store (c). In 
the presence of micromolar concentrations of Ca 2÷, 
both proCANP and PKC associate with the membrane 
(d,e). Binding to the membrane results in the 
autocatalytic activation of proCANP (f), which then 
hydrolyses PKC into PKM and a 35 kDa fragment (g). 
CANP and PKM are liberated from the membrane (h,i) 
and may function in the cytosol. CANP inhibitor 
inhibits the binding of CANP and promotes the release 
of CANP from the membrane. Asterisks indicate a 

catalytically active enzyme species. 
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isolated f rom tissues. It may be unstable or only a 
small port ion of  p roCANP may be activated under 
ordinary conditions. 

5. AN E N D O G E N O U S  I N H I B I T O R  OF CANP 

Like other cellular proteases, an endogenous 
protease inhibitor that specifically inhibits CANP 
coexists with CANP in the cytosol [27]. In some 
cases, this inhibitor is found associated with 
cellular organelles [28]. The inhibitor can be 
classified into two molecular species with different 
molecular masses on SDS gel electrophoresis. The 
smaller species (70 kDa) exists in erythrocytes 
while the larger one (110 kDa) exists in liver, heart, 
and most other tissues [28,29]. Both inhibitors in- 
hibit more than one molecule of  CANP,  implying 
the presence of  multi-domains for inhibition. The 
small inhibitor is presumed to be a derivative of  the 
large one, because their properties are in- 
distinguishable except for the stoichiometry of  in- 
hibition. We determined the complete structure of  
the m R N A  encoding the rabbit liver CANP in- 
hibitor [30] and analysed the partial structures of  
the two inhibitors at the protein level [31]. The 
structures of  the liver and erythrocyte inhibitors 
correspond to sequences f rom residues 80 and 290, 
respectively, of  the pr imary translation product 
composed of  718 residues as shown in fig.2. The 

two inhibitors are derived f rom the same precursor 
by different processing events. Since the CANP in- 
hibitor has no apparent  structural homology to 
other known protease inhibitors, it may represent 
a new class of  protease inhibitors. Thus, the 
mechanism for inhibition of  CANP may be dif- 
ferent f rom that of  other inhibitors. The pr imary 
translation product of  the inhibitor contains four 
tandemly repeated structures of  about  140 residues 
(fig.2). The erythrocyte and liver inhibitors com- 
prise 3 and 4 repeats, respectively, which corre- 
spond to the number  of  molecules of  CANP 
inhibited by the two inhibitors [31,32]. In addition, 
each domain expressed in E. coli inhibits one 
molecule of  CANP.  Therefore,  the repeating unit 
shown in fig.2 is a functional unit of  inhibition 
[30-32]. A peculiar T I P P E Y R  or a homologous se- 
quence seen in each of the repeats is the presumed 
reactive site for inhibition. Similar repetitive do- 
mains have been reported for the pig inhibitor 
[34,35]. 

The CANP inhibitor inhibits/~- and mCANPs  
equally regardless of  their origins by forming a 
complex in the presence of  Ca 2÷ [27,33]. This in- 
hibition is reversible and both active inhibitor and 
C A N P  can be recovered by dissociation of  the 
complex [33]. CANP is not inhibited by cystatins, 
typical cysteine protease inhibitors. Conversely, 
the CANP inhibitor does not inhibit other cysteine 
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Fig.2. The structure of the primary translation product of the CANP inhibitor. Four internal repeats (I-IV) are shown, 
Corresponding regions are denoted by the same form of shading, the borders of domains are tentative. Asterisks show 

the position of a TIPPEYR or a homologous sequence. 

274 



Volume 220, number 2 FEBS LETTERS August 1987 

proteases. Kininogen is exceptional among cysteine 
protease inhibitors and inhibits both CANP and 
other cysteine proteases [36]. 

6. BIOLOGICAL FUNCTION 

As discussed, CANP is considered to function in 
various Ca2+-mediated cellular processes as a pro- 
cessing protease. Among the many protein sub- 
strates hydrolysed in vitro, protein kinases are the 
most intriguing. The activities of  various kinases 
increase rather than decrease following hydrolysis 
by CANP [1-6]. These include protein kinase C (C 
kinase), phosphorylase kinase, pyruvate kinase, 
cAMP-dependent kinase, protease-activated ki- 
nase, etc. 

Protein kinase C (PKC) is a key enzyme in trans- 
membrane signalling [37,38]. Various results in- 
dicate that PKC exists in an inactive, soluble form 
and translocates from the cytosol to the membrane 
in response to Ca 2+ mobilisation. PKC is activated 
at the membrane by forming a quaternary complex 
with Ca 2+, membrane-associated phospholipid 
and diacylglycerol or its analog (phorbol ester). 

PKC (80 kDa) can also be irreversibly activated 
in vitro by digestion with CANP to produce a 50 
kDa fragment (PKM) which is active in the absence 
of  Ca 2÷ and phospholipid [37]. A micromolar level 
of  Ca z+ induces the translocation of  both CANP 
and PKC to isolated neutrophil membranes [39]. 
Association with membranes results in the activa- 
tion of CANP, which then catalyses the proteolytic 
conversion of PKC to PKM as shown in fig. 1. This 
proteolytic activation of PKC has been observed in 
other systems in response to the tumor-promoting 
phorbol ester TPA [40], phorbol myristic acid [41], 
TPA plus a Ca z÷ ionophore [42], etc. Proteolytic 
activation of  PKC appears to be essential for ex- 
ocytosis of  granule enzymes in neutrophils, while 
the presence of  leupeptin, a potent inhibitor of  
CANP, enhances the production of  oxygen radi- 
cals and release of  a serine protease from neutro- 
phils stimulated by a low concentration of TPA.  
These results reflect the essential role of  native 
membrane-bound PKC [43]. 

Although the behaviour of PKC varies among 
cells and tissues, and depending on the nature of  
stimuli, PKM can be detected in most cases in 
which PKM accumulates predominantly in the 
cytosol [41]. It is, therefore, clear that CANP 

degrades PKC. The critical point, however, is 
whether the proteolysis of  PKC is physiologically 
important, or whether it is simply a degradation of  
active PKC [44]. 

We have recently analysed the structure of  rab- 
bit PKC [45]. The results show for the first time 
that PKC, which has been considered to be unique, 
is a mixture of  at least four molecular species 
[46-48], and that the expression of  these species 
varies significantly among cells and tissues. These 
molecular species may have different substrate 
specificities and affinities for cofactors, such as 
phospholipid, Ca 2+, and diacylglycerol. There- 
fore, the extent of translocation to the cell mem- 
brane, the mode of  association with membranes, 
and thus the activation might be different among 
molecular species of PKC. These differences will 
affect the susceptibility to CANP. PKC shows 
diverse responses among cells and tissues to 
stimulation by external stimuli [37,38]. For exam- 
ple, translocation and down-regulation of PKC in- 
duced by TPA vary with the concentration of 
TPA,  time, and cell type. Diverse responses of 
PKC can be explained, at least partly, in terms of 
the molecular diversity of  PKC, which suggests the 
existence of  multiple signalling pathways where 
distinct types of PKC are involved. Determination 
of  the levels of  PKC molecular species and the 
ratio of  each in cytosolic and membrane fractions 
in various tissues and cells, which  vary with the 
physiological state, are needed to clarify this point. 

Structural studies [45-48] indicate that PKM 
corresponds to the C-terminal catalytic domain of  
PKC which is highly homologous to the catalytic 
domain of other protein kinases. The other frag- 
ment ( - 3 5  kDa) [491, produced concomitantly 
with PKM, is the N-terminal regulatory domain 
containing a binding site for diacylglycerol and 
possibly those for Ca 2+ and phospholipids. CANP 
hydrolyses the region connecting the two domains 
in PKC. The activity of the kinase domain is 
negatively controlled by the regulatory domain, 
and cofactors repress the negative control. This 
situation is similar to that predicted for the control 
of the activity of  the protease domain in CANP. 

PKM species derived from different PKC mole- 
cular species, though their activities are cofactor- 
independent, may have different substrate specifi- 
cities, and when released from the membrane, can 
phosphorylate a number of intracellular protein 
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substrates other than membrane-bound proteins. 
The 35 kDa fragment remains in the membrane 
[491. Since no extreme hydrophobic regions are 
found in the fragment or PKC, a membrane-  
binding domain(s) may be induced upon binding 
of  cofactors. This fragment may play some role in 
signal transduction, because it binds phospho- 
lipids, diacylglycerol and Ca 2÷. It is worth men- 
tioning that this fragment has cysteine-rich tandem 
repeats [46-49]. Similar cysteine-rich repeats are 
found in receptors and DNA-binding proteins. It is 
tempting to speculate that this fragment or PKC 
binds DNA and modulates its expression. It is like- 
ly that both PKM and the 35 kDa fragment may 
have biological functions. I f  so, the degradation of  
PKC by CANP is a physiological process. 

7. C O N C L U D I N G  REMARKS 

CANP first attracted attention as a protease that 
catalyses the degradation of  muscle proteins. It is 
true that CANP is responsible for muscle atrophy 
in muscular dystrophy [2,3]. There is now increas- 
ing evidence that indicates its importance in a 
number  of  cellular functions. Although significant 
progress has been achieved recently in studies on 
the structure-function relationship of  CANP and 
its inhibitor, its biological function has remained 
obscure. Unfortunately,  CANP has not been 
found in yeast or bacteria. Nevertheless, since 
cDNA, genomic DNA and antibodies for CANP 
and its inhibitor are available, a variety of  ap- 
proaches  for analysing the biological function of  
CANP are now feasible. It is hoped that the 
physiological function will be clarified in the near 
future. 
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