Complexity results for explanations in the structural-model approach

Thomas Eiter a,*, Thomas Lukasiewicz b,a

Abstract

We analyze the computational complexity of Halpern and Pearl’s (causal) explanations in the structural-model approach, which are based on their notions of weak and actual cause. In particular, we give a precise picture of the complexity of deciding explanations, \(\alpha\)-partial explanations, and partial explanations, and of computing the explanatory power of partial explanations. Moreover, we analyze the complexity of deciding whether an explanation or an \(\alpha\)-partial explanation over certain variables exists. We also analyze the complexity of deciding explanations and partial explanations in the case of succinctly represented context sets, the complexity of deciding explanations in the general case of situations, and the complexity of deciding subsumption and equivalence between causal models. All complexity results are derived for the general case, as well as for the restriction to the case of binary causal models, in which all endogenous variables may take only two values. To our knowledge, no complexity results for explanations in the structural-model approach have been derived so far. Our results give insight into the computational structure of Halpern and Pearl’s explanations, and pave the way for efficient algorithms and implementations.

Keywords: Causal model; Probabilistic causal model; Weak cause; Explanation; \(\alpha\)-partial explanation; Partial explanation; Explanatory power; Complexity

© 2003 Elsevier B.V. All rights reserved.

* Corresponding author.

E-mail addresses: eiter@kr.tuwien.ac.at (T. Eiter), lukasiewicz@dis.uniroma1.it (T. Lukasiewicz).

1. Introduction

The automatic generation of explanations plays an important role in many AI areas like planning, diagnosis, natural language processing, and probabilistic inference. Notions of explanations have been studied quite extensively in the literature, see especially [21, 28, 45] for philosophical work, and [29, 33, 48] for work in AI that is related to Bayesian networks. A critical examination of such approaches from the viewpoint of explanations in probabilistic systems is given in [6].

In a recent paper [25, 27], Halpern and Pearl introduced an elegant definition of causal explanation in the structural-model approach, which is based on their notions of weak and actual cause [25, 26]. They showed that this notion of causal explanation models well many problematic examples in the literature. The main idea is that an explanation is a fact that is not known for certain but, if found to be true, would constitute a cause of the fact to be explained, regardless of the agent’s initial uncertainty. An important note is that Halpern and Pearl’s notion of causal explanation is very different from the concepts of causal explanation which have been considered in other works in AI, e.g., in [22, 23, 37, 38, 50].

Informally, the basic idea behind the structural-model approach is that the world is modeled by random variables, which may causally influence each other. The variables are divided into background variables, which are influenced by factors outside the model, and observable variables, which are influenced by background and observable variables. This latter influence is described by functions for the observable variables. The following is a simple example due to Halpern and Pearl [25–27], which illustrates the structural-model approach.

Example 1.1 (Arsonists). Suppose two arsonists lit matches in different parts of a dry forest, and both cause trees to start burning. Assume now either match by itself suffices to burn down the whole forest. We may model such a scenario in the structural-model framework as follows. We assume two binary background variables U_1 and U_2, which determine the motivation and the state of mind of the two arsonists, where $U_i = 1$ iff arsonist i intends to start a fire. We then have three binary variables A_1, A_2, and B, which describe the observable situation, where $A_i = 1$ iff arsonist i drops the match, and $B = 1$ iff the whole forest burns down. The causal dependencies between these variables are expressed by functions, which say that the value of A_i is given by the value of U_i, and that $B = 1$ iff either A_1 or A_2 is 1. These dependencies can be graphically represented as in Fig. 1.

Causes and explanations for events, such as $B = 1$ (the whole forest burns down), are defined by considering the values of variables in the above model and certain hypothetical variants (see Sections 2.2, 3.1, and 4.1). For example, arsonist 1 starting a fire is a (weak and an actual) cause of the whole forest burning down under every possible context in which arsonist 1 intends to start a fire. Moreover, arsonist 1 starting a fire is an explanation

![Fig. 1. Causal graph.](image-url)
of the whole forest burning down relative to the set of all possible contexts in which either
arsonist intends to start a fire.

For more examples and extensive background on structural causal models, we refer
especially to [2,20,24,40,41].

While the semantic aspects of explanations in the structural-model approach have been
thoroughly studied in [25,27], a study of their computational properties is missing so far.
In their papers, Halpern and Pearl were not concerned with algorithms for computing
explanations, and thus the issue of how explanations can be (as efficiently as possible)
computed remains to be considered. An important step towards resolving this issue is an
analysis of the computational complexity of explanations. However, no complexity results
for explanations, apart from trivial intractability results which are inherited from Boolean
functions, were known, and a characterization of the complexity of explanations was open.

In this paper, we aim at filling this gap by giving a precise account of the complexity
of explanations in structural causal models. It continues and extends the work in [14,18]
on the complexity of actual and weak causes, which are a stepping stone for defining
explanations. As for computation in the structural-model approach, Hopkins [30] recently
explored search-based strategies for computing actual causes (i.e., minimal weak causes)
in both the general and restricted settings. However, he did not pay much attention to
complexity issues, and did not provide a detailed analysis of the intrinsic complexity of
actual causes, nor did he address the computation of explanations on top of weak causes.

The main contributions of this paper can be summarized as follows (a review of the
mentioned complexity classes is given in Section 2.3):

• We determine the complexity of (full) explanations in the structural-model approach
[25,27]. We consider the problems of recognizing explanations and of deciding
whether an explanation over certain variables exists. As it turns out, these problems
are complete for Σ^p_2 and Σ^p_5, respectively, in the unrestricted case, and complete
for Σ^p_2 and Σ^p_4, respectively, in the binary case. Thus, recognition and existence of
explanations reside, loosely speaking, at the second and the third level of the well-
known Polynomial Hierarchy.

• We then determine the complexity of partial explanations in the structural-model
approach [25,27], which relax full explanations in a probabilistic setting. We consider
the problems of recognizing α-partial/partial explanations, of deciding whether an α-
partial explanation over certain variables exists, and of computing the explanatory
power of partial explanations. These problems turn out to be complete for $P_{\Sigma^p_2 \parallel}^P$, Σ^p_3, and $P_{\Sigma^p_2}^{NP}$, respectively, in the unrestricted case, and complete for $P_{\Sigma^p_2}^{NP}$, Σ^p_3, and $P_{\Sigma^p_2}^{NP}$, respectively, in the binary case.

• Furthermore, we analyze the complexity of explanations and partial explanations
in a setting where context sets are succinctly represented. In the standard setting,
the contexts u_1, u_2, \ldots, u_n which ought to be respected for forming an explanation
are simply enumerated in the problem input. In another (natural) representation, the
contexts are given by a membership function $\chi(u)$, which on input of a context u
tells whether u ought to be respected or not. This form of representation is more
succinct than simple context enumeration in general, and may lead to exponential savings in storage for the context set of interest. However, this is traded for a significant increase in the complexity of explanations. More precisely, we show that recognizing explanations and partial explanations is complete for Π_4^P in the unrestricted case, and complete for Π_3^P in the binary case.

- Finally, we analyze the complexity of explanations in the generalization of contexts to situations, which are pairs (M, u) of a causal model M and a context u [25,27]; here, also uncertainty about the causal model, and not only about the context which applies to the actual scenario can be modeled. We consider the problems of recognizing explanations and deciding explanation existence. We find that for the recognition problem, moving from contexts to situations results in a complexity increase; as we show, this problem is Π_3^P-complete both in the unrestricted and the binary case. For the existence problem, no complexity increase happens in general, i.e., the problem remains Σ_3^P-complete, but for the binary case, in which the problem becomes Σ_3^P-complete.

- In our analysis of explanations for situations, we encounter and resolve problems on structural causal models which are interesting in their own right. Namely, we consider the problems of subsumption and equivalence between causal models M_1 and M_2 modulo the language of causal formulas [25,27]. That is, given M_1 and M_2, is it true that each causal formula ϕ which holds on M_1 also holds on M_2 (denoted $M_1 \leq M_2$), respectively that M_1 and M_2 model the same set of causal formulas (denoted $M_1 \equiv M_2$), and thus are indistinguishable in the language of causal formulas. As we show, both deciding $M_1 \leq M_2$ and deciding $M_1 \equiv M_2$ is Π_3^P-complete, in the unrestricted and, noticeably, also in the binary case. Both membership in Π_3^P and hardness for Π_3^P are not immediate, and require suitable auxiliary results which help to distinguish causal models.

Our results in the present paper draw a precise picture of the complexity of explanations in the structural-model approach, and are valuable and important in several respects:

- First and foremost, they provide a handle in understanding the computational nature of explanations and the intrinsic difficulties which are at the heart of their computation. They must be reflected somehow in the worst-case behavior of “optimal” algorithms solving the problem. In this way, our results contribute in paving the way for efficient algorithms and for implementations of explanations in the structural-model approach.

- Second, the insight into sources of complexity which make the problems intractable provides a starting point for identifying cases of lower complexity, and in particular of tractable cases. While we do not pursue this issue here, results on this can be found in [15,16].

- Third, the results are useful in comparing Halpern and Pearl’s notion of causal explanation with other notions of explanations (e.g., abductive explanations [12,35,47] and maximum a posteriori explanations, alias most probable explanations in Bayesian networks [33,34]), and allow to assess the existence of efficient mappings between different frameworks for generating explanations.
The rest of this paper is organized as follows. Section 2 provides some preliminaries on structure-based causal models, the notion of weak cause, and the complexity classes that we encounter in this paper. In Section 3, we analyze the complexity of full explanations in the structural-model approach. Section 4 concentrates on the complexity of partial explanations. In Section 5, we then analyze the complexity of explanations in the case of succinctly represented context sets. Section 6 deals with the complexity of explanations and of related problems in the general case of situations. In Section 7, we discuss related work on other frameworks of explanations, and compare our results to complexity results for them. Section 8 gives a discussion of the results, in particular of implications for algorithms, and provides some concluding remarks, including an outlook on future research issues.

While several of the results are intuitive, their proofs (in particular, the hardness parts) are nontrivial and technically quite involved. Thus, in order not to distract from the flow of reading, some technical details are moved to Appendices A–D.

2. Preliminaries

In this section, we give some technical preliminaries. We first recall structure-based causal models and the notion of weak cause by Halpern and Pearl [25,26]. We then describe the complexity classes that appear in our results.

2.1. Causal models

We start with recalling structure-based causal models; for a rich background, see especially [2,20,24,40,41]. Roughly speaking, the main idea behind structure-based causal models is that the world is modeled by random variables, which may have a causal influence on each other. The variables are divided into exogenous variables, which are influenced by factors outside the model, and endogenous variables, which are influenced by exogenous and endogenous variables. This latter influence is described by structural equations for the endogenous variables.

More formally, we assume a finite set of random variables. Capital letters $U, V, W,$ etc. denote variables and sets of variables. Each variable X_i may take on values from a nonempty finite domain $D(X_i)$. A value for a set of variables $X = \{X_1, \ldots, X_n\}$ is a mapping $x : X \rightarrow D(X_1) \cup \cdots \cup D(X_n)$ such that $x(X_i) \in D(X_i)$; for $X = \emptyset$, the unique value is the empty mapping \emptyset. The domain of X, denoted $D(X)$, is the set of all values for X. Lower case letters x, y, z, etc. denote values for the sets of variables X, Y, Z, etc., respectively. Assignments of values to variables $X = x$ are often abbreviated by the value x. For $Y \subseteq X$ and $x \in D(X)$, denote by $x|Y$ the restriction of x to Y. For disjoint sets of variables X, Y and values $x \in D(X), y \in D(Y)$, denote by xy the union of x and y. As usual, we often identify singletons $\{X_i\}$ with X_i and their values x with $x(X_i)$.

We are now ready to define causal models. A causal model M is a triple (U, V, F), where U is a finite set of exogenous variables, V is a finite set of endogenous variables with $U \cap V = \emptyset$, and $F = \{F_X \mid X \in V\}$ is a set of functions $F_X : D(\text{PA}_X) \rightarrow D(X)$ that assign
a value of X to each value of the parents $PA_X \subseteq U \cup V \setminus \{X\}$ of X. Every value $u \in D(U)$ is also called a context. The parent relationship between the variables of $M = (U, V, F)$ is expressed by the causal graph for M, which is the directed graph that has $U \cup V$ as the set of nodes, and a directed edge from X to Y iff X is a parent of Y, for all variables $X, Y \in U \cup V$. A causal model $M = (U, V, F)$ is binary iff $|D(X)| = 2$ for all $X \in V$.

We focus here on the principal class of recursive causal models $M = (U, V, F)$; as argued in [25], we do not lose much generality by concentrating on recursive causal models. A causal model $M = (U, V, F)$ is recursive, if its causal graph is a directed acyclic graph. Equivalently, there exists a total ordering $<$ on V such that $Y \in PA_X$ implies $Y < X$, for all $X, Y \in V$. In recursive causal models, every assignment to the exogenous variables $U = u$ determines a unique value y for every set of endogenous variables $Y \subseteq V$, denoted $Y_M(u)$ (or simply $Y(u)$). In the following, M is reserved for denoting a recursive causal model.

Example 2.1 (Arsonists continued). In our introductory example, the causal model $M = (U, V, F)$ is given by $U = \{U_1, U_2\}$, $V = \{A_1, A_2, B\}$, and $F = \{F_{A_1}, F_{A_2}, F_B\}$, where $F_{A_1} = U_1, F_{A_2} = U_2$, and $F_B = 1$ iff $A_1 = 1$ or $A_2 = 1$. The causal graph for M is shown in Fig. 1. As this graph is acyclic, M is recursive.

In a causal model, we may set endogenous variables X to a value x by an “external action”. More formally, for any causal model $M = (U, V, F)$, set of endogenous variables $X \subseteq V$, and value $x \in D(X)$, the causal model $M_{X=x} = (U, V \setminus X, F_{X=x})$, where $F_{X=x} = \{F_{Y} | Y \in V \setminus X\}$ and each F_{Y} is obtained from F_Y by setting X to x, is a submodel of M. We use M_x and F_x to abbreviate $M_{X=x}$ and $F_{X=x}$, respectively, if X is understood from the context. Similarly, for a set of endogenous variables $Y \subseteq V$, we write $Y(u)$ to abbreviate $Y_M(u)$.

As for computation, we assume that in causal models $M = (U, V, F)$, where $F = \{F_X | X \in V\}$, every function $F_X : D(PA_X) \to D(X)$ with $X \in V$ is computable in polynomial time. The following proposition is then immediate.

Proposition 2.2. For all $X, Y \subseteq V$ and $x \in D(X)$, the values $Y(u)$ and $Y_x(u)$, given $u \in D(U)$, are computable in polynomial time.

2.2. Weak causes

We now recall the notion of weak cause from [25,26]. We first define events and the truth of events in a causal model $M = (U, V, F)$ under a context $u \in D(U)$.

A primitive event is an expression of the form $Y = y$, where Y is an endogenous variable\(^1\) and y is a value for Y. The set of events is the closure of the set of primitive events under the Boolean operations \neg and \land (that is, every primitive event is an event, and if ϕ and ψ are events, then also $\neg \phi$ and $\phi \land \psi$).

\(^1\) Note that [17] also admitted exogenous variables in primitive events, while [25,26] does not. This does not affect the complexity of explanations in the basic setting, but has some consequences for the generalization to situations, as discussed in Section 6.
The truth of an event ϕ in a causal model $M = (U, V, F)$ under a context $u \in D(U)$, denoted $(M, u) \models \phi$, is inductively defined as follows:

- $(M, u) \models Y = y$ iff $Y_M(u) = y$;
- $(M, u) \models \neg \phi$ iff $(M, u) \not\models \phi$ does not hold;
- $(M, u) \models \phi \land \psi$ iff $(M, u) \models \phi$ and $(M, u) \models \psi$.

Further operators \lor and \rightarrow are defined as usual, i.e., $\phi \lor \psi$ and $\phi \rightarrow \psi$ stand for $\neg (\neg \phi \land \neg \psi)$ and $\neg \phi \lor \psi$, respectively. We write $\phi(u)$ to abbreviate $(M, u) \models \phi$. For $X \subseteq V$ and $x \in D(X)$, we use $\phi_x(u)$ as an abbreviation of $(M_x, u) \models \phi$. For $X = \{X_1, \ldots, X_k\} \subseteq V$ with $k \geq 1$ and $x_i \in D(X_i)$, we use $X = x_1 \cdots x_k$ to abbreviate $X_1 = x_1 \land \cdots \land X_k = x_k$.

The following result follows immediately from Proposition 2.2.

Proposition 2.3. Let $X \subseteq V$ and $x \in D(X)$. Given $u \in D(U)$ and an event ϕ, deciding whether $\phi(u)$ and $\phi_x(u)$ (given x) hold can be done in polynomial time.

We are now ready to recall the notion of weak cause [25,26]. Let $M = (U, V, F)$ be a causal model. Let $X \subseteq V$ and $x \in D(X)$, and let ϕ be an event. Then, $X = x$ is a weak cause of u iff the following conditions hold:

(AC1) $X(u) = x$ and $\phi(u)$.

(AC2) Some $W \subseteq V \setminus X$ and some $\bar{x} \in D(X)$ and $w \in D(W)$ exist such that:

(a) $\neg \phi_{x_w}(u)$, and

(b) $\phi_{x_w}(u)$ for all $\bar{Z} \subseteq V \setminus (X \cup W)$ and $\hat{z} = \bar{Z}(u)$.

The following example illustrates the notion of weak cause.

Example 2.4 (Arsonists continued). Consider the context $u_{1,1} = (1, 1)$ in which both arsonists intend to start a fire. Then, $A_1 = 1$, $A_2 = 1$, and $A_1 = 1 \land A_2 = 1$ are weak causes of $B = 1$. For instance, let us show that $A_1 = 1$ is a weak cause of $B = 1$: (AC1) both A_1 and B is 1 under u, (AC2(a)) if both A_1 and A_2 are set to 0, then B has the value 0, and (AC2(b)) if A_1 is set to 1 and A_2 to 0, then B is 1. Moreover, $A_1 = 1$ (respectively, $A_2 = 1$) is the only weak cause of $B = 1$ under the context $u_{1,0} = (1, 0)$ (respectively, $u_{0,1} = (0, 1)$) in which only arsonist 1 (respectively, 2) intends to start a fire.

The following proposition characterizes irrelevant variables in weak causes.

Proposition 2.5. Let $M = (U, V, F)$ be a causal model. Let $X \subseteq V$ and $x \in D(X)$, let ϕ be an event, and let $u \in D(U)$. Let $X_0 \in X$ such that in the causal graph for M, it holds that X_0 is not a predecessor of any variable in ϕ. Let $X' = X \setminus \{X_0\}$ and $x' = x(X')$. Then, $X = x$ is a weak cause of ϕ under u iff (i) $X_0(u) = x(X_0)$ and (ii) $X' = x'$ is a weak cause of ϕ under u.

Proof. (\Rightarrow) Assume that $X = x$ is a weak cause of ϕ under u. That is, (AC1) $X(u) = x$ and $\phi(u)$ hold, and (AC2) some $W \subseteq V \setminus X$, $\bar{x} \in D(X)$, $w \in D(W)$ exist such that (a)
We finally recall a result from [14,18], which shows that deciding weak cause is complete for Σ^P_k (respectively, NP) in the general (respectively, binary) case. Note that this result holds also when the domain $D(X) = \{1, \ldots, n_X\}$ of each variable $X \in U \cup V$ is implicitly specified by $n_X \geq 1$.

Theorem 2.6 (see [14,18]). Given a causal model $M = (U, V, F)$, $X \subseteq V$, $x \in D(X)$, $u \in D(U)$, and an event ϕ, deciding whether $X = x$ is a weak cause of ϕ under u is complete for Σ^P_k (respectively, NP) in the general (respectively, binary) case.

2.3. Complexity classes

We assume that the reader has some elementary background in complexity theory, and is familiar with the concepts of polynomial-time solvability, NP, polynomial-time transformations among problems, and hardness respectively completeness of a problem for a complexity class, as can be found, e.g., in [31,32,39]. We now briefly recall the complexity classes that we encounter in this paper.

We recall that the Polynomial Hierarchy (PH) contains the classes $\Delta^P_1 = \text{P}$, $\Sigma^P_1 = \text{NP}$, $\Pi^P_1 = \text{co-NP}$, $\Delta^P_{k+1} = \text{P}^{\Sigma^P_k}$, $\Sigma^P_{k+1} = \text{NP}^{\Sigma^P_k}$, and $\Pi^P_{k+1} = \text{co-} \Sigma^P_{k+1}$, for all $k \geq 1$. They informally model solving problems with an oracle for some other problem, which belongs to the class shown in the superscript. For our concerns, it is convenient to assume that the oracle can be called on instances of different problems from a suite of fixed problems in the class, which does not affect the computational power. Each call to the oracle costs unit time. In particular, $\Delta^P_k = \text{P}^{\text{NP}}$ (respectively, $\Sigma^P_k = \text{NP}^{\text{NP}}$) denotes the class of problems decidable in polynomial time with the help of an NP oracle on a deterministic (respectively, a nondeterministic) Turing machine. Intuitively, the computational power of the classes in PH increases with each level k.

From these classes, further complexity classes have been derived. The class $D^P_k = \{L \times L' \mid L \in \Sigma^P_k, L' \in \Pi^P_k\}$, $k \geq 1$, is the “conjunction” of Σ^P_k and Π^P_k; in particular, D^P_1 is the familiar class $D\text{P}$. The letter D is mnemonic for the fact that a problem in D^P_1 can be seen as the difference between two problems in Σ^P_k formally viewed as sets of Yes-instances. Such problems can be easily solved with two calls to a Σ^P_k oracle, but are intuitively easier

$$\neg \phi_{U_0}(u) \text{ and (b) } \phi_{V_0}(u) \text{ for all } \hat{Z} \subseteq V \setminus (X \cup W) \text{ and } \hat{z} = \hat{Z}(u). \text{In particular, (i) holds. Moreover, } X'(u) = x' \text{ and } \phi(u) \text{ hold. Since } X_0 \text{ is no predecessor of any variable in } \phi, \text{it also follows that (a) } \neg \phi_{U_0}(u) \text{ and (b) } \phi_{V_0}(u) \text{ hold for all } \hat{Z} \subseteq V \setminus (X \cup W) \text{ and } \hat{z} = \hat{Z}(u), \text{where } x' = x|X', \ w' = w_{X_0}, \text{and } x_0 = x(X_0). \text{This shows that } X' = x' \text{ is a weak cause of } \phi \text{ under } u, \text{and thus also (ii) holds.}$$

(\Leftarrow) Assume that (i) and (ii) hold. Thus, $X' = x'$ is a weak cause of ϕ under u. That is, (AC1) $X'(u) = x'$ and $\phi(u)$ hold, and (AC2) some $W \subseteq V \setminus X'$, $\hat{x}' \in D(X')$, $w \in D(W)$ exist such that (a) $\neg \phi_{U_0}(u)$ and (b) $\phi_{V_0}(u)$ for all $\hat{Z} \subseteq V \setminus (X' \cup W)$ and $\hat{z} = \hat{Z}(u)$. Since also $X_0(u) = x(X_0)$, it holds that $X(u) = x$ and $\phi(u)$. Furthermore, as X_0 is no predecessor of any variable in ϕ, it follows that (a) $\neg \phi_{U_0}(u)$ and (b) $\phi_{V_0}(u)$ for all $\hat{Z} \subseteq V \setminus (X' \cup W)$ and $\hat{z} = \hat{Z}(u)$, where $w' = w|(W \setminus \{X_0\})$ and $x_0 = x(X_0)$. Hence, $X = x$ is a weak cause of ϕ under u. \qed
since the calls can be made independently of each other. On the other hand, the problems are at least as difficult as both Σ_P^k-complete and Π_P^k-complete problems.

The class P_\parallel, $k \geq 1$, contains the decision problems which can be solved in polynomial time with one round of parallel calls to a Σ_k^P oracle rather than calls in arbitrary order, and is part of the Refined PH [51]. Intuitively, constraining the use of the oracle to one parallel call of all queries restricts the computational power, since the outcome of an oracle call cannot be taken into account for other oracle calls. It is known that constraining to parallel oracle queries is tantamount to restricting the number of oracle calls, in arbitrary order, to $O(\log n)$ many, where n is the size of the problem input, cf. [51].

According to the current belief in complexity theory, Fig. 2 shows a strict hierarchy of inclusions.

For classifying problems that compute an output value (e.g., the set of atoms that are entailed by a classical formula φ), function classes similar to the classes above have been introduced (cf. [31,46]). Among these are FP, $FP_\parallel = FP_1^{\Sigma_P^0}$, and $FP_\parallel^{\Sigma_P^k}$, which are the functional analogs of P, $P_\parallel^{\Sigma_P^0} = P_1^{\Sigma_P^0}$, and $P_\parallel^{\Sigma_P^k}$, respectively. For further background on these complexity classes, we refer to [31,32,39,46,51].

We remark that all classes C in Fig. 2 are closed under polynomial-time reductions, i.e., if a problem Π has a polynomial time transformation into a problem Π' from C, then also Π belongs to C. Furthermore, each C has complete problems under polynomial-time transformations, including canonical variants of the satisfiability problem (SAT), i.e., deciding satisfiability of a Boolean formula ϕ. The latter is well-known NP-complete, while its complement, deciding unsatisfiability of ϕ is co-NP-complete; deciding, given two Boolean formulas ϕ_1 and ϕ_2, whether ϕ_1 is satisfiable and ϕ_2 is unsatisfiable is complete for D_P^0. More generally, a complete problem for the class Σ_k^P (respectively, Π_k^P), $k \geq 1$, is to decide the validity of a given quantified Boolean formula (QBF) $Q_1 X_1 Q_2 X_2 \ldots Q_k X_k \phi$, where X_1, X_2, \ldots, X_k are sets of variables, Q_1, Q_2, \ldots, Q_k is a sequence of alternating quantifiers \exists and \forall such that $Q_1 = \exists$ (respectively, $Q_1 = \forall$), and ϕ is a Boolean formula over the variables in $X_1 \cup X_2 \cup \ldots \cup X_k$. Deciding, given two QBFs Φ_1 and Φ_2 of the form $Q_1 X_1 Q_2 X_2 \ldots Q_k X_k \phi$ with $Q_1 = \exists$, whether Φ_1 is valid and Φ_2 is not valid is complete for the class D_P^k. Finally, given l such QBFs Φ_1, \ldots, Φ_l, deciding whether the number of valid formulas among Φ_1, \ldots, Φ_l is even (respectively, computing the set of all valid formulas among Φ_1, \ldots, Φ_l) is complete for $P_\parallel^{\Sigma_P^k}$ (respectively, $FP_\parallel^{\Sigma_P^k}$).

In this paper, unless stated otherwise, completeness for a decision class is with respect to standard polynomial-time transformations. Completeness for a function class is understood in terms of a natural generalization of polynomial time transformations: The problem P_1 reduces to P_2, if there are polynomial time functions f and g such that for each instance
In case of P and FP, completeness is understood in terms of reductions that can be computed in logarithmic space.

3. Explanations

In this section, we analyze the complexity of (full) explanations in the structural-model approach due to Halpern and Pearl [25,27]. We consider the problems of recognizing explanations and of deciding whether an explanation over certain variables exists. We consider the general as well as the restriction to the binary case.

3.1. Definitions

We now recall the concept of (full) explanation from [25,27]. Intuitively, an explanation of an observed event \(\phi \) is a minimal conjunction of primitive events that causes \(\phi \) even when there is uncertainty about the actual situation at hand. The agent’s epistemic state is given by a set of possible contexts \(u \in D(U) \), which describes all the possible scenarios for the actual situation.

More formally, let \(M = (U, V, F) \) be a causal model, let \(X \subseteq V \) and \(x \in D(X) \), let \(\phi \) be an event, and let \(\mathcal{C} \subseteq D(U) \) be a set of contexts. Then, \(X = x \) is an explanation of \(\phi \) relative to \(\mathcal{C} \), if the following conditions hold:

\[
\begin{align*}
(\text{EX1}) & \quad \phi(u) \text{ holds for every context } u \in \mathcal{C}.
(\text{EX2}) & \quad X = x \text{ is a weak cause of } \phi \text{ under every } u \in \mathcal{C} \text{ such that } X(u) = x.
(\text{EX3}) & \quad X \text{ is minimal. That is, for every } X' \subseteq X \text{, some } u \in \mathcal{C} \text{ exists such that } X'(u) = x \mid X' \text{ and } X' = x \mid X' \text{ is not a weak cause of } \phi \text{ under } u.
(\text{EX4}) & \quad X(u) = x \text{ for some } u \in \mathcal{C}, \text{ and } X(u') \neq x \text{ for some } u' \in \mathcal{C}.
\end{align*}
\]

The following example illustrates the above notion of explanation.

Example 3.1 (Arsonists continued). Consider the set of contexts \(\mathcal{C} = \{u_{1,1}, u_{1,0}, u_{0,1}\} \). Then, both \(A_1 = 1 \) and \(A_2 = 1 \) are explanations of \(B = 1 \) relative to \(\mathcal{C} \), since (EX1) \(B(u_{1,1}) = B(u_{1,0}) = B(u_{0,1}) = 1 \), (EX2) \(A_1 = 1 \) (respectively, \(A_2 = 1 \)) is a weak cause of \(B = 1 \) under \(u_{1,1} \) and \(u_{1,0} \) (respectively, \(u_{1,1} \) and \(u_{0,1} \)), (EX3) \(A_1 \) and \(A_2 \) are obviously minimal, and (EX4) \(A_1(u_{1,1}) = 1 \) and \(A_1(u_{0,1}) \neq 1 \) (respectively, \(A_2(u_{1,1}) = 1 \) and \(A_2(u_{0,1}) \neq 1 \)). Furthermore, \(A_1 = 1 \wedge A_2 = 1 \) is not an explanation of \(B = 1 \) relative to \(\mathcal{C} \), as here, the minimality condition EX3 is violated.

3.2. Results

In our complexity analysis, we focus on the following problems, which are major tasks in explanation-based causal reasoning:

\[g(I_1, P_2(f(I_1)))^2; \]

Note that the first argument of \(g \) allows to access the original problem instance \(I_1 \).
Table 1
Complexity of explanations

<table>
<thead>
<tr>
<th>Problem</th>
<th>General case</th>
<th>Binary case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation</td>
<td>(D^P_2)-complete</td>
<td>(D^P)-complete</td>
</tr>
<tr>
<td>Explanation Existence</td>
<td>(\Sigma^P_2)-complete</td>
<td>(\Sigma^P)-complete</td>
</tr>
</tbody>
</table>

Explanation: Given \(M = (U, V, F)\), \(X \subseteq V\), \(x \in D(X)\), an event \(\phi\), and a set of contexts \(C \subseteq D(U)\), decide whether \(X = x\) is an explanation of \(\phi\) relative to \(C\).

Explanation Existence: Given \(M = (U, V, F)\), \(X \subseteq V\), an event \(\phi\), and a set of contexts \(C \subseteq D(U)\), decide whether some \(X' \subseteq X\) and \(x' \in D(X')\) exist such that \(X' = x'\) is an explanation of \(\phi\) relative to \(C\).

The first problem, Explanation, is the recognition of an explanation. It emerges directly from the definition of explanation in Section 3.1 and captures its intrinsic complexity. The second problem, Explanation Existence, is associated with the important task of finding an explanation for an event \(\phi\). Similar as in other frameworks for explanations (e.g., [35,47]), the set \(X\) focuses attention to a subset of the variables, in terms of which the explanation must be formed. Finding explanations is certainly the central task of a causal-reasoning system built for applications in practice, and thus this problem deserves special attention.

We analyze the complexity of these problems for the general as well as the binary case, where \(M\) is restricted to binary causal models (i.e., each endogenous variable may take only two values).

Our complexity results on these two problems for the general and the binary case are summarized in Table 1. In detail, the problem Explanation is complete for the class \(D^P_2\) (respectively, \(D^P\)) in the general (respectively, binary) case, while the problem Explanation Existence is complete for \(\Sigma^P_2\) (respectively, \(\Sigma^P\)) in the general (respectively, binary) case. It thus turns out that finding explanations is at the third level of PH. Hence, explanations are harder to compute than weak causes, which lie at the second level of PH [14]. On the other hand, recognizing explanations is only mildly harder than recognizing weak causes, which is \(\Sigma^P_2\)-complete.

We now show how the complexity results in Table 1 can be formally derived. In order not to distract from the flow of reading, we present the main parts and key ideas behind constructions, and move some technical details to Appendix A.

The following result shows that deciding explanations is \(D^P_2\)-complete in the general case. The problem is in \(D^P_2\), as condition EX2 amounts to a conjunction of a linear number of problems in \(\Sigma^P\), and EX3 to the negation of such a problem; EX1 and EX4 are easily checked. Thus, by usual techniques, the explanation check can be reduced to a conjunction of problems in \(\Sigma^P\) and \(\Pi^P\). Hardness for \(D^P_2\) is shown by a reduction from the \(D^P_2\)-complete problem of deciding, given a pair \((\Phi_1, \Phi_2)\) of QBFs, whether \(\Phi_1\) is valid and \(\Phi_2\) is not valid.

Theorem 3.2. Explanation is \(D^P_2\)-complete.
Proof. As for membership in D^P_C, recall that $X = x$ is an explanation of ϕ relative to C iff EX1–EX4 hold. Deciding in EX1 whether $\phi(u)$ for every $u \in C$ and in EX4 whether $X(u) = x$ and $X(u') \neq x$ for some $u, u' \in C$ is polynomial. In EX2, the set C' of all $u \in C$ such that $X(u) = x$ is polynomially computable. By Theorem 2.6 and as Σ^P_C is closed under polynomially many conjunctions, deciding whether $X = x$ is a weak cause of ϕ under every $u \in C'$ is in Σ^P_C. In EX3, guessing some $X' \subseteq X$ and checking that $X' = x|X'$ is a weak cause of ϕ under every $u \in C$ such that $X'(u) = x|X'$ is in Σ^P_C. Thus, deciding EX3 is in Π^P_C. In summary, deciding whether $X = x$ is an explanation of ϕ relative to C if ϕ_1 is valid and ϕ_2 is not valid.

Roughly speaking, the main idea behind this construction is as follows. We construct $M_1 = (U, V_1, F_1)$ and $M_2 = (U, V_2, F_2)$ and two events ϕ_1 and ϕ_2 such that (i) $V_1 \cap V_2 = \{G\}$ (that is, G is the only endogenous variable that M_1 and M_2 have in common), and (ii) for every $u \in D(U)$, it holds that $G = 0$ is a weak cause of ϕ_1 under u in M_1 if ϕ_1 is valid (see Fig. 3, left side). The causal model M is the union of M_1 and M_2, enlarged by the additional endogenous variables G' and H (see Fig. 3, right side). We then construct ϕ and $u_1, u_2 \in D(U)$ such that ϕ is under u_1 and u_2 equivalent to ϕ_1 and ϕ_2, respectively. Finally, the construction is such that $G = 0 \land G' = 0$ is an explanation of ϕ relative to $C = \{u_1, u_2\}$ in M, iff (a) $G = 0$ is a weak cause of ϕ_1 under u_1 in M_1, and (b) $G = 0$ is not a weak cause of ϕ_2 under u_2 in M_2, where (a) (respectively, (b)) is encoded in EX2 (respectively, EX3). That is, $G = 0 \land G' = 0$ is an explanation of ϕ relative to C in M, iff ϕ_1 is valid and ϕ_2 is not valid.

More formally, for every $i \in \{1, 2\}$, the causal model $M_i = (U, V_i, F_i)$ is defined by $U = \{E\}$ and $V_i = A_i \cup B_i \cup \{G, C_i\}$, where $D(S) = \{0, 1\}$ for all $S \in B_i$, and $D(S) = \{0, 1\}$ for all $S \in U \cup V_i \setminus B_i$. Moreover, we define

$$\phi_i = \left(\gamma'_i \land \bigwedge_{S \in B_i} S \neq 2\right) \lor (C_i = 0) \lor \left(G = 1 \land C_i = 1 \land \bigvee_{S \in B_i} S \neq 2\right),$$

where γ'_i is obtained from γ_i by replacing each $S \in A_i \cup B_i$ by "$S = 1$". The functions in $F_i = \{F'_i \mid S \in V_i\}$ are defined as follows:

![Fig. 3. Schematic construction for evaluating two QBFs ϕ_1 and ϕ_2.](image)
\(F^0_S = 0 \) for all \(S \in A_i \cup \{ G, C_i \} \),
\(F^1_S = G + C_i \) for all \(S \in B_j \).

As shown in [14, 18], for every \(i \in \{1, 2\} \) and \(u \in D(U) \), it holds that \(G = 0 \) is a weak cause of \(\phi_i \) under \(u \) in \(M_i \) iff \(\Phi_i \) is valid.

The causal model \(M = (U, V, F) \) is now defined by \(V = V_1 \cup V_2 \cup \{ G', H \} \), where
\[D(G') = D(H) = \{0, 1\}, \]
and \(F = F_1 \cup F_2 \cup \{ F_{G'} = E, F_H = 1 \text{ iff } (E = 0 \land \phi_1) \lor (E = 1 \land \phi_2) \} \) is true. Let \(\phi \) be defined as \(H = 1 \), and let \(u_1, u_2 \in D(U) \) be defined by \(u_1(E) = 0 \) and \(u_2(E) = 1 \). Observe that \(\phi \) is primitive.

For every \(i \in \{1, 2\} \) and \(u \in D(U) \), it holds that \(G = 0 \) is a weak cause of \(\phi_i \) under \(u \) in \(M \) iff \(\Phi_i \) is valid. Hence, for every \(i \in \{1, 2\} \),

(i) \(G = 0 \) is a weak cause of \(\phi \) under \(u_i \) in \(M \) iff \(\Phi_i \) is valid.

By Proposition 2.5, the following statements hold:

(ii) \(G = 0 \) is a weak cause of \(\phi \) under \(u_1 \) in \(M \) iff
\[G = 0 \land G' = 0 \] is a weak cause of \(\phi \) under \(u_1 \) in \(M \).

(iii) \(G' = 0 \) is not a weak cause of \(\phi \) under \(u_1 \) in \(M \).

Using these results, we now show that \(G = 0 \land G' = 0 \) is an explanation of \(\phi \) relative to \(C = \{u_1, u_2\} \) iff \(\Phi_1 \) is valid and \(\Phi_2 \) is not valid.

(\(\Rightarrow \)) Assume that \(G = 0 \land G' = 0 \) is an explanation of \(\phi \) relative to \(C \). In particular, by EX2, \(G = 0 \land G' = 0 \) is a weak cause of \(\phi \) under \(u_1 \). Moreover, by EX3, \(G = 0 \) is either not a weak cause of \(\phi \) under \(u_1 \), or not a weak cause of \(\phi \) under \(u_2 \). By (ii), \(G = 0 \) is a weak cause of \(\phi \) under \(u_1 \). Thus, \(G = 0 \) is not a weak cause of \(\phi \) under \(u_2 \). By (i), \(\Phi_1 \) is valid, and \(\Phi_2 \) is not valid.

(\(\Leftarrow \)) Assume that \(\Phi_1 \) is valid and \(\Phi_2 \) is not valid. We first show that EX1 holds. As \(C_i(u) = 0 \) for all \(i \in \{1, 2\} \) and \(u \in C \), we get \(\phi_i(u) \) for all \(i \in \{1, 2\} \) and \(u \in C \). Thus, \(\phi(u) \) for all \(u \in C \). To see that EX4 holds, observe that \(G(u_1) = G'(u_1) = 0 \), while \(G(u_2) = 0 \) and \(G'(u_2) = 1 \). We next show that EX2 holds. By (i), \(G = 0 \) is a weak cause of \(\phi \) under \(u_1 \). By (ii), it follows that \(G = 0 \land G' = 0 \) is a weak cause of \(\phi \) under \(u_1 \). We now show that EX3 holds. By (i), \(G = 0 \) is not a weak cause of \(\phi \) under \(u_2 \). By (ii), \(G' = 0 \) is not a weak cause of \(\phi \) under \(u_2 \).

The following theorem shows that deciding whether an explanation over certain variables exists is \(\Sigma^p_3 \)-complete. Here, the \(\Sigma^p_3 \) upper bound is straightforward by the \(\Sigma^p_3 \) upper bound of recognizing explanations, and a standard guess and check argument. The \(\Sigma^p_3 \) hardness of Explanation Existence stems from a subtlety in the definition of explanation. From satisfaction of EX1, EX2 and EX4 for \(X = x \) we can not conclude that some \(X' = x' \) contained in \(X = x \) exists which will satisfy EX1–EX4; if we minimize \(X = x \) so as to satisfy EX3, the resulting \(X' = x' \) may violate EX4. It is this interplay of the conditions which makes this problem difficult, and the proofs of the hardness results nontrivial.

Theorem 3.3. Explanation Existence is \(\Sigma^p_3 \)-complete.
Proof (sketch). As for membership in Σ^P_3, observe that the problem can be reduced to guessing some $X' \subseteq X$ and $x' \in D(X')$, and verifying that $X' = x'$ is an explanation of ϕ relative to C. By Theorem 3.2, this can be done in polynomial time with two calls to a Σ^P_2-oracle. Thus, the problem is in Σ^P_3.

Hardness for Σ^P_3 is shown by a reduction from deciding whether a given QBF $\Phi = \exists B \forall C \exists D \gamma$ is valid, where γ is a propositional formula on the variables $B \cup C \cup D$. We construct $M = (U, V, F)$, $X \subseteq V$, $C \subseteq D(U)$, and ϕ such that Φ is valid iff some $X' \subseteq X$ and $x' \in D(X')$ exist such that $X' = x'$ is an explanation of ϕ relative to C. Roughly, the main idea is to encode the quantifier "$\exists B$" in guessing some $X' \subseteq X$, and "$\forall C \exists D \gamma$" in checking the complement of a weak cause in EX3. Note that the construction is technically involved; it is schematically shown in Fig. 4. ✷

In the binary case, the complexity of all considered problems drops by one level in PH; this parallels the drop of the complexity of weak causes from Σ^P_3 to NP in the binary case [14]. The membership parts can be derived analogous as in the general case, and the hardness parts by slight adaptations of the constructions in the proofs, where certain subcomponents for weak cause testing are modularly replaced. The following two results show that recognizing explanations (respectively, deciding the existence of explanations) is complete for D^P (respectively, Σ^P_2) in the binary case.

Theorem 3.4. Explanation is D^P-complete in the binary case.

Proof. As for membership in D^P, recall that $X = x$ is an explanation of ϕ relative to C iff EX1–EX4 hold. By the proof of Theorem 3.2, checking EX1 and EX4 is polynomial. Moreover, in EX2, the set C' of all $u \in C$ such that $X(u) = x$ is polynomially computable. By Theorem 2.6, deciding whether $X = x$ is a weak cause of ϕ under every $u \in C'$ is in NP in the binary case. In EX3, guessing some $X' \subseteq X$ and checking that $X' = x|X'$ is a weak cause of ϕ under every $u \in C$ with $X'(u) = x|X'$ is in NP in the binary case. Thus,
the complementary problem of deciding EX3 is in co-NP in the binary case. In summary, deciding whether \(X = x \) is an explanation of \(\phi \) relative to \(C \) is in \(\text{D}^P \) in the binary case.

Hardness for \(\text{D}^P \) is shown by a reduction from the following \(\text{D}^P \)-complete problem. Given two propositional formulas in 3DNF \(\alpha_1 = \alpha_{1,1} \lor \cdots \lor \alpha_{1,k_1} \) and \(\alpha_2 = \alpha_{2,1} \lor \cdots \lor \alpha_{2,k_2} \) on the variables \(A_1 = \{A_{1,1}, \ldots, A_{1,n_1}\} \) and \(A_2 = \{A_{2,1}, \ldots, A_{2,n_2}\} \), respectively, where \(k_1, k_2, n_1, n_2 \geq 1 \), decide whether \(\alpha_1 \) is not a tautology and \(\alpha_2 \) is a tautology. Without loss of generality, \(A_1 \cap A_2 = \emptyset \), and \(k_1, k_2 \geq 2 \).

We construct \(M = (U, V, F) \), \(X \subseteq V \), \(x \in D(X) \), \(C \subseteq D(U) \), and \(\phi \) such that \(X = x \) is an explanation of \(\phi \) relative to \(C \) iff \(\alpha_1 \) is not a tautology and \(\alpha_2 \) is a tautology. The construction is similar to the one in the proof of Theorem 3.2. Roughly, we replace the part for \(\Sigma^P_2 \)-hardness of deciding weak cause in the general case by a new part for \(\text{NP} \)-hardness of deciding weak cause in the binary case.

More formally, for every \(i \in \{1, 2\} \), we define the causal model \(M_i = (U, V_i, F_i) \) as follows. The exogenous and endogenous variables are given by \(U = \{E\} \) and \(V_i = A_j \cup \{G, D_{i,1}, \ldots, D_{i,k_i-1}\} \), respectively, where \(D(S) = \{0, 1\} \) for all \(S \in U \cup V_i \). The functions \(F_i = \{F^i_S \mid S \in V_i\} \) are defined by:

- \(F^i_U = 1 \) for all \(S \in A_j \cup \{G\} \),
- \(F^{D_{i,1}}_{i,1} = G \lor \alpha_{i,1} \),
- \(F^i_{D_{i,j-1}} = D_{i,j-1} \lor \alpha_{i,j} \) for all \(j \in \{2, \ldots, k_i - 1\} \).

Let \(\phi_i = D_{i,k_i-1} \lor \alpha_{i,k} \). As shown in [14,18], for every \(i \in \{1, 2\} \) and \(u \in D(U) \), it holds that \(G = 1 \) is a weak cause of \(\phi_i \) under \(u \) in \(M_i \) iff \(\alpha_1 \) is not a tautology.

The causal model \(M = (U, V, F) \) is now defined by \(V = V_1 \cup V_2 \cup \{G', H\} \) and \(F = F_1 \cup F_2 \cup \{F_{G'} = E, F_H = 1\text{ iff } (E = 0 \lor \phi_1) \lor (E = 1 \lor \phi_2) \text{ is true}\} \). Let \(\phi \) be defined as \(H = 1 \), and let \(u_1, u_2 \in D(U) \) be defined by \(u_1(E) = 1 \) and \(u_2(E) = 0 \). Observe that \(\phi \) is primitive.

By a similar line of argumentation as in the proof of Theorem 3.2, it follows that \(G = 1 \land G' = 1 \) is an explanation of \(\phi \) relative to \(C = \{u_1, u_2\} \) iff \(\alpha_1 \) is not a tautology and \(\alpha_2 \) is a tautology.

Theorem 3.5. Explanation Existence is \(\Sigma^P_2 \)-complete in the binary case.

Proof (sketch). As for membership in \(\Sigma^P_2 \), by Theorem 3.4, guessing some \(X' \subseteq X \) and \(x' \in D(X') \), and verifying that \(X' = x' \) is an explanation of \(\phi \) relative to \(C \) can be done in polynomial time with two \(\text{NP} \)-oracle calls in the binary case. This shows that Explanation Existence is in \(\Sigma^P_2 \) in the binary case.

Hardness for \(\Sigma^P_2 \) is shown by a reduction from the following \(\Sigma^P_2 \)-complete problem. Given a QBF \(\Phi = \exists B \forall C \gamma \), where \(\gamma \) is a propositional formula on the variables \(B = \{B_1, \ldots, B_l\} \) and \(C = \{C_1, \ldots, C_m\} \), decide whether \(\Phi \) is valid. We construct \(M = (U, V, F) \), \(X \subseteq V \), \(C \subseteq D(U) \), and \(\phi \) such that \(\Phi \) is valid iff some \(X' \subseteq X \) and \(x' \in D(X') \) exist such that \(X' = x' \) is an explanation of \(\phi \) relative to \(C \). The construction is similar to the one in the proof of Theorem 3.3. Roughly, we replace the part for \(\Sigma^P_2 \)-hardness of
deciding weak cause in the general case by a new part for NP-hardness of deciding weak cause in the binary case. □

4. Partial explanations and explanatory power

In this section, we analyze the complexity of partial explanations in the structural-model approach due to Halpern and Pearl [25,27]. We consider the problems of recognizing \(\alpha\)-partial/partial explanations and of deciding whether an \(\alpha\)-partial explanation over certain variables exists. Furthermore, we consider the problem of computing the explanatory power of a partial explanation. All complexity results are derived for the general as well as the binary case.

4.1. Definitions

We now recall the notions of \(\alpha\)-partial/partial explanations and of explanatory power of partial explanations [25,27]. Roughly, the main idea behind partial explanations is to generalize the notion of explanation of Section 3.1 to a setting where additionally a probability distribution over the set of possible contexts is given.

Let \(M = (U, V, F)\) be a causal model. Let \(X \subseteq V\) and \(x \in D(X)\). Let \(\phi\) be an event, and let \(C \subseteq D(U)\) be such that \(\phi(u)\) for all \(u \in C\). We use the expression \(C^\phi_{X=x}\) to denote the unique largest subset \(C'\) of \(C\) such that \(X = x\) is an explanation of \(\phi\) relative to \(C'\). The following proposition shows that \(C^\phi_{X=x}\) is defined, if there exists a subset \(C'\) of \(C\) such that \(X = x\) is an explanation of \(\phi\) relative to \(C'\). It also gives a useful characterization of \(C^\phi_{X=x}\).

Proposition 4.1. Let \(M = (U, V, F)\) be a causal model. Let \(X \subseteq V\) and \(x \in D(X)\), and let \(\phi\) be an event. Let \(C \subseteq D(U)\) be such that \(\phi(u)\) for all \(u \in C\). If \(X = x\) is an explanation of \(\phi\) relative to some \(C' \subseteq C\), then \(C^\phi_{X=x}\) is the set of all \(u \in C\) such that either (i) \(X(u) \neq x\), or (ii) \(X(u) = x\) and \(X = x\) is a weak cause of \(\phi\) under \(u\).

Proof. Clearly, \(C^\phi_{X=x}\) does not contain any \(u \in C\) such that \(X(u) = x\) and that \(X = x\) is not a weak cause of \(\phi\) under \(u\), as otherwise EX2 would be violated. Hence, \(C^\phi_{X=x}\) is a subset of the set of all \(u \in C\) such that either (i) or (ii). Assume now that some \(u' \in C\) with \(X(u') \neq x\) does not belong to \(C^\phi_{X=x}\). Then, \(X = x\) is an explanation of \(\phi\) relative to \(C' = C^\phi_{X=x} \cup \{u'\}\). But this contradicts \(C^\phi_{X=x}\) being the largest such \(C'\). Assume next that some \(u' \in C\) such that \(X(u') = x\) and that \(X = x\) is a weak cause of \(\phi\) under \(u'\) does not belong to \(C^\phi_{X=x}\). Then, \(X = x\) is an explanation of \(\phi\) relative to \(C' = C^\phi_{X=x} \cup \{u'\}\). But this contradicts again \(C^\phi_{X=x}\) being the largest such \(C'\). Hence, \(C^\phi_{X=x}\) is the set of all \(u \in C\) such that either (i) or (ii). □

Let \(P\) be a probability function on \(C\), and define

\[
P(C^\phi_{X=x} | X = x) = \sum_{u \in C^\phi_{X=x} \cap X(u)=x} P(u) / \sum_{u \in C' \cap X(u)=x} P(u).
\]
Then, \(X = x \) is called an \(\alpha \)-partial explanation of \(\phi \) relative to \((\mathcal{C}, P)\) iff \(C^\phi_{X=x} \) is defined and \(P(C^\phi_{X=x} \mid X=x) \geq \alpha \). We say \(X = x \) is a partial explanation of \(\phi \) relative to \((\mathcal{C}, P)\) iff \(X = x \) is an \(\alpha \)-partial explanation for some \(\alpha > 0 \); furthermore, \(P(C^\phi_{X=x} \mid X=x) \) is called its explanatory power (or goodness).

Example 4.2 (Arsonists continued). Consider the set of contexts \(\mathcal{C} = \{u_{1,1}, u_{1,0}, u_{0,1}\} \), and let \(P \) be the uniform distribution over \(\mathcal{C} \). Then, both \(A_1 = 1 \) and \(A_2 = 1 \) are 1-partial explanations of \(B = 1 \). That is, both \(A_1 = 1 \) and \(A_2 = 1 \) are partial explanations of \(B = 1 \) with explanatory power 1.

As for computation, we assume that the above probability functions \(P \) are computable in polynomial time.

4.2. Results

In our analysis, we consider the following important problems related to partial explanations and their explanatory power:

\(\alpha \)-Partial Explanation: Given \(M = (U, V, F) \), \(X \subseteq V \), \(x \in D(X) \), an event \(\phi \), a set of contexts \(\mathcal{C} \subseteq D(U) \) such that \(\phi(u) \) for all \(u \in \mathcal{C} \), a probability function \(P \) on \(\mathcal{C} \), and \(\alpha \geq 0 \), decide whether \(X = x \) is an \(\alpha \)-partial explanation of \(\phi \) relative to \((\mathcal{C}, P)\).

\(\alpha \)-Partial Explanation Existence: Given \(M = (U, V, F) \), \(X \subseteq V \), an event \(\phi \), a set of contexts \(\mathcal{C} \subseteq D(U) \) such that \(\phi(u) \) for all \(u \in \mathcal{C} \), a probability function \(P \) on \(\mathcal{C} \), and \(\alpha \geq 0 \), decide whether some \(X' \subseteq X \) and \(x' \in D(X') \) exist such that \(X' = x' \) is an \(\alpha \)-partial explanation of \(\phi \) relative to \((\mathcal{C}, P)\).

Partial Explanation: Given \(M = (U, V, F) \), \(X \subseteq V \), \(x \in D(X) \), an event \(\phi \), a set of contexts \(\mathcal{C} \subseteq D(U) \) such that \(\phi(u) \) for all \(u \in \mathcal{C} \), a probability function \(P \) on \(\mathcal{C} \), decide whether \(X = x \) is a partial explanation of \(\phi \) relative to \((\mathcal{C}, P)\).

Explanatory Power: Given \(M = (U, V, F) \), \(X \subseteq V \), \(x \in D(X) \), an event \(\phi \), \(\mathcal{C} \subseteq D(U) \), and a probability function \(P \) on \(\mathcal{C} \), where (i) \(\phi(u) \) for all \(u \in \mathcal{C} \), and (ii) \(X = x \) is a partial explanation of \(\phi \) relative to \((\mathcal{C}, P)\), compute the explanatory power of \(X = x \).

The problems \(\alpha \)-Partial/Partial Explanation and \(\alpha \)-Partial Explanation Existence can be viewed as relaxations of Explanation and Explanation Existence, respectively, in a probabilistic context. Explanatory Power is the problem of computing the “goodness” of a partial explanation \(X = x \), given by the coverage of the cases where \(X = x \) is true in the contexts \(\mathcal{C} \). This information can be used to rank partial explanations and single out “best” ones.

Our complexity results on these problems for the general and the binary case are summarized in Table 2. In detail, recognizing \(\alpha \)-partial/Partial explanations is complete for \(P_{\#}^\Sigma_2 \) (respectively, \(P_{\#}^{NP} \)) in the general (respectively, binary) case, while deciding the existence of \(\alpha \)-partial explanations is complete for \(\Sigma_2^{P} \) (respectively, \(\Sigma_2^{NP} \)). Furthermore, computing the explanatory power of a partial explanation is complete for \(FP_{\#}^{NP} \) (respectively,
Table 2
Complexity of partial explanations and explanatory power

<table>
<thead>
<tr>
<th>Problem</th>
<th>General case</th>
<th>Binary case</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-Partial Explanation</td>
<td>(P^{\Sigma^P_2})-complete</td>
<td>(P^{NP})-complete</td>
</tr>
<tr>
<td>(\alpha)-Partial Explanation Existence</td>
<td>(\Sigma^P_1)-complete</td>
<td>(\Sigma^P_2)-complete</td>
</tr>
<tr>
<td>Partial Explanation</td>
<td>(P^{\Sigma^P_2})-complete</td>
<td>(P^{NP})-complete</td>
</tr>
<tr>
<td>Explanatory Power</td>
<td>(FP^{\Sigma^P_1})-complete</td>
<td>(FP^{NP})-complete</td>
</tr>
</tbody>
</table>

FP\(^{NP}\)) in the general (respectively, binary) case. Hence, finding \(\alpha\)-partial explanations has the same complexity as finding full explanations, while recognizing \(\alpha\)-partial/partial explanations is mildly harder than recognizing full explanations.

The following result shows that recognizing \(\alpha\)-partial explanations is \(P^{\Sigma^P_2}\)-complete. Roughly, to recognize an \(\alpha\)-partial/partial explanation, we need to know the set of contexts \(C_{\phi X} = x\). By exploiting the basic characterization result in Proposition 4.1, it can be computed efficiently with parallel calls to a \(\Sigma^P_2\) oracle. Once \(C_{\phi X} = x\) is known, we need to check whether \(X = x\) is an explanation relative to it, the rest is easy. Thus, the complexity of these problems lies here in the computation of \(C_{\phi X} = x\).

Theorem 4.3. \(\alpha\)-Partial Explanation is \(P^{\Sigma^P_2}\)-complete.

Proof (sketch). We first prove membership in \(P^{\Sigma^P_2}\). Recall that \(X = x\) is an \(\alpha\)-partial explanation of \(\phi\) relative to \((C, P)\) if (a) \(X = x\) is an explanation of \(\phi\) relative to \(C_{\phi X} = x\), and (b) \(P(C_{\phi X} = x | X = x) \geq \alpha\). By Proposition 4.1, \(C_{\phi X} = x\) is the set of all \(u \in C\) such that either (i) \(X(u) \neq x\), or (ii) \(X(u) = x\) and \(X = x\) is a weak cause of \(\phi\) under \(u\). As deciding (i) is polynomial, and deciding (ii) is in \(\Sigma^P_2\), by Theorem 2.6, computing \(C_{\phi X} = x\) is in \(FP^{\Sigma^P_2}\). Once \(C_{\phi X} = x\) is given, deciding (a) is possible with two \(\Sigma^P_2\) oracle calls, by Theorem 3.2, and deciding (b) is polynomial. It is now well-known that two rounds of parallel \(\Sigma^P_2\) queries in a polynomial-time computation can be replaced by a single one [3]. Hence, the problem is in \(P^{\Sigma^P_2}\).

Hardness for \(P^{\Sigma^P_2}\) is shown by a reduction from deciding, given \(k\) QBFs \(\Phi_i = \exists A_i \forall B_i \gamma_i\) with \(i \in \{1, \ldots, k\}\), where each \(\gamma_i\) is a propositional formula on the variables \(A_i = \{A_{i,1}, \ldots, A_{i,m_i}\}\) and \(B_i = \{B_{i,1}, \ldots, B_{i,n_i}\}\), whether the number of valid formulas among \(\Phi_1, \ldots, \Phi_k\) is even. Without loss of generality, \(A_1 \cup B_1, \ldots, A_k \cup B_k\) are pairwise disjoint, \(\Phi_1\) is valid, and for each \(j \in \{2, \ldots, k\}\), the validity of \(\Phi_j\) implies the validity of \(\Phi_{j-1}\) [51]. We construct \(M = (U, V, F), X \subseteq V, x \in D(X), \phi, C \subseteq D(U), P,\) and \(\alpha\) such that \(X = x\) is an \(\alpha\)-partial explanation of \(\phi\) relative to \((C, P)\) if the number of valid formulas among \(\Phi_1, \ldots, \Phi_k\) is even. Roughly, the main idea behind this construction is as follows. For each \(\Phi_i\), we construct an instance of weak cause, that is, \(M_i = (U_i, V_i, F_i)\),...
Fig. 5. Schematic construction for evaluating k QBFs Φ_1, \ldots, Φ_k.

$X_i \subseteq V_i$, $x_i \in D(X_i)$, $u_i \in D(U_i)$ and an event ϕ_i, such that $X_i = x_i$ is a weak cause of ϕ_i under u_i in M_i iff Φ_i is valid. Then, M is the union of all M_i, enlarged by additional variables (see Fig. 5), and we define $X = X_1 \cup \cdots \cup X_k$ and $x = x_1 \ldots x_k$. By setting P to the uniform distribution over C and $\alpha = 1/|C|$, we obtain that $X = x$ is an α-partial explanation of ϕ relative to (C, P) iff $X = x$ is an explanation of ϕ relative to $C_{X=x}^\phi$. The latter is made to hold iff the number of valid formulas among the Φ_i’s is even. In detail, EX3 is violated iff i is even, Φ_i is not valid, and Φ_{i-1} is valid.

The following theorem shows that deciding the existence of α-partial explanations is complete for Σ^P_3. Here, the Σ^P_3 upper bound follows from the $P^\Sigma^P_2$ upper bound of recognizing α-partial explanations by a standard guess and check argument. The Σ^P_3-hardness is inherited from the Σ^P_3-hardness of Explanation Existence.

Theorem 4.4. α-Partial Explanation Existence is Σ^P_3-complete.

Proof. We first prove membership in Σ^P_3. By Theorem 4.3, deciding whether $X' = x'$ is an α-partial explanation of ϕ relative to (C, P) is in $P^\Sigma^P_2$ (see Theorem 3.3). Given an instance of it, let P be the uniform distribution on C, and let $\alpha = 1$. Then, $X' = x'$ is an α-partial explanation of ϕ relative to (C, P) iff $X' = x'$ is an explanation of ϕ relative to C.

The next theorem shows that deciding partial explanations is $P^\Sigma^P_2$-complete. The membership part is proved similarly as in the proof of Theorem 4.3. The hardness part follows easily from the hardness result in Theorem 4.3.

Theorem 4.5. Partial Explanation is $P^\Sigma^P_2$-complete.

Proof. As for membership in $P^\Sigma^P_2$, recall that $X = x$ is a partial explanation of ϕ relative to (C, P) iff (a) $X = x$ is an explanation of ϕ relative to $C_{X=x}^\phi$, and (b) $C_{X=x}^\phi$ contains some
u such that \(X(u) = x \) and \(P(u) > 0 \). By the proof of Theorem 4.3, computing \(C^{\phi}_{X=x} \) is in \(\text{FP}_{\parallel}^{\Sigma^P_2} \). Once \(C^{\phi}_{X=x} \) is given, checking (a) is in \(D^P_2 \) by Theorem 3.2, and checking (b) is polynomial. As two rounds of parallel \(\Sigma^P_2 \)-oracle queries in a polynomial-time computation can be replaced by a single one [3], deciding whether \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) is in \(\text{FP}_{\parallel}^{\Sigma^P_2} \).

We next show \(\text{FP}_{\parallel}^{\Sigma^P_2} \)-hardness. If \(P \) is the uniform distribution over \(C \), then \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) iff \(X = x \) is a \(1/|C| \)-partial explanation of \(\phi \) relative to \((C, P)\). By the proof of Theorem 4.3, deciding the latter is complete for \(\text{P}_{\parallel}^{\Sigma^P_2} \). Thus, deciding whether \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) is \(\text{P}_{\parallel}^{\Sigma^P_2} \)-hard, and hardness holds even if \(P \) is the uniform distribution over \(C \). □

The following result shows that computing the explanatory power of a partial explanation is \(\text{FP}_{\parallel}^{\Sigma^P_2} \)-complete. Here, the membership part is proved similarly as in the proof of Theorem 4.3. The hardness part is shown by a reduction from computing all valid QBFs among \(k \) given QBFs \(\Phi = \exists A \forall B \gamma \).

Theorem 4.6. Explanatory Power is \(\text{FP}_{\parallel}^{\Sigma^P_2} \)-complete.

Proof (sketch). We first prove membership in \(\text{FP}_{\parallel}^{\Sigma^P_2} \). Let \(X = x \) be a partial explanation of \(\phi \) relative to \((C, P)\). To compute its explanatory power, we compute first \(C^{\phi}_{X=x} \) and then \(P(C^{\phi}_{X=x} | X = x) \). By the proof of Theorem 4.3, the former is in \(\text{FP}_{\parallel}^{\Sigma^P_2} \), while the latter is polynomial. In summary, the problem is in \(\text{FP}_{\parallel}^{\Sigma^P_2} \).

Hardness for \(\text{FP}_{\parallel}^{\Sigma^P_2} \) is shown by a reduction from computing, given \(k \) QBFs \(\Phi_1 = \exists A_1 \forall B_1 \gamma_1 \) with \(i \in \{1, \ldots, k\} \), where each \(\gamma_i \) is a propositional formula on the variables \(A_1 = \{A_{1,1}, \ldots, A_{1,m_1}\} \) and \(B_1 = \{B_{1,1}, \ldots, B_{1,n_1}\} \), the vector \((v_1, \ldots, v_k) \in \{0, 1\}^k \) such that \(v_i = 1 \) iff \(\Phi_i \) is valid, for all \(i \in \{1, \ldots, k\} \). Without loss of generality, \(A_1 \cup B_1, \ldots, A_k \cup B_k \) are pairwise disjoint, and \(\Phi_1 \) is valid. Roughly speaking, the main idea is to construct a problem instance such that \((v_1, \ldots, v_k) \) is the bit-vector representation of the explanatory power of \(X = x \). The construction is similar to the one in the proof of Theorem 4.3, which is illustrated in Fig. 5. For each \(\Phi_i \), we construct \(M_i = (U_i, V_i, F_i) \), \(X_i \subseteq V_i, x_i \in D(X_i), u_i \in D(U_i) \), and an event \(\phi_i \) such that \(X_i = x_i \) is a weak cause of \(\phi_i \) under \(u_i \). These models are then combined in \(M \) such that \(u_i \in C^{\phi}_{X=x} \) iff \(\Phi_i \) is valid. Defining \(P(u_i) = 2^{i-1} / (2^k - 1) \) for all \(i \in \{1, \ldots, k\} \) completes the reduction. □

5. **Succinct representation**

Our complexity results in Sections 3 and 4 (as summarized in Tables 1 and 2) assume that the set of contexts \(C \) is enumerated in the input. However, \(C \) may contain exponentially many contexts. Hence, a descriptive representation can be much more compact and
Table 3

<table>
<thead>
<tr>
<th>Problem</th>
<th>General case</th>
<th>Binary case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation</td>
<td>(\Pi^P_4)-complete</td>
<td>(\Pi^P_3)-complete</td>
</tr>
<tr>
<td>Partial Explanation</td>
<td>(\Pi^P_4)-complete</td>
<td>(\Pi^P_3)-complete</td>
</tr>
</tbody>
</table>

desirable in practice. In the **succinct representation** setting, we thus assume that \(C \) is given
by a tractable membership function \(\chi_C(u) \). That is, on input of \(u \in D(U) \), function \(\chi_C(u) \)
reports in polynomial time whether \(u \in C \) holds. This includes, e.g., descriptions of \(C \) in
terms of propositional formulas \(\beta \) over \(U \) such that the models of \(\beta \) describe the contexts
in \(C \).

Table 3 shows our complexity results for some of the problems in Sections 3 and 4
in the setting where contexts are succinctly represented. More precisely, recognizing
explanations and partial explanations in the case of succinct context sets is complete for
\(\Pi^P_4 \) (respectively, \(\Pi^P_3 \)) in the general (respectively, binary) case.

Thus, it turns out that succinct representation increases the complexity of Explanation
and Partial Explanation drastically. Intuitively, in this case checking a property for all
contexts in \(C \) becomes much harder, since there seems no better way than guessing
the “right” context witnessing or disproving the property. The complexity increase by
two levels in \(\text{PH} \) stems from the fact that condition EX3 involves two nested checks of
properties for all contexts in \(C \). This dominates the complexity of EX1, EX2, and EX4 and
leads to \(\Pi^P_4 \) complexity.

For \(\alpha \)-Partial Explanation, we have similar effects. Worse, we need to calculate sums of
probabilities over succinctly represented context sets. This leads us outside \(\text{PH} \): It requires
us to solve problems which are at least as hard as deciding whether a given propositional
CNF \(\beta \) has \(\geq k \) models, where \(k \) is in the input. This problem is, as generally believed,
not in \(\text{PH} \). We refrain from a detailed analysis of computing \(\alpha \)-partial explanations here.
A complexity increase for Explanation Existence under succinct context sets to \(\Sigma^P_5 \) is
plausible, though we have not analyzed it; note that already the \(\Pi^P_4 \)-hardness proof for
Explanation is rather involved.

The following result shows that deciding explanation is \(\Pi^P_4 \)-complete for succinct
context sets. Here, membership in \(\Pi^P_4 \) follows from the fact that checking EX1, EX2, EX3,
and EX4 is in \(\text{co-NP}, \Pi^P_3, \Pi^P_4, \) and \(\text{NP} \), respectively, for succinct context sets. Hardness
for \(\Pi^P_4 \) is shown by a reduction from deciding whether a given QBF \(\Phi = \forall A \exists B V C \exists D \gamma \)
is valid, which is essentially encoded in condition EX3.

Theorem 5.1. Explanation is \(\Pi^P_4 \)-complete for succinct context sets.

Proof (sketch). Recall that \(X = x \) is an explanation of \(\phi \) relative to \(C \) iff EX1–EX4
hold. Under succinct context sets, in EX1, deciding \(\phi(u) \) for all \(u \in C \) is in \(\text{co-NP} \). In
EX4, deciding whether \(X(u) = x \) and \(X(u') \neq x \) hold for some \(u, u' \in C \) is in \(\text{NP} \). By
Theorem 2.6, deciding whether \(X = x \) is a weak cause of \(\phi \) under every \(u \in C \) with
\(X(u) = x \) in EX2 is in \(\Pi^P_3 \). Thus, deciding whether some \(X' \subseteq X \) exists such that
\(X' = x | X' \) is a weak cause of \(\phi \) under every \(u \in C \) with \(X'(u) = x | X' \) is in \(\Sigma^P_4 \). That
Fig. 6. Schematic construction for evaluating a QBF $\Phi = \forall A \exists B \forall C \exists D \gamma$.

is, deciding EX3 is in Π_4^P. In summary, deciding whether EX1–EX4 hold is in Π_4^P under succinct context sets.

Hardness for Π_4^P is shown by a reduction from deciding whether a given QBF $\Phi = \forall A \exists B \forall C \exists D \gamma$ is valid, where γ is a propositional formula on the variables $A \cup B \cup C \cup D$. We construct $M = (U, V, F), X \subseteq V, x \in D(X), \phi$, and $C \subseteq D(U)$ such that $X = x$ is an explanation of ϕ relative to C iff Φ is valid. This construction is schematically illustrated in Fig. 6. Roughly, the main idea is to encode Φ in EX3, where the quantifier "$\forall A$" is represented by considering all $X' \subseteq X$, the quantifier "$\exists B$" is expressed by finding some $u \in D(U)$, and $\forall C \exists D \gamma$ is expressed by checking the complement of a weak cause.

The next result shows that under succinct context sets, also deciding partial explanation is Π_4^P-complete. Here, membership in Π_4^P can be proved similarly as in the proof of Theorem 5.1, using additionally Proposition 4.1. Hardness for Π_4^P easily follows from an extension of the hardness part in the proof of Theorem 5.1, where we additionally assume the uniform distribution P on the set of contexts.

Theorem 5.2. Partial Explanation is Π_4^P-complete for succinct context sets.

Proof. As for membership in Π_4^P, recall that $X = x$ is a partial explanation of ϕ relative to (C, P) iff (a) $X = x$ is an explanation of ϕ relative to $C_{X=x}^\phi$, and (b) $C_{X=x}^\phi$ contains some u such that $X(u) = x$ and $P(u) > 0$. By Proposition 4.1, $C_{X=x}^\phi$ is the set of all $u \in C$ such that either (i) $X(u) \neq x$, or (ii) $X(u) = x$ and $X = x$ is a weak cause of ϕ under u. To check that (a) holds, we check that EX1–EX4 hold. Clearly, EX1 and EX2 always hold. The complement of EX3 says that some $X' \subset X$ exists such that for every $u \in C$ it holds that $X'(u) = x | X'$ and $u \in C_{X=x}^\phi$ implies that $X' = x | X'$ is a weak cause of ϕ under u. That is, some $X' \subset X$ exists such that for every $u \in C$, it holds either (a) $X'(u) \neq x | X'$, or (b) $X(u) = x$ and $X = x$ is not a weak cause of ϕ under u, or (c) $X' = x | X'$ is a weak cause of ϕ under u. As deciding whether $X = x$ (respectively, $X' = x | X'$) is a weak cause of ϕ under
u is in Σ^P_4, deciding whether EX3 does not hold is in Σ^P_4. That is, deciding whether EX3 holds is in Π^P_4. EX4 says that some $u, u' \in C^\phi_{X=x}$ exist such that $X(u) \neq x$ and $X(u') = x$. Equivalently, some $u, u' \in C$ exist such that $X(u) \neq x$, and $X(u') = x$ and $X = x$ is a weak cause of ϕ under u'. Thus, deciding whether EX4 holds is in Σ^P_4. In summary, checking (a) is in Π^P_4.

Finally, (b) says that some $u \in C$ exists such that $X(u) = x$, $P(u) > 0$, and $X = x$ is a weak cause of ϕ under u. Thus, checking (b) is in Σ^P_4. In summary, deciding whether (a) and (b) hold is in Π^P_4.

Hardness for Π^P_4 is shown by a reduction from the Π^P_4-complete problem of deciding whether a QBF $\Phi = \forall A \exists B \forall C \exists D \gamma$ is valid, where γ is a propositional formula on the variables $A \cup B \cup C \cup D$.

Let $M = (U, V, F)$, $X \subseteq V$, $x \in D(X)$, ϕ, and $C \subseteq D(U)$ be defined as in the proof of Theorem 5.1, and let P be the uniform distribution over C. By the proof of Theorem 5.1, (a) $X = x$ is an explanation of ϕ relative to C iff Φ is valid. Furthermore, ϕ is primitive, $\phi(u)$ for all $u \in C$, and for every $u \in C$, either (i) $X(u) \neq x$, or (ii) $X(u) = x$ and $X = x$ is a weak cause of ϕ under u.

By Proposition 4.1, $X = x$ is a partial explanation of ϕ relative to (C, P) iff (a) $X = x$ is an explanation of ϕ relative to C, and (b) C contains some u such that $X(u) = x$ and $P(u) > 0$. Here, (a) implies (b). By (a), it follows that $X = x$ is a partial explanation of ϕ relative to (C, P) iff Φ is valid. \hfill \Box

6. Generalization: situations

In this section, we analyze the complexity of recognizing explanations and of deciding the existence of explanations in the general case of situations [25,27]. In the course of this, we also analyze the complexity of checking subsumption and equivalence between causal models.

6.1. Definitions

We now recall the concept of explanation for the case of situations [25,27]. Intuitively, an agent may also be uncertain about the causal model, and not only about the context that applies to the actual situation at hand. Thus, in the general case of situations, the agent’s epistemic state consists of a set of pairs (M, u), called situations, where M is a causal model and u is a context. Before defining explanations for situations, we first define causal formulas and their truth and validity.

A basic causal formula is an expression of the form $[Y_1 \leftarrow y_1, \ldots, Y_k \leftarrow y_k] \phi$, where ϕ is an event, Y_1, \ldots, Y_k are pairwise distinct endogenous variables, $y_i \in D(Y_i)$ for all $i \in \{1, \ldots, k\}$, and $k \geq 0$. The set of causal formulas is the closure of the set of basic causal formulas under the Boolean operations \neg and \land. For $Y = \{Y_1, \ldots, Y_k\}$ and $y = y_1 \ldots y_k$, we use $[Y \leftarrow y] \phi$ to abbreviate $[Y_1 \leftarrow y_1, \ldots, Y_k \leftarrow y_k] \phi$. As usual, we use $\phi \lor \psi$ and \top to abbreviate $(\neg \phi \land \neg \psi)$ and $\phi \lor \neg \phi$, respectively. The truth of a causal formula ψ in $M = (U, V, F)$ under $u \in D(U)$, denoted $(M, u) \models \psi$, is inductively defined by:
\begin{itemize}
\item \((M, u) \models [Y \leftarrow y] \phi\) iff \(\phi_y(u)\) in \(M\),
\item \((M, u) \models \neg \phi\) iff \((M, u) \models \phi\) does not hold,
\item \((M, u) \models \phi \land \psi\) iff \((M, u) \models \phi\) and \((M, u) \models \psi\).
\end{itemize}

We say \(\psi \) is valid in \(M = (U, V, F)\), denoted \(M \models \psi\), if \((M, u) \models \psi\) for all \(u \in D(U)\). By \(Th(M)\) we denote the set of all causal formulas which are valid in \(M\).

The following result, whose easy proof is omitted, shows that deciding validity is co-NP-complete. Roughly, this result is immediate by the fact that checking \(M \models \psi\) amounts to checking \((M, u) \models \psi\) for each of the in general exponentially many contexts \(u\) in \(D(U)\).

Proposition 6.1. Given a causal model \(M = (U, V, F)\) and a causal formula \(\psi\), deciding whether \(M \models \psi\) is co-NP-complete.

We are now ready to define situations, and explanations relative to situations as follows. A situation \(S = (M, u)\) consists of a causal model \(M = (U, V, F)\) and a context \(u \in D(U)\). Informally, rather than having explanations of the form \(X = x\) relative to a set of contexts \(C\), where \(X\) is a set of endogenous variables and \(x \in D(X)\), we now generalize to explanations of the form \((\psi, X = x)\) relative to a set of situations \(S\), where \(\psi\) is a causal formula that restricts the causal models to be considered from \(S\).

Before we give a formal definition, we introduce some useful notation. Let for any set of situations \(S\) and causal formulas \(\psi\) and \(\psi'\) denote \(\psi \equiv_S \psi'\) that \(M \models \psi\) implies \(M \models \psi'\), for all \((M, u) \in S\), and let \(\equiv_S \psi'\) denote \(\psi \equiv_S \psi' \land \psi' \equiv_S \psi\), i.e., equivalence of \(\psi\) and \(\psi'\) on the causal models occurring in \(S\).

Let then \(\psi\) be a causal formula, let \(X\) be a set of endogenous variables, and let \(x \in D(X)\). Furthermore, let \(\phi\) be an event, and let \(S\) be a set of situations. Then, \((\psi, X = x)\) is an explanation of \(\phi\) relative to \(S\), if the following conditions hold:

1. \(\psi \equiv_S \phi\) for every situation \((M, u) \in S\).
2. \(X = x\) is a weak cause of \(\phi\) under \(u\) in \(M\), for every \((M, u) \in S\) such that \((M, u) \models X = x\) and \(M \models \psi\).
3. \((\psi, X = x)\) is minimal. That is, there is no \((\psi', X' = x')\) \(\not\equiv_S (\psi, X = x)\) satisfying ES2 such that (i) \(\psi \equiv_S \psi'\) and (ii) \(X' \subseteq X\) and \(x' = x|X'\).
4. \((M, u) \models X = x\) for some \((M, u) \in S\), and \((M', u') \models \neg(X = x)\) for some \((M', u') \in S\).

In ES3, \((\psi', X' = x') \not\equiv_S (\psi, X = x)\) means that either \(\psi \equiv_S \psi'\), i.e., \(\psi'\) and \(\psi\) are not equivalent on the causal models in \(S\), or that \(X' = x'\) and \(X = x\) are different.

Observe that the notion of explanation for sets of contexts is a special case of the notion of explanation for sets of situations, as \(X = x\) is an explanation of \(\phi\) relative to \(C\) in \(M\) iff \((T, X = x)\) is an explanation of \(\phi\) relative to \(\{(M, u) \mid u \in C\}\).

The following example illustrates explanations relative to situations.

Example 6.2 (Arsonists continued). Consider the causal model \(M = (U, V, F)\) of the running example given in Example 2.1. Let the causal model \(M' = (U, V, F')\) be identical to \(M\) except that the function \(F'_B \in F'\) is now defined by \(F'_B = 1\) iff \(A_1 = 1\) and \(A_2 = 1\).
Informally, this says that the whole forest burns down iff both arsonists start a fire. Let the causal model $M'' = (U'', V, F'')$ be identical to M except that now the set of exogenous variables is given by $U'' = \{U_1, U_2, U_3\}$ and the function $F''_\psi \in F''$ is defined by $F''_\psi = 1$ iff $A_1 = 1$ or $A_2 = 1$ or $U_3 = 1$. Intuitively, the whole forest burns down iff either some arsonist starts a fire or some other event results into a fire (which is expressed by the exogenous variable U_3). Let the causal formula ψ be given by $[A_1 \leftarrow 0, A_2 \leftarrow 0] B = 0$ (intuitively, the whole forest burns down only if one of the two arsonists starts a fire), and let the context $u_{1,1,1} \in D(U'')$ be defined by $u_{1,1,1}(U_i) = 1$ for all $i \in \{1, 2, 3\}$ (intuitively, both arsonists intend to start a fire, and there is also some other event that results into a fire).

Then, both $(\psi, A_1 = 1)$ and $(\psi, A_2 = 1)$ are explanations of $B = 1$ relative to the set of situations $S = \{(M, u_{1,1}), (M, u_{0,1}), (M, u_{1,0}), (M', u_{1,1}), (M'', u_{1,1,1})\}$, since (ES1) $S \models B = 1$ for all $S \in S$, (ES2) $A_1 = 1$ (respectively, $A_2 = 1$) is a weak cause of $B = 1$ relative to every $S \in \{(M, u_{1,1}), (M, u_{1,0}), (M', u_{1,1})\}$ (respectively, $S \in \{(M, u_{1,1}), (M', u_{1,1})\}$), (ES3) $A_1 = 1$ (respectively, $A_2 = 1$) is trivially minimal, and ψ also cannot be weakened to some ψ' such that $M'' \models \psi'$, since $A_1 = 1$ (respectively, $A_2 = 1$) is not a weak cause of $B = 1$ relative to $(M'', u_{1,1,1})$, and (ES4) $A_1(u_{1,1}) = 1$ and $A_1(u_{0,1}) \neq 1$ (respectively, $A_2(u_{1,1}) = 1$ and $A_2(u_{1,0}) \neq 1$) in M.

We next define the concepts of subsumption and equivalence between causal models. We say that a causal model $M = (U, V, F)$ subsumes a collection of causal models M_1, M_2, \ldots, M_n, where $M_i = (U_i, V_i, F_i)$ with $V = V_i, i \in \{1, \ldots, n\}$, denoted $M_1, M_2, \ldots, M_n \leq M$, iff for all causal formulas ϕ on the variables in V, it holds that $M_i \models \phi$, for all $i \in \{1, \ldots, n\}$, implies $M \models \phi$, that is, $\bigcap_{i=1}^n \text{Th}(M_i) \subseteq \text{Th}(M)$. Two causal models $M_1 = (U_1, V_1, F_1)$ and $M_2 = (U_2, V_2, F_2)$, where $V_1 = V_2$, are equivalent, denoted $M_1 \equiv M_2$, iff $M_1 \leq M_2$ and $M_2 \leq M_1$. That is, M_1 and M_2 are equivalent iff $\text{Th}(M_1) = \text{Th}(M_2)$. In other words, M_1 and M_2 are indiscernible in the language of causal formulas.

The following result provides a characterization of the failure of subsumption of a collection of causal models by some causal model. This characterization is particularly useful for assessing the computational complexity of deciding this relationship as well as of deciding equivalence of causal models.

Theorem 6.3. Let $M = (U, V, F)$ and $M_i = (U_i, V, F_i), 1 \leq i \leq n$, be causal models. Then, $M_1, M_2, \ldots, M_n \not\leq M$ iff the following property holds:

\[(\ast) \text{There exists some } u \in D(U) \text{ such that for every } i \in \{1, \ldots, n\} \text{ and for every } u_i \in D(U_i), \]

\[\text{there exists some causal formula } [Y \leftarrow y] X = x, \text{ where } Y \text{ is a (possibly empty) set of endogenous variables and } X \text{ is a single variable, such that (i) } (M, u) \not\models [Y \leftarrow y] X = x \text{ and (ii) } (M_i, u_i) \models [Y \leftarrow y] X = x. \]

Proof. (\Rightarrow) Suppose $M_1, M_2, \ldots, M_n \not\leq M$, that is, $T = \bigcap_{i=1}^n \text{Th}(M_i) \not\subseteq \text{Th}(M)$. Let $\phi \in T \setminus \text{Th}(M)$ be an arbitrary formula. As $\phi \not\in \text{Th}(M)$, there exists some context $u \in D(U)$ such that $(M, u) \not\models \phi$, while $(M_i, u_i) \models \phi$ for all $i \in \{1, \ldots, n\}$ and $u_i \in D(U_i)$. As easily
seen, for all recursive causal models $M' = (U', V', F')$ and $u' \in D(U')$, the following holds (cf. also [24]):

- $(M', u') \models [Y \leftarrow y] \neg \psi$ iff $(M', u') \models \neg [Y \leftarrow y] \psi$;
- $(M', u') \models [Y \leftarrow y] (\psi_1 \land \psi_2)$ iff $(M', u') \models [Y \leftarrow y] \psi_1 \land [Y \leftarrow y] \psi_2$.

Therefore, ϕ is equivalent to a Boolean combination of causal formulas of the form $[Y' \leftarrow y'] X' = x'$, where Y' is a (possibly empty) set of endogenous variables and X' is a single variable. Moreover, as the domain of every variable is finite, we can equivalently rewrite ϕ into a disjunctive normal form

$$\bigvee_{j \in J} \left(\bigwedge_{k \in K_j} [Y_{j,k} \leftarrow y_{j,k}] X_{j,k} = x_{j,k} \right),$$

where each $X_{j,k}$ is a single variable. Since $(M_i, u_i) \models \phi$, it follows that $(M_i, u_i) \models [Y_{j,k} \leftarrow y_{j,k}] X_{j,k} = x_{j,k}$ for some $j = j_0$ and all $k \in K_{j_0}$; on the other hand, since $(M, u) \not\models \phi$, some $k_0 \in K_{j_0}$ exists such that $(M, u) \not\models [Y_{j_0,k_0} \leftarrow y_{j_0,k_0}] X_{j_0,k_0} = x_{j_0,k_0}$. As $(M_i, u_i) \models [Y_{j_0,k_0} \leftarrow y_{j_0,k_0}] X_{j_0,k_0} = x_{j_0,k_0}$, this proves property (\ast).

$\left(\implies\right)$ Suppose that (\ast) holds. Let ϕ be the disjunction of all formulas $[Y \leftarrow y] X = x$ for all $i \in \{1, \ldots, n\}$ and u_i as in (\ast). Then, $(M_i, u_i) \models \phi$ for all $i \in \{1, \ldots, n\}$ and $u_i \in D(U_i)$, while $(M, u) \not\models \phi$ by construction. This shows that $\bigcap_{i=1}^n \text{Th}(M_i) \not\subseteq \text{Th}(M)$, that is, $M_1, M_2, \ldots, M_n \not\bowtie M$. \square

We remark that a similar result would hold for causal models with arbitrary (finite and/or infinite variable domains), if also causal formulas $[Y \leftarrow y] X \neq x$, where $X = x$ is a primitive event, are allowed in Theorem 6.3.

6.2. Results

Our complexity results for the case of situations are summarized in Table 4. We consider the problem of recognizing explanations, which turns out to be complete for Π^P_3 in the general and the binary case. Furthermore, we consider the problem of deciding the existence of explanations, which is shown to be complete for Σ^P_3 in the general and the binary case. We also consider the problems of deciding subsumption and equivalence between causal models, which are shown to be complete for Π^P_3 in the general and the binary case.

Notice that by a standard guess and check argument, Π^P_3 membership of Explanation for situations implies a Σ^P_4 upper bound for deciding the existence of an explanation for

<table>
<thead>
<tr>
<th>Problem</th>
<th>General case</th>
<th>Binary case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explanation</td>
<td>Π^P_3-complete</td>
<td>Π^P_3-complete</td>
</tr>
<tr>
<td>Explanation Existence</td>
<td>Σ^P_3-complete</td>
<td>Σ^P_3-complete</td>
</tr>
</tbody>
</table>
situations, in a sensible formulation of the problem (see below). Moreover, as explanations for contexts are a special case of explanations for situations, the Σ^P_3 lower bound of Explanation Existence in the case of contexts immediately implies a Σ^P_3 lower bound of Explanation Existence in the case of situations.

As we show, this lower bound is in fact complemented with a Σ^P_3 upper bound, which means that deciding the existence of explanations for situations is not harder than for contexts. On the other hand, the problem is already Σ^P_3-hard for binary models. This is explained by subsumption checks which implicitly occur in forming an explanation for situations, whose complexity dominates the complexity of explanations in the binary case.

We exploit the characterization of subsumption in Theorem 6.3 to derive the following complexity result on checking subsumption between causal models.

Theorem 6.4. Given causal models $M = (U, V, F)$ and $M_i = (U_i, V, F_i)$, $1 \leq i \leq k$, deciding whether $M_1, M_2, \ldots, M_k \leq M$ is Π^P_3-complete. Hardness holds even if $k = 1$, that is, for pairs of causal models.

Proof. We first prove membership in Π^P_3. By Theorem 6.3, to show that $M_1, \ldots, M_k \nleq M$, we can guess some $u \in D(U)$ and then check that for every $i \in \{1, \ldots, k\}$ and $u_i \in D(U_i)$, there exists some causal formula $[Y \leftarrow y]X = x$, where Y is a (possibly empty) set of endogenous variables and X is a single variable, such that (i) $(M, u) \not|= [Y \leftarrow y]X = x$ and (ii) $(M_i, u_i) |= [Y \leftarrow y]X = x$. This can be done in nondeterministic polynomial time, using a Σ^P_2-oracle. Thus, the problem is in Π^P_3.

Hardness for Π^P_3 for $k = 1$ is shown by a reduction from deciding whether a given QBF $\Phi = \forall B \exists C \forall D \gamma$ is valid, where $\gamma = \gamma'(B, C, D)$ is a propositional formula on the variables $B = \{B_1, \ldots, B_l\}$, $C = \{C_1, \ldots, C_m\}$, and $D = \{D_1, \ldots, D_n\}$.

We now construct two causal models $M = (U, V, F)$ and $M_1 = (U_1, V, F_1)$ such that $M_1 \leq M$ iff Φ is valid. The sets of exogenous and endogenous variables are defined by $U = U_1 = B \cup C$ and $V = D \cup W \cup \{Z\}$, respectively, where $W = \{W_1, \ldots, W_l\}$ and $D(X) = \{0, 1\}$ for all $X \in U \cup V$. The functions $F = \{F_X \mid X \in V\}$ and $F_1 = \{F_1_X \mid X \in V\}$ are defined by $F_X = F_1_X = 0$ for all $X \in V \setminus \{Z\}$, $F_Z = \bigvee_{i=1}^l (B_i \neq W_i)$, and $F^l_Z = \bigvee_{i=1}^l (B_i \neq W_i) \lor \neg \gamma$ (see Fig. 7).

![Fig. 7. Causal models (a) $M = (U, V, F)$ and (b) $M_1 = (U_1, V, F_1)$](image)
We now prove that Φ is valid iff $M_1 \leq M_2$. It can be shown that Φ is not valid iff (*) some $u \in D(U)$ exists such that for every $u_1 \in D(U_1)$, there exists a causal formula $[Y \leftarrow y]X = x$, where $Y \subseteq V$ and $X \in V$, such that (i) $(M, u) \not\models [Y \leftarrow y]X = x$ and (ii) $(M_1, u_1) \models [Y \leftarrow y]X = x$ (see Appendix D). By Theorem 6.3, this proves that Φ is valid iff $M_1 \leq M_2$.

By an extension to the proof of Theorem 6.4, we obtain the following complexity result on testing equivalence between causal models.

Theorem 6.5. Given two causal models $M_1 = (U_1, V, F_1)$ and $M_2 = (U_2, V, F_2)$, deciding whether $M_1 \equiv M_2$ is Π^P_3-complete.

Proof. We first show membership in Π^P_3. Recall that $M_1 \equiv M_2$ iff $M_1 \leq M_2$ and $M_2 \leq M_1$. By Theorem 6.4, deciding whether $M_1 \leq M_2$ (respectively, $M_2 \leq M_1$) holds is in Π^P_3. Thus, as Π^P_3 is closed under conjunction, the problem is in Π^P_3.

For the Π^P_3-hardness part, we give a reduction from deciding $M_1 \leq M_2$. Roughly speaking, we construct a causal model M such that $Th(M) = Th(M_1) \cap Th(M_2)$. Then, $M_1 \leq M_2$ iff $M \equiv M_1$, which proves the result.

We construct the causal model $M = (U, V, F)$ as follows. Assume, without loss of generality, that M_1 and M_2 are such that the union $G(M_1) \cup G(M_2) = (V \cup U_1 \cup U_2, E_1 \cup E_2)$ of their causal graphs $G(M_1) = (V \cup U_1, E_1)$ and $G(M_2) = (V \cup U_2, E_2)$ is a directed acyclic graph; note that M and M_1 in the proof of Theorem 6.4 have this property.

The set of exogenous variables is given by $U = U_1 \cup U_2 \cup \{U_0\}$, where U_0 is a fresh exogenous variable with domain $D(U_0) = \{1, 2\}$. The functions $F = \{F_X \mid X \in V\}$ are constructed from the functions $F_1 = \{F_X^1 \mid X \in V\}$ and $F_2 = \{F_X^2 \mid X \in V\}$ as follows. For each $X \in V$, let the parents PA_X of X in M be the union PA_X^1 and PA_X^2 of the parents of X in M_1 and M_2, respectively, plus U_0, and define $F_X(x) = F_X^1(x|PA_X^1)$ if $x|U_0 = 1$, and $F_X(x) = F_X^2(x|PA_X^2)$ if $x|U_0 = 2$. That is, if the U_0-component of x is $i \in \{1, 2\}$, then the value of F_X is the value of the function F_X^i for X in the model M_i on x projected to the parents of X.

Notice that M is a recursive causal model, because its causal graph $G(M) = (U \cup V, E_1 \cup E_2 \cup \{U_0 \rightarrow X \mid X \in V\})$ is a directed acyclic graph. Clearly, for every causal formula on V, it holds that $M \models \phi$ iff $M_1 \models \phi$ and $M_2 \models \phi$. Thus, $Th(M) = Th(M_1) \cap Th(M_2)$, as desired. As M can be built in polynomial time from M_1 and M_2, the result follows.

We finally address the issue of recognizing explanations relative to a set of situations S.

In that, we make use of the following lemma, which is helpful in checking the minimality condition $ES3$.

Lemma 6.6. Let \mathcal{M} and $\mathcal{M}' = \{M_1, \ldots, M_n\}$ be sets of causal models such that $\mathcal{M}' \subseteq \mathcal{M}$. Then, there exists a causal formula ϕ defining \mathcal{M}' in \mathcal{M}, that is, $\mathcal{M}' = \{M \in \mathcal{M} \mid M \models \phi\}$, iff $M_1, \ldots, M_n \not\models M$ holds for every $M \in \mathcal{M} \setminus \mathcal{M}'$.

Proof. \((\Rightarrow)\) Let \(\phi\) define \(\mathcal{M}'\), and assume towards a contradiction that there exists some \(M \in \mathcal{M} \setminus \mathcal{M}'\) such that \(M_1, \ldots, M_n \leq M\). Since \(\phi \in \bigcap_{i=1}^{n} \text{Th}(M_i)\), it follows that \(\phi \in \text{Th}(M)\), which contradicts that \(\phi\) defines \(\mathcal{M}'\).

\((\Leftarrow)\) Suppose that \(M_1, \ldots, M_n \nleq M\) holds for every model \(M \in \mathcal{M} \setminus \mathcal{M}'\). Hence, there exists a formula \(\phi_M \in \bigcap_{i=1}^{n} \text{Th}(M_i)\) such that \(\phi_M \not\in \text{Th}(M)\). Consequently, the formula \(\phi = \bigwedge_{M \in \mathcal{M} \setminus \mathcal{M}'} \phi_M\) defines \(\mathcal{M}'\), that is, for every \(M \in \mathcal{M}\), it holds that \(M \in \mathcal{M}'\) iff \(M \models \phi\). \(\square\)

We are now ready to analyze the complexity of recognizing explanations in the case of situations. The following theorem shows that this problem is \(\Pi_3^P\)-complete. Here, \(\Pi_3^P\)-hardness is inherited from the \(\Pi_3^P\)-hardness of subsumption checking. Notice that for binary causal models, the complexity of recognizing explanations is the same, as subsumption checking is \(\Pi_3^P\)-hard already for binary causal models.

Theorem 6.7. Given a causal formula \(\psi\), a set of endogenous variables \(X\), a value \(x \in D(X)\), an event \(\phi\), and a set of situations \(S\), deciding whether \((\psi, X = x)\) is an explanation of \(\phi\) relative to \(S\) is \(\Pi_3^P\)-complete.

Proof. We first prove membership in \(\Pi_3^P\). Recall that \((\psi, X = x)\) is an explanation of \(\phi\) relative to \(S\) iff ES1–ES4 hold. Let \(\mathcal{M}\) denote the set of all causal models \(M\) such that \((M, u) \in S\) for some context \(u\).

By Proposition 2.3, in ES1, deciding whether \((M, u) \models \phi\) for all \((M, u) \in S\) is polynomial, and in ES4, deciding whether \((M, u) \models X = x\) and \((M', u') \models \neg(X = x)\) for some \((M, u), (M', u') \in S\) is polynomial.

In ES2, we decide whether for every \((M, u) \in S\), it holds (a) \((M, u) \models \neg(X = x)\), or (b) \((M, u') \models \neg\psi\) for some context \(u'\) in \(M\), or (c) \(X = x\) is a weak cause of \(\phi\) under \(u\) in \(M\). By Proposition 2.3, (a) is polynomial and (b) is in NP. By Theorem 2.6, (c) is in \(\Sigma_2^P\).

In summary, deciding whether ES2 holds is in \(\Sigma_2^P\).

In ES3, we apply Lemma 6.6: To disprove ES3, we may guess some \(X' \subseteq X\) and some \(\mathcal{M}' = \{M_1, \ldots, M_n\} \subseteq \mathcal{M}\) such that the following holds: (i) \(M \in \mathcal{M} \setminus \mathcal{M}'\), (ii) \(M_1, \ldots, M_n \nleq M\) for all \(M \in \mathcal{M} \setminus \mathcal{M}'\), (iii) \(X' \neq X\) or \(M \in \mathcal{M} \setminus \mathcal{M}'\), and (iv) for all \((M, u) \in S\), either (a) \((M, u) \models \neg(X' = x|X')\), or (b) \(M \nleq \mathcal{M}'\), or (c) \(X' = x|X'\) is a weak cause of \(\phi\) under \(u\) in \(M\). Tasks (i), (iii), and (iv) are clearly solvable in polynomial time with a \(\Sigma_2^P\)-oracle. As for (ii), by Theorem 6.4, checking whether \(M_1, \ldots, M_n \nleq M\) holds for each \(M \in \mathcal{M} \setminus \mathcal{M}'\) can be done in nondeterministic polynomial time with a \(\Sigma_2^P\)-oracle. This implies that deciding whether ES3 holds is in \(\Pi_3^P\). In summary, deciding whether ES1–ES4 hold is in \(\Pi_3^P\).

Hardness for \(\Pi_3^P\) is shown by a reduction from the problem of deciding subsumption between causal models, which is \(\Pi_3^P\)-complete by Theorem 6.4: Given two causal models \(M_1 = (U_1, V, F_1)\) and \(M_2 = (U_2, V, F_2)\), decide whether \(M_1 \leq M_2\). By the proof of Theorem 6.4, we can assume that \(U_1 = U_2 = U\).

We now construct a causal formula \(\psi\), a set of endogenous variables \(X\), a value \(x \in D(X)\), an event \(\phi\), and a set of situations \(S\), such that \((\psi, X = x)\) is an explanation of \(\phi\) relative to \(S\) iff \(M_1 \leq M_2\).
The set of situations is defined by $S = \{S_i = (M_i, u_i) \mid 3 \leq i \leq 6\}$, where the causal models $M_i = (U_i, V_i, F_i)$ and the contexts u_i are given as follows. For $i \in \{3, \ldots, 6\}$, the sets of exogenous and endogenous variables are defined by $U_i = U \cup \{U_0\}$ and $V_i = V \cup \{X_0, Y, T\}$, respectively, where $D(X) = \{0, 1\}$ for all $X \in \{U_0, X_0, Y, T\}$. For $i \in \{3, \ldots, 6\}$, the functions $F_i = \{F^i_X \mid X \in V_i\}$ are defined as follows:

- $F_3 = \{F^3_{X_0} = 0, F^3_Y = (U_0 = 0) \land (X_0 = 1), F^3_T = 1\} \cup F_1$;
- $F_4 = \{F^4_{X_0} = 0, F^4_Y = (U_0 = 0) \land (X_0 = 1), F^4_T = 1\} \cup F_2$;
- $F_5 = \{F^5_{X_0} = 0, F^5_Y = X_0, F^5_T = 0\} \cup \{F^5_X = 0 \mid X \in V\}$;
- $F_6 = \{F^6_Y = 1, F^6_T = 0, F^6_X = 0\} \cup \{F^6_X = 0 \mid X \in V\}$.

The contexts u_3, \ldots, u_6 are arbitrary such that $u_3(U_0) = 0$ and $u_4(U_0) = 1$.

Observe now that $X_0 = 0$ is a weak cause of $Y = 0 \in u_3$ in M_3, while $X_0 = 0$ is not a weak cause of $Y = 0 \in u_3$ in M_4 (but $X_0(u_4) = 0$ in M_4). Moreover, notice that $X_0 = 0$ is a weak cause of $Y = 0 \in u_5$ in M_5, while $X_0 = 0$ is not a weak cause of $Y = 0 \in u_6$ in M_6 (as $X_0(u_6) \neq 0$ in M_6).

Intuitively, if we want to form an explanation $(\psi, X_0 = 0)$ for $Y = 0$, the situation (M_6, u_6) serves, together with the situation (M_5, u_5), as a witness to the property $ES4$. By minimality of an explanation, we must have M_3 selected by ψ, since $X_0 = 0$ is in M_3 a weak cause for $Y = 0$ in context u_5. Furthermore, M_3 may be selected; this, however, is only possible if it does not require to select also M_4 by subsumption, as (M_4, u_4) spoils the condition $ES2$. That is, M_3 may not be selected, just if $M_3 \not\leq M_4$ holds, which is equivalent to $M_1 \not\leq M_2$. Thus, if we have a causal formula ψ which selects precisely M_5 and M_6, then the candidate $\langle \psi, X_0 = 0 \rangle$ is an explanation just if $M_1 \not\leq M_2$ holds.

We show now that $(T = 0, X_0 = 0)$ is an explanation of $Y = 0$ relative to S iff $M_1 \not\leq M_2$ holds. Indeed, it is easily checked that by construction, $ES1$, $ES2$, and $ES4$ hold. If $M_1 \not\leq M_2$, then $ES3$ is violated, as $(T = 0 \lor \phi, X_0 = 0)$ satisfies $ES2$, where $\phi \in Th(M_1) \setminus Th(M_2)$ is arbitrary, and $\{M \in \mathcal{M} \mid M \models T = 0 \lor \phi\} = \{M_3, M_5, M_6\} \supset \{M_2, M_6\} = \{M \in \mathcal{M} \mid M \models T = 0\}$, where $\mathcal{M} = \{M_i \mid 3 \leq i \leq 6\}$. Conversely, if $ES3$ is violated, then $(\psi', X' = x') \not\models_S (T = 0, X_0 = 0)$ means that $X' = x'$ coincides with $X_0 = 0$ and thus $M_3 \models \psi'$ and $M_4 \not\models \psi'$ must hold (as $X_0 = 0$ is not a weak cause of $Y = 0 \in u_4$ in M_4, but $X_0(u_4) = 0$ in M_4). Thus, $M_1 \not\leq M_2$ holds.

As the above reduction is polynomial, this shows Π^P_2-hardness. □

Let us now turn to the issue of deciding the existence of explanations in the general case of situations. This problem has to be carefully defined, since otherwise simple (and perhaps unintended) explanations may be found.

It is not difficult to see that if an event ϕ satisfies $ES1$ for a set of situations S, and if X_0 is variable and x_0 a value for X_0 such that $ES4$ holds for $X_0 = x_0$, then some explanation of form $(\psi, X_0 = x_0)$ for ϕ w.r.t. S exists. This implies that given a set of variables X to build explanations using them for ϕ w.r.t. S, deciding whether some explanation exists is possible in polynomial time.

A more sensible formulation of Explanation Existence for the case of situations is the following.
Explanation Existence (for situations): Given a finite set of situations \(S \), a set of endogenous variables \(X \), a causal formula \(\psi \), and an event \(\phi \), decide whether a causal formula \(\psi' \) with \(\psi' \models_S \psi', X' \subseteq X \), and \(x' \in D(X') \) exist such that \((\psi', X' = x') \) is an explanation of \(\phi \) relative to \(S \).

Here, the causal formula \(\psi \) is a positive selection condition for causal models in ES2, such that each causal model \(M \) satisfying \(\psi \) must be respected and the event \(X = x \) must be a weak cause of \(\phi \) under \(u \) for every situation \((M, u) \in S\) such that \((M, u) \models X = x\) and \(M \models \psi \). A weakening of \(\psi \), that is, a cautious enlargement of the set of respected causal models is admissible, which amounts to adding alternative selection conditions. Before we analyze the complexity of Explanation Existence for situations, we introduce some terminology.

We call a pair \((\psi, X = x)\) a pseudo-explanation of an event \(\phi \) relative to a set of situations \(S \), if \((\psi, X = x)\) satisfies conditions ES1, ES2, ES4, and the following weakened form of ES3:

\[
(ES3') \text{ There is no } (\psi, X' = x') \not\models_S (\psi, X = x) \text{ satisfying ES2 such that } X' \subseteq X \text{ and } x' = x \mid X'.
\]

The following result is useful for determining the complexity of Explanation Existence.

Lemma 6.8. Given a causal formula \(\psi \), an event \(\phi \), a set of endogenous variables \(X \), and a finite set of situations \(S \), there exists an explanation \((\psi', X' = x')\) of \(\phi \) relative to \(S \) such that \(\psi \models_S \psi' \) and \(X' \subseteq X \) and \(x' \in D(X') \) iff there exists a pseudo-explanation \((\psi^*, X' = x')\) of \(\phi \) relative to \(S \) such that \(\psi \models_S \psi^*, X' \subseteq X \), and \(x' \in D(X') \).

Proof. \((\Rightarrow)\) Obviously, any explanation is a pseudo-explanation.

\((\Leftarrow)\) Let \((\psi', X' = x')\) be a pseudo-explanation of \(\phi \) relative to \(S \) such that \(\psi \models_S \psi' \). We show that there exists some explanation \((\psi'', X'' = x'')\) of \(\phi \) relative to \(S \) such that \(\psi' \models_S \psi'' \). Let \(\psi^* \) be a weakest formula \(\psi'' \) such that \(\psi' \models_S \psi'' \) and ES2 holds for \((\psi'', X' = x')\). We claim that \((\psi^*, X' = x')\) is an explanation of \(\phi \) relative to \(S \). Since \(\psi' \models_S \psi^* \), this will prove the result.

Towards a contradiction, suppose \((\psi^*, X'' = x'')\), where \(\psi^* \models_S \psi'' \), is such that it satisfies ES2 and either (i) \(X'' \subseteq X' \) and \(x'' = x' \mid X'' \), or (ii) \(\psi^* \not\models_S \psi'' \). In case (i), each causal model \(M \) selected by \(\psi' \) is also selected by \(\psi^* \), and thus by \(\psi'' \); furthermore, \(x'' = x' \) is a weak cause of \(\phi \) in \(M \) under \(u \) for each \((M, u) \in S\) such that \((M, u) \models \psi'' \) and \((M, u) \models X'' = x''. \) This contradicts that \((\psi', X' = x')\) is a pseudo-explanation of \(\phi \) relative to \(S \). Thus, \(x'' = x' \) must hold, and case (ii) must apply. However, this means that \(\psi^* \) is not a weakest formula \(\psi'' \) such that \(\psi' \models_S \psi'' \) and \((\psi'', X' = x')\) satisfies ES2, which is a contradiction. This proves that \((\psi^*, X' = x')\) is an explanation of \(\phi \) relative to \(S \). \(\Box \)

Theorem 6.9. Problem Explanation Existence for situations is \(\Sigma_3^P \)-complete.
Proof. We first prove membership in \(\Sigma^P_1 \). By Lemmas 6.6 and 6.8, it is sufficient to guess some \(X′ \subseteq X, x′ \in D(X′) \), and \(\mathcal{M} = \{M_1, \ldots, M_n\} \subseteq \mathcal{M} \) such that (i) \(\{M \in \mathcal{M} \mid M \models \psi\} \subseteq \mathcal{M}' \), (ii) \(M_1, \ldots, M_n \not\subseteq M \) for all \(M \in \mathcal{M} \setminus \mathcal{M}' \), and ES1, ES2 where “\(M \in \mathcal{M}'\)” replaces “\(M \models \psi\)”, ES3, and ES4 hold. Task (i) can be done in polynomial time with an NP-oracle, while task (ii) can be done, by Theorem 6.4, in nondeterministic polynomial time with a \(\Pi^P_2 \)-oracle. Checking ES1 and ES4 is possible in polynomial time, while ES2 can be checked, by Proposition 6.1 and Theorem 3.3, in polynomial time with a \(\Sigma^P_2 \) oracle. Finally, checking ES3 is in \(\Pi^P_2 \), since deciding the existence of a counterexample to minimality is in \(\Pi^P_2 \). In summary, the whole procedure runs in nondeterministic polynomial time using a \(\Pi^P_2 \)-oracle. Hence, Explanation Existence is in \(\Sigma^P_3 \).

For the case of unrestricted models, \(\Sigma^P_3 \)-hardness is inherited from the \(\Sigma^P_1 \)-completeness of Explanation Existence for context explanations, which occurs as a special case of Explanation Existence for situations. We show \(\Sigma^P_3 \)-hardness for the binary case by a reduction from deciding non-subsumption between causal models, which is \(\Sigma^P_3 \)-complete by Theorem 6.4: Given two causal models \(M_1 = (U_1, V, F_1) \) and \(M_2 = (U_2, V, F_2) \), decide whether \(M_1 \not\subseteq M_2 \). Without loss of generality, we assume that \(U_1 = U_2 = U \).

The reduction is similar in spirit to the one in the proof of Theorem 6.7, yet different. We construct a causal formula \(\psi \), a set of endogenous variables \(X \), an event \(\phi \), and a set of situations \(S \), such that some explanation \((\psi′, X′ = x′) \) of \(\phi \) relative to \(S \) exists such that \(\psi \models_S \psi′, X′ \subseteq X \), and \(x′ \in D(X′) \) iff \(M_1 \not\subseteq M_2 \).

The set of situations is defined by \(S = \{S_i = (M_i, u_i) \mid 3 \leq i \leq 6\} \), where the causal models \(M_i = (U_i, V_i, F_i) \) and the contexts \(u_i \) are given as follows. For \(i \in \{3, \ldots, 6\} \), the sets of exogenous and endogenous variables are defined by \(U_i = U \cup \{U_0\} \) and \(V_i = V \cup \{X_0, X_1, Y, T\} \), respectively, where \(D(X) = \{0, 1\} \) for all \(X \in \{U_0, X_0, X_1, Y, T\} \). For \(i \in \{3, \ldots, 6\} \), the functions \(F_i = \{F^X_\phi \mid X \in V_i\} \) are defined as follows:

- \(F_3 (X_0) = 0, F^3_{X_1} = 0, F^3_T = (U_0 = 0) \land (X_0 = 1), F^3_T' = 1 \} \cup F_1; \)
- \(F_4 (X_0) = 0, F^4_1 = 0, F^4_T = (U_0 = 0) \land (X_0 = 1), F^4_T' = 1 \} \cup F_2; \)
- \(F_5 (X_0) = 0, F^5_1 = 0, F^5_T = X_1, F^5_T = 0 \} \cup \{F^3_X = 0 \mid X \in V\}; \)
- \(F_6 (X_0) = 1, F^6_1 = 0, F^6_T = T = 1 \land (X_0 = 1 \lor X_1 = 1), F^6_T = 0 \} \cup \{F^3_X = 0 \mid X \in V\}. \)

The contexts \(u_3, \ldots, u_6 \) are arbitrary such that \(u_3(U_0) = 0 \) and \(u_4(U_0) = 1 \).

Observe now that the situations \(S_i \) have the following weak causes of \(Y = 0 \) involving only variables in \(X = \{X_0, X_1\} \): \(S_3 \) has \(X_0 = 0 \) and \(X_0 = 0 \land X_1 = 0 \), \(S_4 \) has no weak cause, \(S_5 \) has \(X_1 = 0 \) and \(X_0 = 0 \land X_1 = 0 \), and \(S_6 \) has \(X_1 = 0 \).

Define now \(\psi = T = 0, \phi = Y = 0 \), and \(X = \{X_0, X_1\} \). Note that \(\psi \) selects the models \(M_3 \) and \(M_6 \).

Intuitively, \(S_5 \) and \(S_6 \) create a single candidate event, \(X_0 = 0 \land X_1 = 0 \), for an explanation \((\psi′, X′ = x′) \) of \(\phi \) as desired. This candidate is good if \(S_3 \) but not \(S_4 \) can be respected in the explanation, i.e., \(\psi′ \) selects \(M_3 \) but not \(M_4 \), which is equivalent to \(M_1 \not\subseteq M_2 \).
Formally, in any explanation \((\psi', X' = x')\) for \(Y = 0\) relative to \(S\) such that \(\psi \models_S \psi'\), the set \(X'\) must be different from \(X_0\); otherwise, \(X' = x'\) is not a weak cause under \(u_5\) in \(M_5\) and under \(u_6\) in \(M_6\), which means that ES2 is violated. Thus, \(X'\) must include \(X_1\). On the other hand, \(X \neq \{X_1\}\) and \(x'|X_1 = 0\) must hold, since otherwise ES4 is violated. Since \(X_0 = 1 \land X_1 = 0\) is not a weak cause of \(Y = 0\) in \(M_6\) under \(u_6\), we have that \(X' = x'\) must be of form \(X_0 = 0 \land X_1 = 0\).

We claim that some \((\psi', X_0 = 0 \land X_1 = 0)\) with \(\psi \models_S \psi'\) is an explanation of \(\phi\) relative to \(S\) iff \(M_1 \not\subseteq M_2\) holds.

Suppose that \((\psi', X_0 = 0 \land X_1 = 0)\) is an explanation of \(\phi\) relative to \(S\). We must have \(\psi' \not\models_S \psi\): indeed, \((\psi, X_0 = 0 \land X_1 = 0)\) is not a pseudo-explanation of \(\phi\), since ES3 fails, which is witnessed by \((\psi, X_1 = 0)\) satisfying ES2. Therefore, \(\psi'\) must select either \(M_3\) or \(M_4\). Since \(X\) allows no weak cause of \(Y = 0\) in \(M_4\) under \(u_4\), \(\psi'\) must not select \(M_4\). This implies \(M_3 \not\subseteq M_4\), which in turn implies that \(M_1 \not\subseteq M_2\).

Conversely, suppose that \(M_1 \not\subseteq M_2\). Then, \(M_3 \not\subseteq M_4\), and the set \([M_3, M_5, M_6]\) is definable by a formula \(\psi'\) such that \(\psi \models_S \psi'\). Consider \((\psi', X_0 = 0 \land X_1 = 0)\). Clearly, ES1 holds for \(\phi = Y = 0\) and ES4 holds for \(X_0 = 0 \land X_1 = 0\). Also ES2 holds, since \(X_0 = 0 \land X_1 = 0\) is a weak cause of \(Y = 0\) in \(M_3\) under \(u_3\) and in \(M_5\) under \(u_5\). Furthermore, neither for \((\psi', X_0 = 0)\) nor for \((\psi', X_1 = 0)\) is ES2 satisfied, since \(X_0 = 0\) is not a weak cause of \(Y = 0\) in \(M_5\) under \(u_5\) and \(X_1 = 0\) is not a weak cause of \(Y = 0\) in \(M_3\) under \(u_3\). Thus, \((\psi', X_0 = 0 \land X_1 = 0)\) is a pseudo-explanation of \(\phi\) relative to \(S\). From Lemma 6.8, it follows that some explanation \((\psi'', X_0 = 0 \land X_1 = 0)\) of \(Y = 0\) relative to \(S\) exists (in fact, \(\psi'' \equiv_S \psi'\) must hold).

As the above reduction is polynomial, this shows \(\Sigma^P_3\)-hardness. \(\square\)

We remark that the existence of specific explanations may have higher complexity. For example, deciding the existence of an explanation \((\psi', X' = x')\) where \(\psi' = \psi\), is both \(\Sigma^P_3\)-hard and \(\Pi^P_3\)-hard; the latter is implicit in the proof of Theorem 6.7.

6.3. Causal formulas with exogenous variables

We now give some remarks on the impact of the language of events that is considered in defining explanations and situations. In this paper, like in [25,26], primitive events involve only endogenous variables. The setting stated in [17] is slightly more liberal and also admits exogenous variables to occur in primitive events. While such enhanced expressiveness does not increase the complexity results for explanations in Sections 3–5, it allows to simplify some of the technical hardness proofs. On the other hand, the higher expressiveness of causal formulas which may also involve exogenous variables via primitive events implies a refinement of the subsumption and indiscernibility relation, which is also easier to test: The characterization of \(M_1, \ldots, M_n \not\subseteq M\) in Theorem 6.3, where \(M = (U, V, F)\) and \(M_i = (U, V, F_i)\) for all \(i \in \{1, \ldots, n\}\), can be replaced by the following simpler condition:

\[**\) There exists some \(u \in D(U)\) such that for every \(i \in \{1, \ldots, n\}\), there exists a causal formula \([Y \leftarrow y] X = x\), where \(Y\) is a (possibly empty) set of endogenous
variables and X is a single variable, such that (i) $(M, u) \not\models [Y \leftarrow y] X = x$, and (ii) $(M, u) \models [Y \leftarrow y] X = x$.

The check of this condition is easily seen to be NP-complete. Therefore, the subsumption test $M_1 \leq M_2$ (respectively, equivalence test $M_1 \equiv M_2$) is co-NP-complete rather than Π^P_2-complete, and thus two levels lower in the polynomial hierarchy. Consequently, it does not dominate the complexity of the conditions ES1–ES4; the same algorithm for checking an explanation, performed in this setting, yields then a D^P_2 (respectively, D^P) upper bound in the general (respectively, binary) case. A matching lower bound is inherited from the complexity of Explanation in the basic setting, as it is a special case of situations, and thus the problem is complete for D^P_2 (respectively, D^P). Similarly, for the problem Explanation Existence, we obtain completeness for Σ^P_3 and Σ^P_2 in the general and the binary case, respectively.

7. Related work

In this section, we give a comparison of our work to related work on complexity of explanations in the areas of abduction and of Bayesian networks.

7.1. Abductive explanations

Abduction has been recognized as an important principle of common-sense reasoning, and plays an important role in many AI problems including diagnosis, planning, or natural language processing to mention but a few. One of the uses of abduction is to obtain explanations for observations, which loosely speaking is accomplished by a kind of reversed modus ponens. There is quite some work on algorithms and complexity of finding abductive explanations (e.g., [4,8,9,11,44,47]).

Roughly, in a logic-based setting, abductive explanations are defined as follows (cf. [35, 47]). Given some background knowledge T, which is a theory, i.e., a set of sentences in some logic, and a set of observations O, which are typically facts, a set of sentences E from a set of hypotheses H is an explanation of O from T, iif

1. $T \cup E$ is satisfiable, i.e., not contradictory, and
2. $T \cup E \models O$, i.e., the observations are logically entailed from the background knowledge and the explanation, under a notion of logical entailment \models.

Usually, further conditions are imposed on E in order to single out most plausible explanations. A standard such condition is the application of Occam’s razor, i.e., minimality in terms of set inclusion.

While causal and abductive explanations, in a standard logical setting such as above, are apparently different concepts, they have similar complexity. In particular, deciding the existence of an abductive explanation in the propositional context (i.e., T, O, and H are in classical propositional logic) is Σ^P_2-complete, as shown in [11]. This matches our respective result on causal explanations for binary causal models. In fact, computing causal
explanations can be polynomially transformed into computing abductive explanations in this case, and vice versa.

In the case of causal models with non-binary domains, explanations are one level higher up in the Polynomial Hierarchy, and deciding the existence of a causal explanation is Σ_3^P-complete. This matches, interestingly, the complexity of abductive explanations from disjunctive logic programs under the stable respectively answer set semantics. In this setting, the background theory T is a propositional disjunctive logic program, H and E are sets of atoms, and $|=*$ is standard cautious inference, i.e., truth in all stable models respectively answer sets of a program. As was shown in [12], deciding the existence of an abductive explanation is Σ_3^P-complete in this scenario. Thus, deciding the existence of causal and of abductive LP explanations is polynomially intertranslatable, which extends easily to computing some causal respectively abductive LP explanation, and computational engines could be mutually exploited.

The issue of efficient transformations of causal into abductive explanations, as well as into related reasoning tasks of nonmonotonic formalisms, is an interesting subject for further work, which may also be exploited for obtaining rapid prototype implementations. E.g., by mapping binary causal explanations to abductive explanations, (extended) variants of the Truth Maintenance System (cf. [44]) could be utilized for this purpose, or the diagnostic frontend of the DLV system [10]. Another possibility would be an encoding of causal explanations in Answer Set Programming, and using the DLV engine to compute solutions. For the case of general causal explanations, reductions to QBF solvers such as [5,19,42] could be used.

7.2. Bayesian networks

After Cooper’s well-known intractability result [7] for probabilistic inference in Bayesian networks, a number of papers in this area have investigated complexity issues for reasoning and in particular for explanation finding.

A dominating notion of explanation in the probabilistic AI literature is the maximum a posteriori explanation (MAP, alias most probable explanation [33,34]), which is an assignment to all variables given a partial assignment to the variables in a Bayesian network, such that its probability is maximum. Some complexity results for MAPs have been derived, which however are only weakly related to our results for causal explanations. In particular, computing a MAP in a Bayesian network is NP-hard [49], and the same applies to computing a MAP approximation [1]; on the other hand, this is feasible in polynomial time with an NP oracle.

This result on computing a MAP is quite different from our results on α-partial explanations, for two reasons: firstly, MAPs are computed from the set of all contexts, which is not part of the input. In this setting, α-partial explanations have higher complexity. Secondly, MAPs are single contexts which maximize probability for a given evidence, while α-partial explanations single out subsets of contexts which sensibly respect relevant information [27].

From the computational side, it is more suitable to compare deciding $P(X = x) > 0$ in a Bayesian network with our problem Partial Explanation under succinct context sets, where \mathcal{C} contains all possible contexts and P emerges from independent exogenous variables.
However, the former problem is NP-complete [7], while the latter is, by our results, Π_4^P-complete and thus much harder. We may thus expect a similar relationship between computing the explanatory power and the probability $P(X = x)$ in a Bayesian network, which can be done in polynomial time with the help of a $\#P$ oracle [43].

8. Conclusion

In this paper, we have considered explanations in Halpern and Pearl’s structural-model approach to causality from a computational perspective, and we have obtained a number of complexity results which precisely characterize the intrinsic difficulty of major computational tasks on explanations.

Our results give a clear picture of the complexity of explanations in the case of general structural models, as well as under the restriction to the case where all variables are binary. As we have shown, causal explanations reside at the third level of the Polynomial Hierarchy (PH) in the basic setting, and thus are, computationally speaking, harder to compute than, for example, abductive explanations in the standard logic-based setting, which are at the second level of PH. Intuitively, causal explanations harbor three intermingled sources of complexity, which make the concept difficult:

1. the, in general, exponential set of candidates $X = x$ for an explanation formed from variables X in a given set X' of variables;
2. condition AC2(b), which informally is a kind of validity test ensuring that X alone is sufficient to bring about the change of the event ϕ to $\neg\phi$, and thus impacts on ϕ; and
3. minimality of explanations, which implies an exponential set of candidates in condition EX3/ES3 for spoiling a candidate explanation.

The complexity of causal explanations further increases, as demonstrated for the recognition problem, under a natural concise form of model representation by two levels in PH. In particular, the recognition problems was proved to be Π_4^P-complete, and thus is, compared to validity checking in classical propositional logic, a rather complex problem.

Some of our hardness results remain valid under further restrictions, such as a boundedness condition on the causal model [14,18]. In particular, all hardness results from Tables 1--3 in Sections 3--5 hold for primitive events ϕ. Thus, complex events are not a source of complexity. However, to avoid a proliferation of results, we did not further consider such restrictions here.

For “efficient” algorithms to generate explanations or “best” α-partial explanations, we can conclude the following. Both must solve an inherent Σ_2^P-hard problem; thus, simple backtracking is infeasible, as well as polynomial reductions to a SAT solver or a computational logic system which can handle problems with complexity up to Σ_2^P, such as DLV [13,36]. However, an explanation may be computed using nested backtracking, or flat backtracking calling a subroutine for Σ_2^P tasks (e.g., calls to DLV). A further possible perspective are translations to QBF-solvers, which proved valuable in other applications [42]. We can compute an α-partial explanation similarly. Computing a best one amounts to an optimization problem, which can be solved by binary search over the range $[0,1]$ of
α, and thus in polynomial time with a \(\Sigma^P_3 \)-oracle. A substantially faster algorithm seems unlikely to exist.

Once the basic results about the complexity of a framework are known, and intractability of some tasks has been evidenced, a natural next step of research is to identify cases of lower complexity, and in particular to find islands of tractability. For that, meaningful restrictions must be found which eliminate the various sources of complexity, which is not straightforward.

While the complexity results for explanations established in this paper may look discouraging, and leave us with little hope for tractable cases, it turned out that there are meaningful restrictions of causal models for which explanations have polynomial complexity. In a companion paper [15,16] to [14,18] and the present paper, we describe nontrivial syntactic restrictions on causal models under which the notions of weak causes and explanations are tractable. In particular, we have identified a hierarchy of tractable classes, starting with simple causal trees, i.e., the causal graphs are trees, over layered causal graphs, i.e., the causal graphs can be layered so as to permit a step by step propagation of effects, to a general class of decomposable causal graphs. On such causal models, small weak causes under explanations can be computed efficiently under further assumptions which are needed to gain tractability. However, the technical definitions and the characterizations are far too involved to be discussed here; we refer the interested reader to [15,16] for details.

Hence, there are some positive results on the computation of causal explanations for certain instances already. It remains, however, to find other classes of instances that have lower complexity, and in particular that guarantee tractability; delineating the tractability frontier is a challenging task for future work. Likewise, the development of suitable algorithms, continuing and extending the work of Hopkins [30], is indispensable for making the structural-model approach amenable to efficient implementation and use in practice.

Acknowledgements

This work has been partially supported by the Austrian Science Fund under project Z29-N04, by a DFG grant, and by a Marie Curie Individual Fellowship of the European Community programme “Human Potential” under contract number HPMF-CT-2001-001286 (Disclaimer: The authors are solely responsible for information communicated and the European Commission is not responsible for any views or results expressed). We are thankful to the reviewers of this paper and its KR 2002 abstract, whose constructive comments helped to improve our work.

Appendix A. Proofs for Section 3

Proof of Theorem 3.3 (continued). Hardness for \(\Sigma^P_3 \) is shown by a reduction from deciding whether a given QBF \(\Phi = \exists B \forall C \exists D \gamma \) is valid, where \(\gamma \) is a propositional formula on the variables \(B = \{B_1, \ldots, B_l\}, C = \{C_1, \ldots, C_m\}, \) and \(D = \{D_1, \ldots, D_n\} \). We
construct $M=(U,V,F)$, $X \subseteq V$, $C \subseteq D(U)$, and ϕ as in the statement of the theorem such that Φ is valid iff some $X' \subseteq X$ and $x' \in D(X')$ exist such that $X'=x'$ is an explanation of ϕ relative to C.

We define $U=\{I,U_0,U_0',\ldots,U_l,U_l'\}$, where $D(I)=\{0,\ldots,l+1\}$ and $D(S)=\{0,1\}$ for all $S \in U \setminus \{I\}$. Let $C=\{u_0,u_0',\ldots,u_l,u_l'\}$, where u_i (respectively, u_i') is the unique $u \in D(U)$ such that $\varepsilon_i(u)$ (respectively, $\varepsilon_i'(u)$) holds, and ε_i (respectively, ε_i') for every $i \in \{0,\ldots,l+1\}$ (respectively, $i \in \{0,\ldots,l\}$) is defined by:

\[
\varepsilon_i = I = i \land U_0 = 0 \land U_0' = 1 \land \bigwedge_{i=1}^{l} (U_i = 0 \land U_i' = 0),
\]

\[
\varepsilon_i' = I = i \land U_0 = 0 \land U_0' = 0 \land \bigwedge_{i=1}^{l} (U_i = 0 \land U_i' = 0).
\]

We define $M=(U,V,F)$ as follows. Let $V=B \cup B' \cup C \cup D \cup \{X_0,X_0',E,E',Y\}$, where $B'=\{B_1',\ldots,B_l'\}$, $D(S)=\{0,1,2\}$ for all $S \in D$, and $D(S)=\{0,1\}$ for all $S \in V \setminus D$. Let

\[
\alpha = \left(-\gamma' \land \bigwedge_{S \in D} S \neq 2 \right) \lor (E=0) \lor \left(X_0 = 1 \land E = 1 \land \bigvee_{S \in D} S \neq 2 \right),
\]

\[
\phi_1' = \left(\varepsilon_0 \lor \varepsilon_0' \rightarrow \left(X_0 = 0 \land \bigwedge_{i=1}^{l} B_i \neq B_i' \right) \lor \left(\bigvee_{i=1}^{l} (B_i = 1 \land B_i' = 1) \right) \lor E' = 0 \right),
\]

\[
\phi_2' = \bigwedge_{i=1}^{l} (\varepsilon_i \lor \varepsilon_i' \rightarrow B_i = 0 \lor B_i' = 0),
\]

\[
\phi_3' = \left(\varepsilon_{l+1} \rightarrow \left(\alpha \land \bigwedge_{i=1}^{l} B_i \neq B_i' \right) \lor \left(\bigvee_{i=1}^{l} (B_i = 1 \land B_i' = 1) \right) \lor E' = 0 \right),
\]

where γ' is obtained from γ by replacing each $S \in B \cup C \cup D$ by “$S=1$”. We are now ready to define the functions $F=\{F_S \mid S \in V\}$ as follows:

- $F_{B_i} = U_i$ and $F_{B_i'} = U_i'$ for all $i \in \{1,\ldots,l\}$,
- $F_{X_0} = U_0$ and $F_{X_0'} = U_0'$,
- $F_S = 0$ for all $S \in C \cup \{E,E'\}$,
- $F_S = X_0 + E$ for all $S \in D$,
- $F_Y = 1$ iff $\phi_1' \lor \phi_2' \lor \phi_3'$ is true.

Let $X = B \cup B' \cup \{X_0,X_0'\}$. Let ϕ be $Y=1$. Notice that ϕ is primitive.

For every truth assignment τ to the variables in B, denote by $[B/\tau(B)]$ the substitution $[B_1/\tau(B_1),\ldots,B_l/\tau(B_l)]$, and we define $\alpha^\tau = \alpha[B/\tau(B)]$. Let $x_0 = 0$, and let $u \in D(U)$ with $X_0(u) = x_0$. Then, $X_0 = x_0$ is a weak cause of α^τ under u iff $\exists C \forall D \neg \gamma[B/\tau(B)]$ is valid [14,18]. That is, $X_0 = x_0$ is not a weak cause of α^τ under u iff $\forall C \exists D \gamma[B/\tau(B)]$ is valid. Thus, Proposition 2.5 implies the following:
For every \(X' \subseteq B \cup B' \cup \{X_0, X'_0\} \) with \(X_0 \in X' \), it holds that \(X' = X'(u) \) is not a weak cause of \(\alpha \) under \(u \) iff \(\forall C \exists D \gamma [B/\tau(B)] \) is valid.

We now show that \(\Phi \) is valid iff some \(X' \subseteq X \) and \(x' \in D(X') \) exist such that \(X' = x' \) is an explanation of \(\phi \) relative to \(C \).

\(\Leftarrow \) Assume that some \(X' \subseteq X \) and \(x' \in D(X') \) exist such that \(X' = x' \) is an explanation of \(\phi \) relative to \(C \). Then,

- \(x'(S) = 0 \) for all \(S \in X' \cap (B \cup B' \cup \{X_0\}) \),

as otherwise \(X'(u) \neq x' \) for all \(u \in C \), and thus \(\text{EX4} \) is violated. For every \(i \in \{0, \ldots, l\} \), it holds either \(X'(u_i) = x' \) or \(X'(u'_i) = x' \). Thus, \(X' \cap \{B_i, B'_i\} \neq \emptyset \) for all \(i \in \{1, \ldots, l\} \), as otherwise \(X' = x' \) is not a weak cause of \(\phi \) under any \(u \in \{u_i, u'_i\} \), and thus \(\text{EX2} \) is violated. It follows that

- \(X_0 \subseteq X' \),
- \(\{X' \cap \{B_i, B'_i\}\} = 1 \)

for all \(i \in \{1, \ldots, l\} \), as otherwise \(X' = x' \) is not a weak cause of \(\phi \) under any \(u \in \{u_0, u_0'\} \), and thus \(\text{EX2} \) is violated. It holds

- \(X'_0 \subseteq X' \),

as otherwise \(X'(u) = x' \) for all \(u \in C \), and thus \(\text{EX4} \) is violated. We have

- \(x'(X'_0) = 0 \),

as otherwise, by Proposition 2.5, \(x'' = x'' \) is a weak cause of \(\phi \) under every \(u \in C \), where \(X'' = X' \setminus \{X'_0\} \) and \(x'' = x'|X'' \), and thus \(\text{EX3} \) is violated. Observe now that \(X'' = x'' \) is not a weak cause of \(\phi \) under \(u = u_{i+1} \), where \(X'' = X' \setminus \{X'_0\} \) and \(x'' = x'|X'' \), as otherwise \(\text{EX3} \) is violated. Let the truth assignment \(\tau \) to the variables in \(B \) be defined by \(\tau(S) = 0 \) iff \(S \in X' \) for all \(S \in B \). We now show that \(x'' = x'' \) is not a weak cause of \(\alpha \) under \(u \). Towards a contradiction, assume the contrary. Thus, there exists some \(W \subseteq V \setminus X'' \), \(\hat{z}'' = D(X'') \), and \(w \in D(W) \) such that \(\neg \alpha \hat{z}''(u) \) and \(\alpha \hat{z}''(u) \) for all \(\hat{z}'' \subseteq V \setminus (X'' \cup W) \) and \(\hat{z}'' = D(u)_0 \). Here, we can assume that \(\hat{z}''(X_0) = 1 \), \(\hat{z}''(S) = 0 \) for all \(S \in X'' \setminus \{X_0\} \), \(\{E'' \} \cup (\{B \cup B'\} \setminus X'') \subseteq W \), and \(w(S) = 1 \) for all \(S \in \{E'' \} \cup (\{B \cup B'\} \setminus X'') \). Hence, it holds \(\neg \alpha \hat{z}''(u) \) and \(\alpha \hat{z}''(u) \) for all \(\hat{z}'' \subseteq V \setminus (X'' \cup W) \) and \(\hat{z}'' = D(u)_0 \). Thus, \(\neg \phi \hat{z}''(u) \) and \(\phi \hat{z}''(u) \) for all \(\hat{z}'' \subseteq V \setminus (X'' \cup W) \) and \(\hat{z}'' = D(u)_0 \). As \(x''(u) = x'' \) and \(\phi(u) \), it follows that \(x'' = x'' \) is a weak cause of \(\phi \) under \(u \), which is a contradiction. Hence, \(x'' = x'' \) is not a weak cause of \(\alpha \) under \(u \). By (\(\ast \)), it follows that \(\forall C \exists D \gamma [B/\tau(B)] \) is valid. That is, \(\Phi \) is valid.

(\(\Rightarrow \)) Assume that \(\Phi \) is valid. That is, there exists a truth assignment \(\tau \) to the variables in \(B \) such that \(\forall C \exists D \gamma [B/\tau(B)] \) is valid. Define \(X' = \{X_0, X'_0\} \cup \{S \in B | \tau(B) = 0\} \cup \{S' \in B' | \tau(B) = 1\} \) and \(x'(S) = 0 \) for all \(S \in X' \). We now show that \(X' = x' \) is an explanation of \(\phi \) relative to \(C \). \(\text{EX1} \) holds, as \(\phi(u) \) for all \(u \in C \). \(\text{EX2} \) holds, as \(X' = x' \) is weak cause of \(\phi \) under every \(u_i \) with \(i \in \{0, \ldots, l\} \). \(\text{EX4} \) holds, as \(X'(u_0) \neq x' \) and
That is, there exists some $X'' \subset X'$ such that $X'' = x''$ is a weak cause of ϕ under every $u \in C$ with $X''(u) = x''$, where $x'' = x'|X''$. It holds $X'' \cap \{B_i, B'_i\} \neq \emptyset$ for all $i \in \{1, \ldots, l\}$, as otherwise $X'' = x''$ is not a weak cause of ϕ under any $u \in \{u_i, u_i'\}$. It follows that $X_0 \in X''$, as otherwise $X'' = x''$ is not a weak cause of ϕ under any $u \in \{u_0, u_0'\}$. Thus it follows $X'' = X' \setminus \{X_0\}$. Hence, $X'' = x''$ is a weak cause of ϕ under $u = u_{i+1}$. That is, some $W \subseteq V \setminus X''$, $\bar{z}'' \in D(X'')$, and $w \in D(W)$ exist such that $\lnot \phi_{x''w}(u)$ and $\phi_{x''w}^+(u)$ for all $\bar{Z} \subseteq V \setminus (X'' \cup W)$ and $\bar{z} = \bar{Z}(u)$. As $\lnot \phi_{x''w}(u)$, it follows that $E' \in W$ and $w(E') = 1$. As $\phi_{x''w}(u)$, for every $S \in (B \cup B') \setminus X''$, it holds either $S(u) = 1$ or $S \in W$ and $w(S) = 1$. As $\phi_{x''w}(u)$, it thus follows that $\bar{z}'(S) = 0$ for all $S \in X'' \setminus \{X_0\}$. Hence, $\lnot \alpha_{x''w}(u)$ and $\alpha_{x''w}^+(u)$ for all $\bar{Z} \subseteq V \setminus (X'' \cup W)$ and $\bar{z} = \bar{Z}(u)$. That is, $\lnot \alpha_{x''w}(u)$ and $\alpha_{x''w}^+(u)$ for all $\bar{Z} \subseteq V \setminus (X'' \cup W)$ and $\bar{z} = \bar{Z}(u)$, $X''(u) = x''$ and $\alpha^+(u)$, this shows that $X'' = x''$ is a weak cause of α^+ under u. By $(*)$, it follows that $\forall C \exists D \gamma[B/\tau(B)]$ is not valid, which is a contradiction. This shows that EX3 holds.

Proof of Theorem 3.5 (continued). We define $U = \{I, U_0, U_0', \ldots, U_k, U_k'\}$, where $D(I) = \{0, \ldots, l + 1\}$ and $D(S) = \{0, 1\}$ for all $S \in U \setminus \{I\}$. Let $C = \{u_0, u_0', \ldots, u_l, u_l', u_{l+1}\}$, where u_i (respectively, u_i') is the unique $u \in D(U)$ such that $\varepsilon_i(u)$ (respectively, $\varepsilon_i'(u)$) holds, and ε_i (respectively, ε_i') for every $i \in \{0, \ldots, l + 1\}$ (respectively, $i \in \{0, \ldots, l\}$) is defined as follows:

$$\varepsilon_i = I = i \wedge U_0 = 0 \wedge U_0' = 1 \wedge \bigwedge_{i=1}^{l} (U_i = 0 \wedge U_i' = 0),$$

$$\varepsilon_i' = I = i \wedge U_0 = 0 \wedge U_0' = 0 \wedge \bigwedge_{i=1}^{l} (U_i = 0 \wedge U_i' = 0).$$

We define $M = (U, V, F)$ as follows. The endogenous variables are given by $V = B \cup B' \cup C \cup \{X_0, X_0', E', Y\}$, where $B' = \{B_1', \ldots, B_l'\}$ and $D(S) = \{0, 1\}$ for all $S \in V$. Let $\alpha = X_0 = 0 \vee \gamma'$, $\phi'_1 = (\varepsilon_0 \vee \varepsilon_0' \rightarrow (X_0 = 0 \wedge \bigwedge_{i=1}^{l} (B_i \neq B_i') \vee (\bigvee_{i=1}^{l} (B_i = 1 \wedge B_i' = 1)))) \vee E' = 0$, $\phi'_2 = \bigwedge_{i=1}^{l} (\varepsilon_i \vee \varepsilon_i' \rightarrow B_i = 0 \vee B_i' = 0)$, $\phi'_3 = (\varepsilon_l+1 \rightarrow (\alpha \wedge \bigwedge_{i=1}^{l} (B_i \neq B_i') \vee (\bigvee_{i=1}^{l} (B_i = 1 \wedge B_i' = 1)) \vee E' = 0)$, where γ' is obtained from γ by replacing each $S \in B \cup C$ by "$S = 1"$. We are now ready to define the functions $F = \{F_S \mid S \in V\}$ as follows:
\[F_{B_i} = U_i \] and \(F_{B_i'} = U_i' \) for all \(i \in \{1, \ldots, l\} \),
\[F_{X_0} = \varnothing \] and \(F_{X_0'} = \varnothing' \),
\[F_S = 0 \] for all \(S \in C \cup \{E\} \),
\[F_Y = 1 \] if \(\phi_1' \lor \phi_2' \lor \phi_3' \) is true.

Let \(X = B \cup B' \cup \{X_0, X_0'\} \). Let \(\phi \) be \(Y = 1 \). Notice that \(\phi \) is primitive. For every truth assignment \(\tau \) to the variables in \(B \), we denote by \([B/\tau (B)]\) the substitution \([B_1/\tau (B_1)], \ldots, B_l/\tau (B_l)\], and we define \(\alpha^\tau = \alpha [B/\tau (B)] \). Let \(x_0 = 0 \), and let \(u \in D(U) \) with \(X_0(u) = x_0 \). Then, \(X_0 = x_0 \) is a weak cause of \(\alpha^\tau \) under \(u \) iff \(\exists C \neg \gamma [B/\tau (B)] \) is valid. That is, \(X_0 = x_0 \) is not a weak cause of \(\alpha^\tau \) under \(u \) iff \(\forall C \gamma [B/\tau (B)] \) is valid. Thus, Proposition 2.5 implies the following fact:

\[(\ast) \text{ For every } X' \subseteq B \cup B' \cup \{X_0, X_0'\} \text{ with } X_0 \in X', \text{ it holds that } X' = X'(u) \text{ is not a weak cause of } \alpha^\tau \text{ under } u \text{ iff } \forall C \gamma [B/\tau (B)] \text{ is valid.} \]

Using \((\ast)\), by a similar line of argumentation as in the proof of Theorem 3.3, it follows that \(\Phi \) is valid iff some \(X' \subseteq X \) and \(x' \in D(X') \) exist such that \(X' = x' \) is an explanation of \(\phi \) relative to \(C \). \(\square \)

Appendix B. Proofs for Section 4

Proof of Theorem 4.3 (continued). We construct \(M = (U, V, F) \), \(X \subseteq V \), \(x \in D(X) \), \(\phi \), \(C \subseteq D(U) \), \(P \), and \(\alpha \) as in the statement of the theorem, such that \(X = x \) is an \(\alpha \)-partial explanation of \(\phi \) relative to \((C, P)\) iff the number of valid formulas among \(\Phi_1, \ldots, \Phi_k \) is even.

For \(i \in \{1, \ldots, k\} \), define the causal models \(M_i = (U_i, V_i, F_i) \) as follows. The exogenous and endogenous variables are defined by \(U_i = \{E_i\} \) and \(V_i = A_i \cup B_i \cup \{C_i, G_i\} \), respectively. Define \(D(S) = \{0, 1, 2\} \) for all \(S \in B_i \), and \(D(S) = \{0, 1\} \) for all \(S \in U_i \cup V_i \setminus B_i \). We define

\[
\phi_i = \left(\gamma_i' \land \bigwedge_{S \in B_i} S \neq 2 \right) \lor (C_i = 0) \lor \left(G_i = 1 \land C_i = 1 \land \bigvee_{S \in B_i} S \neq 2 \right),
\]

where \(\gamma_i' \) is obtained from \(\gamma_i \) by replacing each \(S \in A_i \cup B_i \) by “\(S = 1 \)”. The functions in \(F_i = \{F_{S_i} | S \in V_i\} \) are defined as follows:

- \(F_{G_i}^{1} = E_i \),
- \(F_{G_i}^{2} = 0 \) for all \(S \in \{C_i\} \cup A_i \),
- \(F_{S_i}^{3} = G_i + C_i \) for all \(S \in B_i \).

For each \(i \in \{1, \ldots, k\} \), let \(X_i = \{G_i\} \), and define \(x_i \in D(X_i) \) and \(u_i \in D(U_i) \) by \(x_i(G_i) = 0 \) and \(u_i(E_i) = 0 \). Then, for every \(i \in \{1, \ldots, k\} \), \(X_i = x_i \) is a weak cause of \(\phi_i \) under \(u_i \) in \(M_i \) iff \(\Phi_i \) is valid (the construction is similar as in the proof of Theorem 3.2, the only
difference is that we have $F_{G_i}^i = E_i$ here, instead of $F_{G_i}^i = 0$). Observe also that $\phi_i(u)$ holds for all $u \in D(U_i)$.

Define the causal model $M = (U, V, F)$ by $U = U_1 \cup \cdots \cup U_k \cup \{E\}$, where $D(E) = \{0, \ldots, k\}$, $V = V_1 \cup \cdots \cup V_k \cup \{H\}$, and $F = F_1 \cup \cdots \cup F_k \cup \{F_H\}$, where

$$F_H = 1 \iff \left(\bigwedge_{i \in \{1, \ldots, k\}} \varepsilon_i \rightarrow \phi_i \right) \land \left(\bigwedge_{i \in \{1, \ldots, k\}, \text{i even}} \varepsilon'_i \rightarrow \phi_{i-1} \right) \land \left(\bigwedge_{i \in \{1, \ldots, k\}, \text{i odd}} \varepsilon'_i \rightarrow \top \right)$$

is true,

and ε_i and ε'_i are defined as follows for every $i \in \{1, \ldots, k\}$:

$$\varepsilon_i = (E = i) \land \left(\bigwedge_{j \in \{1, \ldots, k\}} (E_j = 0) \right).$$

$$\varepsilon'_i = (E = 0) \land (E_i = 1) \land \left(\bigwedge_{j \in \{1, \ldots, k\} \setminus \{i\}} (E_j = 0) \right).$$

For every $i \in \{1, \ldots, k\}$, let u_i (respectively, u'_i) be the unique $u \in D(U)$ such that $\varepsilon_i(u)$ (respectively, $\varepsilon'_i(u)$). Let $Y = \{H\}$, and let ϕ be $Y = 1$. Let $C = \{u_1, \ldots, u_k, u'_1, \ldots, u'_k\}$, $P(u) = 1/2k$ for all $u \in C$, and $\alpha = 1/2k$. Define $X = \{G_1, \ldots, G_k\}$ and $x = x_1 \cdots x_k$ ($= 0 \cdots 0$).

Observe that ϕ is primitive, P is the uniform distribution over C, and $\phi(u)$ for all $u \in C$.

By Proposition 2.5, the following holds for all $i \in \{1, \ldots, k\}$, all $X' \subseteq X$, and $x' = x | X'$:

(i) If $X_i \subseteq X'$, then $X' = x'$ is a weak cause of ϕ under u_i iff Φ_i is valid.

(ii) If i is even and $X_{i-1} \subseteq X'$, then $X' = x'$ is a weak cause of ϕ under u'_i iff Φ_{i-1} is valid.

(iii) If i is odd, then $X' = x'$ is not a weak cause of ϕ under u'_i.

(iv) If $X_i \not\subseteq X'$, then $X' = x'$ is not a weak cause of ϕ under u_i.

By Proposition 4.1, $C_{X=x}$ is the set of all $u \in C$ such that either (a) $X(u) \neq x$, or (b) $X(u) = x$ and $X = x$ is a weak cause of ϕ under u. By (i), it thus follows $C_{X=x} = \{u'_1, \ldots, u'_k\} \cup \{u_i \mid i \in \{1, \ldots, k\}, \Phi_i \text{ is valid}\}$.

We now show that $X = x$ is an α-partial explanation of ϕ relative to (C, P) iff the number of valid formulas among Φ_1, \ldots, Φ_k is even.

(\Rightarrow) Assume that $X = x$ is an α-partial explanation of ϕ relative to (C, P). In particular, $X = x$ is an explanation of ϕ relative to $C_{X=x}$. Towards a contradiction, assume that the number of valid formulas among Φ_1, \ldots, Φ_k is odd. Let $j \in \{1, \ldots, k\}$ be the smallest index such that Φ_j is not valid. Notice that j is even. We define $X' = X \setminus X_j$ and $x' = x | X'$.

The set of all $u \in C_{X=x}'$ such that $X'(u) = x'$ is given by $C' = \{u'_j\} \cup \{u_1, \ldots, u_{j-1}\}$ (as Φ_j implies Φ_{j-1}, for every $j \in \{2, \ldots, k\}$). By (i) and (ii), $X' = x'$ is a weak cause of ϕ under every $u \in C'$. That is, $X' = x'$ is a weak cause of ϕ under every $u \in C_{X=x}'$ with $X'(u) = x'$, which violates EX3, and thus contradicts $X = x$ being an explanation of ϕ relative to $C_{X=x}$.
\((\Leftarrow)\) Assume that the number of valid formulas among \(\Phi_1, \ldots, \Phi_k\) is even. We now show that \(X = x\) is an \(\alpha\)-partial explanation of \(\phi\) relative to \((C, P)\). By Proposition 4.1, it is sufficient to show that (a) \(X = x\) is an explanation of \(\phi\) relative to \(E_{X=x}\), and (b) \(P(E_{X=x} | X = x) \geq \alpha\). We first prove (a) by showing that EX1–EX4 hold. Clearly, EX1 and EX2 hold. Observe that \(u'_1 \in E_{X=x}\). As \(\Phi_1\) is valid, we also have \(u_1 \in E_{X=x}\). Hence, as \(X(u'_1) \neq x\) and \(X(u_1) = x\), also EX4 holds. We next show that EX3 holds. Towards a contradiction, assume that some \(X' \subset X\) exists such that \(X' = x'\) is a weak cause of \(\phi\) under all \(u \in E_{X=x}\) with \(X'(u) = x'\), where \(x' = x|X'\). Let \(X_j \subset X \setminus X'\) such that \(j \in \{1, \ldots, k\}\) is minimal. As \(u'_j \in E_{X=x}\) and \(X'(u'_j) = x'\), it follows that \(X' = x'\) is a weak cause of \(\phi\) under \(u'_j\). By (iii), \(j\) is even. By (ii), \(\Phi_{j-1}\) is valid. By (iv), \(u_j\) does not belong to \(E_{X=x}\). That is, \(\Phi_j\) is not valid. But this contradicts the number of valid formulas among \(\Phi_1, \ldots, \Phi_k\) being even. Thus, also EX3 holds. Clearly, (b) follows from EX4 and \(P\) being the uniform distribution over \(C\).

Proof of Theorem 4.6 (continued). We construct \(M = (U, V, F)\), \(X \subset V\), \(x \in D(X)\), \(\phi \subset D(U)\), and \(P\) as required, such that \((v_1, \ldots, v_k)\) is the bit-vector representation of the explanatory power of \(X = x\) multiplied with \(\sum_{j=0}^{k-1} 2^j\).

For every \(i \in \{1, \ldots, k\}\), define \(M_i = (U_i, V_i, F_i)\) and \(X_i \subset V_i\) as in the proof of Theorem 4.3. We define \(M = (U, V, F)\) by \(U = U_1 \cup \cdots \cup U_k \cup \{E\}\), where \(D(E) = \{0, \ldots, k\}\), \(V = V_1 \cup \cdots \cup V_k \cup \{H\}\), and \(F = F_1 \cup \cdots \cup F_k \cup \{F_H\}\), where

\[
F_H = 1 \quad \text{iff} \quad \left(\bigwedge_{i \in \{1, \ldots, k\}} \varepsilon_i \rightarrow \phi_i \right) \land \left(\bigwedge_{i \in \{1, \ldots, k\}} \varepsilon'_i \rightarrow \top\right)
\]

is true, and \(\varepsilon_i\) and \(\varepsilon'_i\) are defined as follows for every \(i \in \{1, \ldots, k\}\):

\[
\varepsilon_i = (E = i) \land \left(\bigwedge_{j \in \{1, \ldots, k\} \setminus \{i\}} (E_j = 0)\right)
\]

\[
\varepsilon'_i = (E = 0) \land (E_i = 1) \land \left(\bigwedge_{j \in \{1, \ldots, k\} \setminus \{i\}} (E_j = 0)\right).
\]

For every \(i \in \{1, \ldots, k\}\), let \(u_i\) (respectively, \(u'_i\)) be the unique \(u \in D(U)\) such that \(\varepsilon_i(u)\) (respectively, \(\varepsilon'_i(u)\)). Let \(Y = \{H\}\), and let \(\phi\) be \(Y = 1\). We define \(\bar{C} = \{u_1, \ldots, u_k, u'_1, \ldots, u'_k\}\), \(P(u'_i) = 0\) for all \(i \in \{1, \ldots, k\}\), and \(P(u_i) = 2^{i-1} / \sum_{j=0}^{k-1} 2^j\) for all \(i \in \{1, \ldots, k\}\). We define \(X = \{G_1, \ldots, G_k\}\) and \(x = x_1 \cdots x_k\).

Observe that \(\phi\) is primitive. Moreover, \(\phi(a)\) for all \(a \in \bar{C}\), and for all \(i \in \{1, \ldots, k\}\):

(i) \(X = x\) is a weak cause of \(\phi\) under \(u_i\) iff \(\Phi_i\) is valid.

(ii) If \(X' \subset X\) and \(x' = x|X'\), then \(X' = x'\) is not a weak cause of \(\phi\) under \(u'_i\).

By Proposition 4.1, \(E_{X=x}\) is the set of all \(u \in \bar{C}\) such that either (a) \(X(u) \neq x\), or (b) \(X(u) = x\) and \(X = x\) is a weak cause of \(\phi\) under \(u\). By (i), it thus follows \(E_{X=x} = \{u'_1, \ldots, u'_k\} \cup \{u_i \mid i \in \{1, \ldots, k\}\}\). Hence, \(\bar{C}\) is valid. By (ii), \(X = x\) is an explanation
of ϕ relative to $C^{x}_{X=x}$. Thus, $X = x$ is a partial explanation of ϕ relative to (C, P). Its explanatory power is the sum of all $P(u_i) = 2^{i-1}/\sum_{j=0}^{k-1} 2^j$ with $i \in \{1, \ldots, k\}$ such that Φ_i is valid. □

Theorem B.1. α-Partial Explanation is $P_{\|NP}$-complete in the binary case.

Proof. As for membership, recall that $X = x$ is an α-partial explanation of ϕ relative to (C, P) iff (a) $X = x$ is an explanation of ϕ relative to $C^{x}_{X=x}$, and (b) $P(C^{x}_{X=x} \mid X = x) \geq \alpha$.

By Proposition 4.1, $C^{x}_{X=x}$ is the set of all $u \in C$ such that either (i) $X(u) \neq x$, or (ii) $X(u) = x$ and $X = x$ is a weak cause of ϕ under u. Deciding (i) is polynomial, and, by Theorem 2.6, deciding (ii) is in NP in the binary case. Thus, computing $C^{x}_{X=x}$ is in $FP_{\|NP}$ in the binary case. Once $C^{x}_{X=x}$ is given, deciding (a) is possible with two NP-oracle calls, by Theorem 3.4, and deciding (b) is polynomial. As two rounds of parallel NP-oracle queries in a polynomial-time computation can be replaced by a single one [3], the problem is in $P_{\|NP}$.

Hardness for $P_{\|NP}$ is shown by a reduction from the following $P_{\|NP}$-complete problem [51]. Given k propositional formulas γ_i, $i \in \{1, \ldots, k\}$, where each γ_i is defined on the variables $A_i = \{A_{i,1}, \ldots, A_{i,m_i}\}$, decide whether the number of tautologies among $\gamma_1, \ldots, \gamma_k$ is even. Without loss of generality, k is even, the A_i’s are pairwise disjoint, γ_1 is not a tautology, and for every $j \in \{1, \ldots, k-1\}$, if γ_j is a tautology, then also γ_{j+1} [51]. We construct $M = (U, V, F)$, $X \subseteq V$, $x \in D(X)$, $\phi, C \subseteq D(U)$, P, and α as required, such that $X = x$ is an α-partial explanation of ϕ relative to (C, P) iff the number of tautologies among $\gamma_1, \ldots, \gamma_k$ is even. The construction is similar to the one in the proof of Theorem 4.3. Roughly, we replace the part for Σ^P_2-hardness of deciding general weak cause by a new part for Σ^P_2-hardness of deciding binary weak cause.

For $i \in \{1, \ldots, k\}$, define the causal models $M_i = (U_i, V_i, F_i)$ as follows. The exogenous and endogenous variables are defined by $U_i = \{E_i\}$ and $V_i = A_i \cup \{G_i\}$, respectively, where $D(S) = \{0, 1\}$ for all $S \in U_i \cup V_i$. We define the functions in $F_i = \{F^i_{G_i} \mid S \in V_i\}$ as follows:

- $F^i_{G_i} = E_i$.
- $F^i_S = 0$ for all $S \in A_i$.

We then define $\phi_i = G_i = 0 \lor \gamma_i'$, where γ_i' is obtained from γ_i by replacing each $S \in A_i$ by “$S = 1$”. For each $i \in \{1, \ldots, k\}$, let $X_i = \{G_i\}$, and define $x_i \in D(X_i)$ and $u_i \in D(U_i)$ by $x_i(G_i) = 0$ and $u_i(E_i) = 0$. Then, for every $i \in \{1, \ldots, k\}$, $X_i = x_i$ is a weak cause of ϕ_i under u_i in M_i iff γ_i is not a tautology.

We define the causal model $M = (U, V, F)$ as follows. The exogenous and endogenous variables are given by $U = U_1 \cup \cdots \cup U_k \cup \{E\}$ and $V = V_1 \cup \cdots \cup V_k \cup \{H\}$, respectively, where $D(E) = \{0, \ldots, k\}$ and $D(H) = \{0, 1\}$. The functions are given by $F = F_1 \cup \cdots \cup F_k \cup \{F_H\}$, where
Theorem B.3. Partial Explanation is $P_{\|}$-complete in the binary case.

Proof. As for membership in $P_{\|}$, recall that $X = x$ is a partial explanation of ϕ relative to (C, P) if (a) $X = x$ is an explanation of ϕ relative to $C_{x=x}$, and (b) $C_{x=x}$ contains some u such that $X(u) = x$ and $P(u) > 0$. By the proof of Theorem B.1, computing $C_{x=x}^\phi$ is in $FP_{\|}$ in the binary case. Once $C_{x=x}^\phi$ is given, checking (a) is in DP in the binary case, by
Theorem 3.4, and checking (b) is polynomial. As two rounds of parallel NP-oracle queries in a polynomial-time computation can be replaced by a single one [3], Partial Explanation is in \(P_{NP} \) in the binary case.

We next show \(P_{NP} \)-hardness. If \(P \) is the uniform distribution over \(C \), then \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) if and only if \(X = x \) is a \(1/|C| \)-partial explanation of \(\phi \) relative to \((C, P)\). By the proof of Theorem B.1, deciding the latter is complete for \(P_{NP} \). Thus, deciding whether \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) is \(P_{NP} \)-hard, and hardness holds even if \(P \) is the uniform distribution over \(C \).

\[\text{Theorem B.4.} \quad \text{Explanatory Power is } \text{FP}_{\parallel} \text{-complete in the binary case.}\]

Proof. We compute \(C_{X=x}^\phi \) and \(P(C_{X=x}^\phi \mid X = x) \). By the proof of Theorem B.1, the former is in \(\text{FP}_{\parallel} \) in the binary case, while the latter is polynomial. Thus, Explanatory Power is in \(\text{FP}_{\parallel} \) in the binary case.

Hardness for \(\text{FP}_{\parallel} \) is shown by a reduction from the following \(\text{FP}_{\parallel} \)-complete problem. Given \(k \) propositional formulas \(\gamma_i, i \in \{1, \ldots, k\} \), each formula \(\gamma_i \) is defined on the variables \(A_i = \{A_{i1}, \ldots, A_{im_i}\} \), compute the vector \((v_1, \ldots, v_k) \in \{0, 1\}^k \) such that \(v_i = 1 \) iff \(\gamma_i \) is not a tautology, and \(\gamma_1 \) is not a tautology.

We construct \(M = (U, V, F) \), \(X \subseteq V, x \in D(X), \phi, C \subseteq D(U) \), and \(P \) as required, such that \((v_1, \ldots, v_k) \) is the bit-vector representation of the explanatory power of \(X = x \) multiplied with \(\sum_{j=0}^{k-1} 2^j \). For every \(i \in \{1, \ldots, k\} \), let \(M_i = (U_i, V_i, F_i) \) and \(X_i \subseteq V_i \) be defined as in the proof of Theorem B.1. The rest of the construction is similar as in the proof of Theorem 4.6. We define the causal model \(M = (U, V, F) \) as follows. The exogenous and endogenous variables are given by \(U = U_1 \cup \cdots \cup U_k \cup \{E\} \) and \(V = V_1 \cup \cdots \cup V_k \cup \{H\} \), respectively, where \(D(E) = \{0, \ldots, k\} \) and \(D(H) = \{0, 1\} \). The functions are given by \(F = F_1 \cup \cdots \cup F_k \cup \{F_H\} \), where

\[
F_H = 1 \quad \text{iff} \quad \left(\bigwedge_{i \in \{1, \ldots, k\}} e_i \rightarrow \phi_i \right) \land \left(\bigwedge_{i \in \{1, \ldots, k\}} e'_i \rightarrow \top \right)
\]

and \(e_i \) and \(e'_i \) are defined as follows for every \(i \in \{1, \ldots, k\} \):

\[
e_i = (E = i) \land \left(\bigwedge_{j \in \{1, \ldots, k\} \setminus \{i\}} (E_j = 0) \right),
\]

\[
e'_i = (E = 0) \land (E_i = 1) \land \left(\bigwedge_{j \in \{1, \ldots, k\} \setminus \{i\}} (E_j = 0) \right).
\]

For every \(i \in \{1, \ldots, k\} \), let \(u_i \) (respectively, \(u'_i \)) be the unique \(u \in D(U) \) such that \(e_i(u) \) (respectively, \(e'_i(u) \)). Let \(Y = \{H\} \), and let \(\phi \) be \(Y = 1 \). We define \(C = \{u_1, \ldots, u_k, u'_1, \ldots, u'_k\} \), \(P(u'_i) = 0 \) for all \(i \in \{1, \ldots, k\} \), and \(P(u_i) = 2^{k-1} / \sum_{j=0}^{k-1} 2^j \) for all \(i \in \{1, \ldots, k\} \). We define \(X = \{G_1, \ldots, G_k\} \) and \(x = x_1 \cdots x_k \).

Observe that \(\phi \) is primitive. Moreover, \(\phi(u) \) for all \(u \in C \), and for all \(i \in \{1, \ldots, k\} \):
(i) $X = x$ is a weak cause of ϕ under u_i iff γ_i is not a tautology.

(ii) If $X' \subseteq X$ and $x' = x \mid X'$, then $X' = x'$ is not a weak cause of ϕ under u'_i.

By Proposition 4.1, $C^\phi_{X=\bar{x}}$ is the set of all $u \in C$ such that either (a) $X(u) \neq x$, or (b) $X(u) = x$ and $X = x$ is a weak cause of ϕ under u. By (i), it thus follows $C^\phi_{X=\bar{x}} = \{u'_1, \ldots, u'_k\} \cup \{u_i \mid i \in [1, \ldots, k], \gamma_i \text{ is not a tautology}\}$. By (ii), $X = x$ is an explanation of ϕ relative to $C^\phi_{X=\bar{x}}$. Hence, $X = x$ is a partial explanation of ϕ relative to (C, P). The explanatory power of $X = x$ is the sum of all $P(u_i) = 2^{i-1} / \sum_{j=0}^{k-1} 2^j$ with $i \in [1, \ldots, k]$ such that γ_i is not a tautology. □

Appendix C. Proofs for Section 5

Proof of Theorem 5.1 (continued). Hardness for Π^p_2 is shown by a reduction from the Π^p_2-complete problem of deciding whether a given QBF $\Phi = \forall \exists B \forall C \exists D \forall y$ is valid, where y is a propositional formula on the variables $A = \{A_1, \ldots, A_k\}$, $B = \{B_1, \ldots, B_l\}$, $C = \{C_1, \ldots, C_m\}$, and $D = \{D_1, \ldots, D_n\}$. We construct $M = (U, V, F)$, $X \subseteq V$, $x \in D(X)$, $C \subseteq D(U)$, and ϕ as in the statement of the theorem such that $X = x$ is an explanation of ϕ relative to C iff Φ is valid.

We define the exogenous variables by $U = B \cup \{U_0, U_1, U'_1, \ldots, U_k, U'_k\}$, where $D(S) = \{0, 1\}$ for all $S \in U$. We define the set of contexts by $\mathcal{C} = \{u \in D(U) \mid (\varepsilon_0 \lor \varepsilon_1 \lor \varepsilon_2)(u)\}$, where:

$$\varepsilon_0 = U_0 = 0 \land \bigwedge_{i=1}^{k} (U_i = 0 \land U'_i = 0),$$

$$\varepsilon_1 = U_0 = 0 \land \bigvee_{i=1}^{k} \left(((U_i = 1 \land U'_i = 0) \lor (U_i = 0 \land U'_i = 1)) \land \bigwedge_{j \in [1, \ldots, k] \setminus \{i\}} (U_j = 0 \land U'_j = 0) \right),$$

$$\varepsilon_2 = U_0 = 1 \lor \bigvee_{i=1}^{k} (U_i = 1 \land U'_i = 1).$$

We define $M = (U, V, F)$ as follows. We define $V = A \cup A' \cup C \cup D \cup \{X_0, E, E', Y\}$, where $A' = \{A'_1, \ldots, A'_k\}$, $D(S) = \{0, 1, 2\}$ for all $S \in D$, and $D(S) = \{0, 1\}$ for all $S \in V \setminus D$. Let

$$\alpha = \left(-y' \land \bigwedge_{S \in D} S \neq 2 \right) \lor (E = 0) \lor \left(X_0 = 1 \land E = 1 \land \bigvee_{S \in D} S \neq 2 \right),$$

$$\phi' = (\varepsilon_0 \rightarrow X_0 = 0) \land (\varepsilon_2 \rightarrow \top)$$

$$\land \left(\varepsilon_1 \rightarrow \left(\alpha \land \bigwedge_{i=1}^{k} A_i \neq A'_i \right) \lor \left(\bigvee_{i=1}^{k} (A_i = 1 \land A'_i = 1) \right) \lor E' = 0 \right).$$
where γ' is obtained from γ by replacing each $S \in A \cup B \cup C \cup D$ by "$S = 1$". We are now ready to define the functions $F = \{F_S \mid S \in V\}$ as follows:

- $F_{A_i} = U_i$ and $F_{A_i'} = U_i'$ for all $i \in \{1, \ldots, k\}$,
- $F_{X_0} = U_0$, and $F_S = 0$ for all $S \in C \cup \{E, E'\}$,
- $FS = X_0 + E$ for all $S \in D$,
- $FY = 1$ iff ϕ' is true.

Let $X = A \cup A' \cup \{X_0\}$, and let $x \in D(X)$ be given by $x(S) = 0$ for all $S \in X$. Let ϕ be $Y = 1$. Notice that ϕ is primitive. We now show that Φ is valid iff $X = x$ is an explanation of ϕ relative to C.

We first show that EX1, EX2, and EX4 always hold. As $\phi(u)$ for all $u \in C$, EX1 always holds. For every $u \in C$ with $X(u) = x$, it holds $\varepsilon_0(u)$. Hence, $X = x$ is a weak cause of ϕ under every $u \in C$ with $X(u) = x$. That is, also EX2 always holds. As some $u, u' \in C$ exist such that $X(u) = x$ and $X(u') \neq x$, also EX4 always holds. It thus remains to show that Φ is valid iff EX3 holds. Recall that EX3 says that for every $X' \subset X$, some $u \in C$ exists such that (i) $X'(u) = x|X'$ and (ii) $X(x|X')$ is not a weak cause of ϕ under u. If $X_0 \notin X'$ or $X' \cap \{A_i, A_i'\} = \emptyset$ for some $i \in \{1, \ldots, k\}$, then (i) and (ii) hold for some $u \in C$ with $\varepsilon_0(u)$. If $X_0 \in X'$, $X' \cap \{A_i, A_i'\} \neq \emptyset$ for all $i \in \{1, \ldots, k\}$, and $A_i, A_i' \in X'$ for some $i \in \{1, \ldots, k\}$, then (i) and (ii) hold for some $u \in C$ with $\varepsilon_0(u)$.

It thus remains to show that Φ is valid iff for every $X' \subset X$ such that (a) $X_0 \in X'$ and (b) $\{X' \cap \{A_i, A_i'\}\} = 1$ for all $i \in \{1, \ldots, k\}$, some $u \in C$ exists such that (i) $X'(u) = x|X'$ and (ii) $X' = x|X'$ is not a weak cause of ϕ under u.

For all truth assignments σ and τ to the variables in A and B, respectively, denote by $[A/\sigma(A), B/\tau(B)]$ the substitution $[A_1/\sigma(A_1), \ldots, A_k/\sigma(A_k), B_1/\tau(B_1), \ldots, B_l/\tau(B_l)]$, and we define $\alpha^{\sigma, \tau} = \alpha[A/\sigma(A), B/\tau(B)]$. Let $x_0 = 0$, and let $u \in D(U)$ such that $X_0(u) = x_0$. Then, $X_0 = x_0$ is a weak cause of $\alpha^{\sigma, \tau}$ under u iff $\exists \forall D \gamma A[\sigma(A), B/\tau(B)]$ is valid [14,18]. That is, $X_0 = x_0$ is not a weak cause of $\alpha^{\sigma, \tau}$ under u iff $\forall C \exists D \gamma A[\sigma(A), B/\tau(B)]$ is valid. Thus, Proposition 2.5 implies the following fact:

(*) For every $X' \subset A \cup A' \cup \{X_0\}$ with $X_0 \in X'$, it holds that $X' = X'(u)$ is not a weak cause of $\alpha^{\sigma, \tau}$ under u if $\forall C \exists D \gamma A[\sigma(A), B/\tau(B)]$ is valid.

(\Rightarrow) Assume that Φ is valid. Let $X' \subset X$ such that (a) and (b) holds. Define the truth assignment σ to the variables in A by $\sigma(A_i) = 0$ iff $A_i \in X'$ for all $i \in \{1, \ldots, k\}$. As Φ is valid, there exists a truth assignment τ to the variables in B such that $\forall C \exists D \gamma A[\sigma(A), B/\tau(B)]$ is valid. Let $x' = x|X'$, and let $u \in D(U)$ be arbitrary such that $X'(u) = x', \varepsilon_1(u)$, and $u(B_i) = \tau(B_i)$ for all $i \in \{1, \ldots, l\}$. By (*), $X' = x'$ is not a weak cause of $\alpha^{\sigma, \tau}$ under u. We now show that $X' = x'$ is also not a weak cause of ϕ under u. Towards a contradiction, assume the contrary. Thus, some $W \subset V \setminus X'$, $\tilde{x} \in D(X')$, and $w \in D(W)$ exist such that $\neg \phi_{\tilde{x}w}(u)$ and $\phi_{\tilde{x}w}(u)$ for all $Z \subset V \setminus (X' \cup W)$ and $\tilde{z} = \tilde{Z}(u)$. As $\neg \phi_{\tilde{x}w}(u)$, it follows that $F \in W$ and $w(F) = 1$. As $\phi_{\tilde{x}w}(u)$, for every $S \in (A \cup A') \setminus X'$, it holds either $S(u) = 1$ or $S \in W$ and $w(S) = 1$. As $\neg \phi_{\tilde{x}w}(u)$, it thus follows that $\tilde{x}'(S) = 0$ for all $S \in X' \setminus \{X_0\}$. Hence, $\neg \alpha_{\tilde{x}w}(u)$ and $\alpha_{x'w}(u)$ for all
\[Z \subseteq V \setminus (X' \cup W) \text{ and } \hat{z} = \hat{Z}(u). \] That is, \(\neg a^{\alpha_{\tau}}_{\tau}(u) \) and \(a^{\alpha_{\tau}}_{\tau}(u) \) for all \(\hat{Z} \subseteq V \setminus (X' \cup W) \) and \(\hat{z} = \hat{Z}(u) \). As \(X'(u) = x' \) and \(\alpha(u) \), this shows that \(X' = x' \) is a weak cause of \(\alpha_{\tau}(u) \). Equivalently, by (\(\ast \)), \(\forall C \exists D \gamma [A/\sigma(A), B/\tau(B)] \) is not valid, which is a contradiction. This shows that \(X' = x' \) is not a weak cause of \(\phi \) under \(u \).

(\(\Leftarrow \)) Assume that \(\Phi \) is not valid. That is, there is a truth assignment \(\sigma \) to the variables in \(A \) such that for every truth assignment \(\tau \) to the variables in \(B \), it holds that \(\forall C \exists D \gamma [A/\sigma(A), B/\tau(B)] \) is not valid. Let \(X' = \{X_0\} \cup \{S \in A \mid \sigma(S) = 0\} \cup \{S' \in A' \mid \sigma(S) = 1\} \), and let \(x' = x|X' \). Let \(u \in C \) be any context such that \(X'(u) = x' \). Now show that \(X' = x' \) is a weak cause of \(\phi \) under \(u \). If \(\varepsilon_0(u) \), then \(X' = x' \) is trivially a weak cause of \(\phi \) under \(u \). Assume now \(\varepsilon_1(u) \). Let \(\tau \) be the truth assignment to the variables in \(B \) with \(u(B_i) = \tau(B_i) \) for all \(i \in \{1, \ldots, l\} \). As \(\forall C \exists D \gamma [A/\sigma(A), B/\tau(B)] \) is not valid, by (\(\ast \)), \(X' = x' \) is a weak cause of \(\alpha_{\tau}(u) \) under \(u \). Thus, some \(W \subseteq V \setminus X' \), \(\hat{x} \in D(X') \), and \(w \in D(W) \) exist such that \(\neg a^{\alpha_{\tau}}_{\tau}(u) \) and \(a^{\alpha_{\tau}}_{\tau}(u) \) for all \(\hat{Z} \subseteq V \setminus (X' \cup W) \) and \(\hat{z} = \hat{Z}(u) \). Here, we can assume that \(\hat{x}(X_0) = 1 \), \(\hat{x}(S) = 0 \) for all \(S \in X' \setminus \{X_0\} \), \(\{F\} \cup ((A \cup A') \setminus X') \subseteq W \), and \(w(S) = 1 \) for all \(S \in \{F\} \cup ((A \cup A') \setminus X') \). Hence, \(\neg a^{\alpha_{\tau}}_{\tau}(u) \) and \(a^{\alpha_{\tau}}_{\tau}(u) \) for all \(\hat{Z} \subseteq V \setminus (X' \cup W) \) and \(\hat{z} = \hat{Z}(u) \). Thus, \(\neg a^{\alpha_{\tau}}_{\tau}(u) \) and \(\phi^{\alpha_{\tau}}_{\tau}(u) \) for all \(\hat{Z} \subseteq V \setminus (X' \cup W) \) and \(\hat{z} = \hat{Z}(u) \). As \(X'(u) = x' \) and \(\phi(u) \), it follows that \(X' = x' \) is a weak cause of \(\phi \) under \(u \). \(\square \)

Theorem C.1. Explanation is \(\Pi_2^{NP} \)-complete for succinct context sets and binary causal models.

Proof. As for membership in \(\Pi_2^{NP} \), recall that \(X = x \) is an explanation of \(\phi \) relative to \(C \) iff EX1–EX4 hold. As argued in the proof of Theorem 5.1, deciding whether EX1 and EX4 hold is in co-NP and NP, respectively, for succinct context sets. By Theorem 2.6, deciding whether \(X = x \) is a weak cause of \(\phi \) under some \(u \in D(U) \) is in NP in the binary case. Thus, in EX2, deciding whether \(X = x \) is a weak cause of \(\phi \) under every \(u \in C \) with \(X(u) = x \) is in \(\Pi_2^{NP} \) for succinct context sets and binary causal models. Hence, deciding whether some \(X' \subseteq X \) exists such \(X' = x |X' \) is a weak cause of \(\phi \) under every \(u \in C \) with \(X'(u) = x |X' \) is in \(\Sigma_2^{NP} \) for succinct context sets and binary causal models. Thus, deciding whether EX3 holds is in \(\Pi_2^{NP} \). In summary, deciding whether EX1–EX4 hold is in \(\Pi_2^{NP} \) for succinct context sets and binary causal models.

Hardness for \(\Pi_2^{NP} \) is shown by a reduction from the \(\Pi_2^{NP} \)-complete problem of deciding whether a given QBF \(\Phi = \forall A \exists B \forall C G \) is valid, where \(G \) is a propositional formula on the variables \(A = \{A_1, \ldots, A_k\} \), \(B = \{B_1, \ldots, B_l\} \), and \(C = \{C_1, \ldots, C_m\} \). We construct \(M = (U, V, F), X \subseteq V, x \in D(X), C \subseteq D(U), \) and \(\phi \) as required such that \(X = x \) is an explanation of \(\phi \) relative to \(C \) iff \(\Phi \) is valid. The construction is similar to the one in the proof of Theorem 5.1. Roughly, we replace the part for \(\Sigma_2^{NP} \)-hardness of deciding general weak cause by a new part for NP-hardness of deciding binary weak cause.

We define the exogenous variables by \(U = B \cup \{U_0, U_1, U_1', \ldots, U_k, U_k'\} \), where \(D(S) = \{0, 1\} \) for all \(S \in U \). We define the set of contexts by \(C = \{u \in D(U) \mid (\varepsilon_0 \lor \varepsilon_1 \lor \varepsilon_2)(u)\} \), where:

\[
\varepsilon_0 = U_0 = 0 \land \bigwedge_{i=1}^{k} U_i = 0 \land U_i' = 0,
\]
\[\varepsilon_1 = U_0 = 0 \land \bigwedge_{i=1}^{k} \left((U_i = 1 \land U_i' = 0) \lor (U_i = 0 \land U_i' = 1) \right) \]
\[\land \bigwedge_{j \in \{1, \ldots, k\} - \{i\}} (U_j = 0 \land U_j' = 0), \]
\[\varepsilon_2 = U_0 = 1 \lor \bigvee_{i=1}^{k} (U_i = 1 \land U_i' = 1). \]

We define the causal model \(M = (U, V, F) \) as follows. The exogenous variables are given by \(V = A \cup A' \cup C \cup \{X_0, E', Y\} \), where \(A' = \{A_1', \ldots, A_k'\} \) and \(D(S) = \{0, 1\} \) for all \(S \in V \). Let

\[\alpha = X_0 = 0 \lor \gamma', \]
\[\phi' = (\varepsilon_0 \rightarrow X_0 = 0) \land (\varepsilon_2 \rightarrow \top) \]
\[\land \left(\varepsilon_1 \rightarrow \left(\alpha \land \bigwedge_{i=1}^{k} A_i \neq A_i' \right) \lor \left(\bigvee_{i=1}^{k} (A_i = 1 \land A_i' = 1) \right) \lor E' = 0 \right), \]

where \(\gamma' \) is obtained from \(\gamma \) by replacing each \(S \in A \cup B \cup C \) by “\(S = 1 \)”. We are now ready to define the functions \(F = \{F_S \mid S \in V\} \) as follows:

- \(F_{A_i} = U_i \) and \(F_{A_i'} = U_i' \) for all \(i \in \{1, \ldots, k\} \),
- \(F_{X_0} = U_0 \), and \(F_S = 0 \) for all \(S \in C \cup \{E'\} \),
- \(F_Y = 1 \) if \(\phi' \) is true.

Let \(X = A \cup A' \cup \{X_0\} \), and let \(x \in D(X) \) be given by \(x(S) = 0 \) for all \(S \in X \). Let \(\phi = Y = 1 \). Notice that \(\phi \) is primitive. For all truth assignments \(\sigma \) and \(\tau \) to the variables in \(A \) and \(B \), respectively, we denote by \([A/\sigma(A), B/\tau(B)]\) the substitution \([A_1/\sigma(A_1), \ldots, A_k/\sigma(A_k), B_1/\tau(B_1), \ldots, B_l/\tau(B_l)]\), and we define \(\alpha^{\sigma, \tau} = \sigma[A/\sigma(A), B/\tau(B)] \). Let \(x_0 = 0 \), and let \(u \in D(U) \) such that \(X_0(u) = x_0 \). Then, \(X_0 = x_0 \) is a weak cause of \(\alpha^{\sigma, \tau} \) under \(u \) if \(\exists C \neg \gamma [A/\sigma(A), B/\tau(B)] \) is valid. That is, \(X_0 = x_0 \) is not a weak cause of \(\alpha^{\sigma, \tau} \) under \(u \) if \(\forall C \gamma [A/\sigma(A), B/\tau(B)] \) is valid. Thus, Proposition 2.5 implies the following fact:

\((*)\) For every \(X' \subseteq A \cup A' \cup \{X_0\} \) with \(X_0 \in X' \), it holds that \(X' = X'(u) \) is not a weak cause of \(\alpha^{\sigma, \tau} \) under \(u \) if \(\forall C \gamma [A/\sigma(A), B/\tau(B)] \) is valid.

Using \((*)\), by a line of argumentation similar to the one in the proof of Theorem 5.1, it follows that \(\Phi \) is valid if \(X = x \) is an explanation of \(\phi \) relative to \(C \). \(\square \)

Theorem C.2. Partial Explanation is \(\Pi_3^P \)-complete for succinct context sets and binary causal models.
Proof. As for membership in \(\Pi_P^p \), recall that \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) iff (a) \(X = x \) is an explanation of \(\phi \) relative to \(C^\phi_{X=x} \), and (b) \(X(u) = x \) and \(P(u) > 0 \) for some \(u \in C^\phi_{X=x} \). By Proposition 4.1, \(C^\phi_{X=x} \) is the set of all \(u \in C \) such that either (i) \(X(u) \neq x \), or (ii) \(X(u) = x \) and \(X = x \) is a weak cause of \(\phi \) under \(u \). To check that (a) holds, we check that EX1–EX4 hold. Clearly, EX1 and EX2 always hold. The complement of EX3 says that some \(X' \subseteq X \) exists such that for every \(u \in C \), it holds that \(X'(u) = x|X' \) and \(u \in C^\phi_{X=x} \) implies that \(X' = x|X' \) is a weak cause of \(\phi \) under \(u \). That is, some \(X' \subseteq X \) exists such that for every \(u \in C \), it holds either (a) \(X'(u) \neq x|X' \), or (b) \(X(u) = x \) and \(X = x \) is not a weak cause of \(\phi \) under \(u \). By Theorem 2.6, deciding weak cause is in NP in the binary case. Thus, deciding whether EX3 does not hold is in \(\Sigma_P^P \) for succinct context sets and binary causal models.

Hence, deciding whether EX3 holds is in \(\Pi_P^p \). EX4 says that some \(u, u' \in C^\phi_{X=x} \) exist such that \(X(u) \neq x \) and \(X(u') = x \) and \(X = x \) is a weak cause of \(\phi \) under \(u' \). Thus, deciding whether EX4 holds is in NP in the binary case. In summary, deciding whether (a) holds is in \(\Pi_P^p \) for succinct context sets and binary causal models. Finally, (b) says that some \(u \in C \) exists such that \(X(u) = x \), \(P(u) > 0 \), and \(X = x \) is a weak cause of \(\phi \) under \(u \). Thus, checking (b) is in NP in the binary case. In summary, deciding whether (a) and (b) holds is in \(\Pi_P^p \) for succinct context sets and binary causal models.

Hardness for \(\Pi_P^p \) is shown a reduction from the \(\Pi_P^p \)-complete problem of deciding whether a given QBF \(\phi = \forall A \exists B \forall C \gamma \) is valid, where \(\gamma \) is a propositional formula on the variables \(A = [A_1, \ldots, A_l], B = [B_1, \ldots, B_l], \) and \(C = [C_1, \ldots, C_m] \). We define \(M = (U, V, F), X \subseteq V, x \in D(X), \phi, \) and \(C \subseteq D(U) \) as in the proof of Theorem C.1, and let \(P \) be the uniform distribution over \(C \). Observe that \(\phi \) is primitive and that \(\phi(u) \) holds for all \(u \in C \). For every \(u \in C \), either (i) \(X(u) \neq x \), or (ii) \(X(u) = x \) and \(X = x \) is a weak cause of \(\phi \) under \(u \). By Proposition 4.1, \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) iff (a) \(X = x \) is an explanation of \(\phi \) relative to \(C \), and (b) \(C \) contains some \(u \) such that \(X(u) = x \) and \(P(u) > 0 \). Here, (a) implies (b). By the proof of Theorem C.1, \(X = x \) is an explanation of \(\phi \) relative to \(C \) iff \(\phi \) is valid. In summary, \(X = x \) is a partial explanation of \(\phi \) relative to \((C, P)\) iff \(\phi \) is valid. \(\square \)

Appendix D. Proofs for Section 6

Proof of Theorem 6.4 (continued). It remains to prove that \(\Phi \) is not valid iff (a) some \(u \in D(U) \) exists such that for every \(u_1 \in D(U_1) \), there exists a causal formula \([Y \leftarrow y] X = x \), where \(Y \subseteq V \) and \(X \in V \), such that (i) \((M, u) \not\models [Y \leftarrow y] X = x \) and (ii) \((M_1, u_1) \models [Y \leftarrow y] X = x \).

(\(\Rightarrow \)) Suppose that \(\Phi \) is not valid. Let then \(\tau \) be any truth assignment to \(B \) such that \(\exists C \forall D \gamma \) is not valid, that is, \(\forall C \exists D \neg \gamma \) is valid. Let \(u \) be any context from \(D(U) \) such that \(u(B_i) = \tau(B_i) \) for all \(i \in [1, \ldots, l] \). Consider now any context \(u_1 \in D(U_1) \). We then distinguish two cases as follows. (a) If \(u_1(B_i) \neq \tau(B_i) \) for some \(i \in [1, \ldots, l] \), then \((M_1, u_1) \models [W \leftarrow \tau(B)] Z = 1, \) while \((M, u) \not\models [W \leftarrow \tau(B)] Z = 1 \).
(b) If \(u_1(B_i) = \tau(B_i) \) for all \(i \in \{1, \ldots, l\} \), then some truth assignment \(\tau'' \) to \(D \) exists such that \(\gamma(B/\tau(B), C/\tau'(C), D/\tau''(D)) \) is false, where \(\tau' \) is the truth assignment to \(C \) defined by \(\tau'(C_i) = u_1(C_i) \) for all \(i \in \{1, \ldots, m\} \). Hence, \((M_1, u_1) \models [W \leftarrow \tau(B), D \leftarrow \tau''(D)] \) \(Z = 1 \), while \((M, u) \not\models [W \leftarrow \tau(B), D \leftarrow \tau''(D)] \) \(Z = 1 \). In summary, if \(\Phi \) is not valid, then \(\ast \) holds.

\((\Leftarrow) \) Suppose that \(\ast \) holds. That is, some \(u \in D(U) \) exists such that for every \(u_1 \in D(U_1) \), there exists a causal formula \(Y \leftarrow x \), where \(Y \subseteq V \) and \(X \subseteq V \), such that (i) \((M, u) \models [Y \leftarrow y] X = x \) and (ii) \((M, u_1) \models [Y \leftarrow y] X = x \). In particular, some \(u \in D(U) \) exists such that for every \(u_1 \in D(U_1) \) with \(u|B = u_1|B \), there exists a causal formula \(Y \leftarrow x \) as above with (i) and (ii). Trivially, (i) and (ii) implies \(X \not\subseteq Y \) for all such \(u_1 \in D(U_1) \). Moreover, as \(F_X = F^1_X = 0 \) for all \(X \subseteq V \setminus \{Z\} \), it follows that \(X = Z \) must hold for all such \(u_1 \in D(U_1) \). It then follows that \((M, u) \models [Y \leftarrow y] W_i = u(B_i) \) for all \(i \in \{1, \ldots, l\} \), since otherwise \((M, u) \models [Y \leftarrow y] Z = 1 \) and \((M_1, u_1) \models [Y \leftarrow y] Z = 1 \), for all \(u_1 \in D(U_1) \) with \(u|B = u_1|B \). This also shows that we have \((M, u) \models [Y \leftarrow y] Z = 1 \) and that \((M_1, u_1) \models [Y \leftarrow y] Z = 1 \), and, moreover, that \(x = 1 \) must hold, for all \(u_1 \in D(U_1) \) with \(u|B = u_1|B \). It then follows that for every truth assignment \(\tau' \) to \(C \) defined by \(\tau'(C_i) = u_1(C_i) \) for all \(i \in \{1, \ldots, m\} \), there exists a truth assignment \(\tau'' \) to \(D \) which is defined by \((M_1, u_1) \models [Y \leftarrow y] D_i = \tau''(D_i) \) for all \(i \in \{1, \ldots, n\} \), such that \(\gamma(B/\tau(B), C/\tau'(C), D/\tau''(D)) \) is false, where the truth assignment \(\tau \) to \(B \) is defined by \(\tau(B_i) = u_1(B_i) \) for all \(i \in \{1, \ldots, l\} \). This shows that \(\exists B \forall Y \exists \forall D \gamma \) is valid. That is, \(\Phi = \forall B \exists C \forall D \gamma \) is not valid. \(\Box \)

References

