
Information and Computation 195 (2004) 66–87

www.elsevier.com/locate/ic

Remarks on Thatte’s transformation of term rewriting systems

Bas Luttika,b,∗,1 , Piet Rodenburgc , Rakesh Vermad,2

aDepartment of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,
NL-5600 MB Eindhoven, The Netherlands

bCWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
cProgramming Research Group, University of Amsterdam, Kruislaan 403, NL-1098 SJ Amsterdam, The Netherlands

dComputer Science Department, University of Houston, TX 77204, United States

Received 14 December 1998
Available online 6 November 2004

Abstract

We carry out a detailed analysis of Thatte’s transformation of term rewriting systems. We refute an earlier
claim that this transformation preserves confluence for weakly persistent systems. We prove the preservation
of weak normalization, and of confluence in weakly normalizing systems and in nonoverlapping systems
with linear subtemplates. We conclude by proving that weak persistence is an undecidable property of term
rewriting systems.
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1. Introduction

The use of reduction systems as a semantical basis of programming paradigms leads naturally
to the consideration of methods of transforming such systems. Some types of systems are more
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suitable for implementation than others; for instance because they have an easily decidable nor-
malizing reduction strategy, or because the rules have a particular format. We want to transform
arbitrary systems into systems of suitable type. Evidently the transformed system must be able to
serve the purpose of its original in some sense. If it is, we can say the transformation is correct. Thus
the concrete content of the notion of correctness depends on the particular application.

Thatte [11] proposed a transformation of arbitrary rewrite systems into constructor-based systems.
To make a case for the correctness of his transformation when applied to an orthogonal system,
Thatte adduces that his transformation preserves orthogonality and that there is a close correspon-
dence between the reduction graphs of the original and its transform. Then, in [12], Thatte claims
that if the orthogonality requirement is weakened by omitting left-linearity, his transformation is
still correct in the sense that it preserves confluence. This claim, however, was refuted in [14], where
the notion of weak persistence was proposed as the appropriate weakening of orthogonality.

In this paper, we discuss the correctness of Thatte’s transformation by investigating what prop-
erties it preserves. As a useful tool in our investigation, we propose, for arbitrary abstract reduction
systems, a notion of ω-simulation, based on a simulation concept of Kamperman andWalters [5,6].
From the close correspondence between the reduction graphs of original and transform exhibited
by ω-simulation, preservation of confluence and preservation of weak normalization follow. We
generalize a proof of Fokkink and Van de Pol [3] to show that ω-simulation also preserves the
normal form relation.

Contrary to what is stated in [14], weak persistence is not a sufficient condition for the pres-
ervation of confluence. It does preserve confluence under a condition intermediate between weak
persistence and orthogonality. Also, it preserves semi-completeness for weakly persistent systems.
For terminating rewrite systems a simpler transformationmethod that preserves confluence is given
in [13]. We conclude with a discussion of the computable content of the notion of weak persistence,
proving that it is undecidable in general.

The remainder of the paper is organized as follows. In Section 2, we fix our terminology and
notation with respect to abstract reduction systems. In Section 3, we discuss some correctness cri-
teria for transformations of abstract reduction systems and introduce the notion of ω-simulation.
In Section 4, we fix our terminology and notation with respect to term rewriting systems, and in
Section 5 we present Thatte’s transformation. In Section 6, we give the two counterexamples that
refute claims made about Thatte’s transformation in the literature. In Section 7, we prove that
there is an ω-simulation from a sublinear system to its Thatte transform, and that Thatte’s trans-
formation preserves semi-completeness. In Section 8, we establish that it is in general undecidable
whether a term rewriting system is weakly persistent. We end the paper with a few concluding
remarks.

2. Definitions

We fix our terminology and notation generally in line with [2,10].
An abstract reduction system is a pair consisting of a set and a family of binary relations on this

set; we shall only consider abstract reduction systems with just one binary relation. We adopt the
convention that the base set of an abstract reduction system A is A, B is based on B, and so on. If
A = 〈A,→〉, we write a→ b (sometimes a→A b) instead of 〈a, b〉 ∈ →.
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The transitive closure of a binary relation R we denote by R+, the transitive-reflexive closure by
R∗. Instead of→∗ we usually write �. The symmetric closure of a binary relation→ we denote by
↔. A reduction is a (finite or infinite) sequence a0 → a1 → · · ·.

LetA = 〈A,→〉 be an abstract reduction system.An element a ofA is a normal form ifA |= ¬ ∃x.
a→ x. We write a→! b for a� b ∧ ¬ ∃x. b→ x; and call b a normal form of a in A if A |= a→! b.
The set of all normal forms of a in A we denote by NA(a). For X ⊆ A, NA(X) = ⋃

x∈X NA(x).
Generally, for any binary relation R, we put R(X) = {y | ∃x∈X.xRy}, and R(x) = R({x}).

We abbreviate ∃y.x→! y to WN(x); if A |= WN(a), a is said to be weakly normalizing. An ele-
ment a is strongly normalizing, or terminating, notation A |= SN(a), if there is no infinite reduction
sequence beginning with a. We abbreviate ∀yz(x→ y ∧ x→ z �⇒ ∃u(y � u ∧ z� u)) to WCR(x),
and say a is weakly confluent or weakly Church–Rosser if A |= WCR(a). Confluence or the Chruch–
Rosser property is expressed by ∀yz(x� y ∧ x� z �⇒ ∃u(y � u ∧ z� u)), abbreviated CR(x).
Without parameter WCR stands for ∀x.WCR(x), and likewise CR, SN, etc.; A is confluent, or
Church–Rosser, if A |= CR, and weakly so if A |= WCR. We abbreviate ∀yz(x→! y ∧ x→! z �⇒
y = z) to UN→(x), and ∀x.UN→(x) to UN→; an element a of A is uniquely normalizing if A |=
UN→(a), and A is uniquely normalizing if A |= UN→. An abstract reduction system is complete if
it is both SN and CR; semi-complete if it is both WN and CR.

The domain of a relation R we denote by dom(R) and the range by ran(R). The closureof a set X
of elements of an abstract reduction system A = 〈A,→〉 is �(X). If � is a function into the base set
of A, then an element of A is �-reachable if it belongs to the closure of ran(�); and A is �-reachable
if every element of A is �-reachable.

3. Simulations and correctness criteria

We introduce the concepts of simulation and ω-simulation and prove some general properties of
ω-simulation.

If an abstract reduction system B simulates an abstract reduction system A, we expect that there
is a mapping � from objects of A to objects of B; we want to simulate reductions of a by reduc-
tions of �(a). Moreover, we require a backward translation  with  (�(a)) = a. The backward
translation need not be defined for every object of B.

Definition 1. Let A and B be abstract reduction systems. A simulationof A by B is a pair 〈�, 〉 of
a function � : A→ B and a partial function  : B→ A such that  � = id(A).

We call B the transform of A, by 〈�, 〉; B, or an element of B, is reachable if it is �-reachable. If
〈�1, 1〉 is a simulation ofA byB, and 〈�2, 2〉 ofB byC, then 〈�2�1, 1 2〉 is a simulation ofA byC.

The following definition has been adapted from [3].

Definition 2. Let 〈�, 〉 be a simulation of A by B such that NB(ran(�)) ⊆ dom( ). Then 〈�, 〉
preserves the normal form relation if for all a ∈ A,  (NB(�(a))) = NA(a).

It is easy to see that these requirements do not guarantee that B inherits SN or CR from A,
even if B is �-reachable. Accordingly, Fokkink and Van de Pol consider a further requirement on
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termination behavior in ran(�). Let us say, given a simulation 〈�, 〉 of A by B and a property X
defined for elements of abstract reduction systems (in particular, X may be one of SN, WN, CR,
WCR, UN→), that 〈�, 〉 preserves X if for all a ∈ A, A |= X(a) implies B |= X(�(a)). A reachable
transform of a weakly normalizing system by a weak normalization preserving simulation need not
be weakly normalizing. But:

Proposition 3. Let B be a reachable transform of A by 〈�, 〉. If A |= SN and 〈�, 〉 preserves
termination, then B |= SN.

Proposition 4. Let B be a reachable transform of A by 〈�, 〉. If A |= CR and 〈�, 〉 preserves
confluence, then B |= CR.

Proof. If B �|= CR, then B �|= CR(b) for some b ∈ B, and since B is reachable there exists a ∈ A such
that �(a)� b. Then B �|= CR(�(a)), hence A �|= CR(a). �

The analogous result for weak confluence does not hold.

Example 5. Consider the abstract reduction systems A = 〈{a, b}, {a→ b}〉 and B = 〈{a, b, c, d},
{a→ c, c→ b, c→ d}〉with the simulation 〈id(A), id(A)〉. Note that A |= WCR and B |= WCR(a),
B |= WCR(b), so 〈id(A), id(A)〉 preserves weak confluence. Also B is reachable; but B �|= WCR(c).

Fokkink and Van de Pol call B a correct transformation of A if there is a simulation 〈�, 〉 that
preserves the normal form relation and termination.

Kamperman andWalters (see [5]) propose another correctness criterion. Roughly speaking, they
call a simulation sound if each reduction in B simulates a reduction in A, and complete if each
reduction in A is simulated by one in B. These properties also play a part in preservation proofs in
[11,14].

Definition 6. A simulation 〈�, 〉 of A by B preserves reduction graphs if

(1) a→A a
′ implies �(a)→+

B �(a
′);

(2) if b→+
B b

′ for b ∈ dom( ), then there exists c ∈ dom( ) such that  (b)→+
A  (c) and b

′ �B c.

Condition 1 generalizes the notion of completeness of [5]; condition 2 is a form of soundness
adapted with a view to Proposition 8 below.

We study the consequences, in a special case, of reduction graph preservation for the normal
form relation and confluence.

Definition 7. A simulation is functional if it is of the form 〈�,�−1〉; since a functional simulation
〈�,�−1〉 is completely determined by its forward component �, we may use � to refer to it. Note that
� is a functional simulation if and only if it is an injective function. An ω-simulation is a functional
reduction graph preserving simulation.

The existence of an ω-simulation implies a close connection between normal form relations.
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Proposition 8. Suppose � is an ω-simulation of A by B. Then for a ∈ A and b ∈ ran(�),

(i) a is a normal form of A iff �(a) is a normal form of B;
(ii) if b′ is a normal form of b, then b′ ∈ ran(�), and �−1(b)→!

A
�−1(b′).

Proof.

(i) If a is not a normal form, then neither is �(a), by condition 1 of Definition 6. Conversely, if �(a)
is not a normal form of B, then by condition 2 of Definition 6, there exists c ∈ ran(�) such that
a→+

A �
−1(c), so a is not a normal form.

(ii) Suppose b→! b′ in B. If b = b′, then clearly �−1(b)�A �
−1(b′), b′ ∈ ran(�) and, by (i), �−1(b′)

is a normal form; so �−1(b)→!
A
�−1(b′). On the other hand, if b �= b′, then, by condition 2

of Definition 6, there exists c ∈ ran(�) such that �−1(b)→+
A �

−1(c) and b′ �B c. Since b′ is a
normal form, it follows that b′ = c. �

Corollary 9. An ω-simulation preserves the normal form relation.

Remark 10.Kennaway et al. [7] propose a notion quite similar toω-simulation. They call a mapping
� : A→ B from the base set of A into the base set of B adequate if

1. � is surjective;
2. a ∈ A is a normal form of A iff �(a) is a normal form of B;
3. if a�A a

′, then �(a)�B �(a
′); and

4. for all a ∈ A and b ∈ B, if �(a)� b, then there is a a′ ∈ A such that a� a′ and b� �(a′).

According to Proposition 8(i), every ω-simulation satisfies condition 2 of adequacy.
Conditions 3 and 4 are also satisfied by ω-simulations, since they are directly implied by
conditions 1 and 2 of Definition 6, respectively. It follows that every surjective ω-simulation is
adequate.

A useful property for correctness criteria is preservation of the correctness property under
composition: that every composition of correct transformations is a correct transformation. It
allows us to divide a complex transformation into steps that are more easily seen to be cor-
rect (‘stepwise refinement’ in [9]). The criterion of Fokkink and Van de Pol has this proper-
ty, trivially. Preservation of reduction graphs does not survive composition, but ω-simulation
does.

Theorem 11. Suppose � and  are ω-simulations, of A by B and of B by C respectively. Then the
composition  � is an ω-simulation of A by C.

Proof. Trivially,  � satisfies the first condition of Definition 6.
To check condition 6, suppose c→+

C c
′ with c ∈ ran( �). We must find c∗ such that c′ �C c

∗,
c∗ ∈ ran( �), and �−1 −1(c)→+

A �
−1 −1(c∗).
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Since c ∈ ran( ), there exists c′′ such that c′ �C c
′′, c′′ ∈ ran( ) and  −1(c)→+

B  
−1(c′′). Since

 −1(c) ∈ ran(�), there exists b ∈ B such that  −1(c′′)�B b, b ∈ ran(�) and �−1 −1(c)→+
A �

−1(b).
Now  (b) is the element c∗ we are looking for. �

It is easy to see that a simulation that preserves reduction graphs does not necessarily preserve
confluence, even if the transform is reachable. We do get this preservation property for ω-simula-
tions.

Theorem 12. Let � be an ω-simulation of A by B.

(i) For all a ∈ A, if A |= CR(a), then B |= CR(�(a)).
(ii) If B is reachable and A |= CR, then B |= CR.

Proof.

(i) Fix a ∈ A, assume CR(a), and suppose c�B �(a)�B b. Since � is an ω-simulation, there ex-
ist b′, c′ such that b�B b

′, c�B c
′, b′, c′ ∈ ran(�), a�A �

−1(b′) and a�A �
−1(c′). Since A |=

CR(a), there exists a′ such that �−1(c′)�A a
′ �A �

−1(b′). But then c′ �B �(a
′)�B b

′, hence
c�B �(a

′)�B b. �

An ω-simulation does not necessarily preserve termination. For example, consider the ω-simula-
tion id(A) of A by B where A is given by {a→ c} and B by {a→ b, b→ b, b→ c}. In this case A is
SN, and B is not, due to the cycle at b. In contrast, preservation of weak normalization is immediate
by Proposition 8.

Theorem 13. Let � be an ω-simulation of A by B.

(i) For all a ∈ A, A |= WN(a) iff B |= WN(�(a)).
(ii) If B is reachable, then A |= WN iff B |= WN.

By their failure to preserve termination, ω-simulations are not necessarily correct in the
sense of Fokkink and Van de Pol. Conversely, a correct simulation need not be an
ω-simulation. For example, if A is given by {a→ a, a→ b} and B by {a→ b,
a→ c, c→ c}, the simulation 〈id(A), id(A)〉 is correct, but there is no ω-simulation of
A by B.

4. Term rewriting systems

Given a signature (set of function symbols with fixed arities) �, we construct the universe U�
of terms over � in variables from some fixed infinite set in the usual way. For precise reference
to subterm occurrences we use the notion of position. For a term t the set P(t) of positions in t is
defined as follows:
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(1) if t is a variable, then P(t) = {�} (where � denotes the empty sequence);
(2) if t = F(t1, . . . , tn), for n-ary function symbol F and terms t1, . . . , tn, then P(t) = {�} ∪ {i.u |

1 � i � n and u ∈ P(ti)} (where i.u is the sequence obtained from u by prefixing i).

The subterm of t at position p we denote by t/p ; the symbol (function or variable) at p by t∼p . A
position p ∈ P(t) is a variable position if t/p is a variable, otherwise it is a function symbol position.
We denote the set of function symbol positions in t by P

F
(t), and the set of variable positions by

P
V
(t). We write p � q if p is an initial segment of q, and p < q if it is a proper initial segment. The

concatenation of p and q will be denoted by p.q. Two positions are disjoint if neither is an initial
segment of the other.

Suppose s and t are terms, and p ∈ P
F
(t). We say s overlaps t at p if there exist substitutions �,

� such that s� = (t/p)� . If p = �, then s root overlaps t; otherwise s nonroot overlaps t. If a set X of
terms has no nonroot overlapping elements, we call X nonoverlapping.

We write l→ r for a rewrite rule with left-hand side l and right-hand side r; the usual restrictions
on l and r apply, so lmust not be a variable and all variables occurring in r must also occur in l. A
set R of rewrite rules induces a reduction relation →R on U�. A reduction step from an instance
l� of a left-hand side of a rewrite rule to the corresponding instance r� of its right-hand side we call
a contraction. We write s→p R t to express that s→R t by contraction of a redex at position p , i.e.,
for some rule l→ r and substitution �, s = s[l�]p and t = s[r�]p . We say that a position q in s is
contracted in such a reduction step if q = p.owith o ∈ P

F
(l). The baseof R is the set LR of left-hand

sides of elements of R. A subtemplate of R is a nonvariable proper subterm of an element of LR.
Instances of subtemplates will be called pseudoredexes.

A term rewriting system is a triple 〈�, T ,R〉 in whichR is a set of rewrite rules over�, and T ⊆ U�
is closed under the induced reduction relation. We write 〈�,R〉 instead of 〈�,U�,R〉, and some-
times R for 〈�,R〉 where � is the least signature over which R can be constructed. All definitions
and results about abstract reduction systems in the previous sections carry over to term rewriting
systems via the abstract reduction system naturally associated with every term rewriting system:
the abstract reduction system associated with 〈�, T ,R〉 has T as base set and the restriction of→R
to T × T as binary relation.

Remark 14. With our definition of term rewriting system we deviate from [10] by taking as the set
of terms T a subset of U�. Thus, in a transformation, � can be expanded without adding all the
new terms generated by the added symbols; our definition of Thatte’s transformation in the next
section makes use of this (cf. also Remark 16).

A term is linear if no variable occurs in it more than once. A term rewriting system is left-linear
if all the terms in its base are linear, and right-linear if all the right-hand sides of its rules are linear.
It is linear if it is both left-linear and right-linear.

A term rewriting system is nonoverlapping if its base is nonoverlapping (terminology of Thatte
[12] at variance with Terese [10]). Note that a term rewriting system is nonoverlapping if and only
if none of its pseudoredexes is a redex. A nonoverlapping term rewriting system is orthogonal if it is
left-linear and there are no root overlaps between left-hand sides of distinct rules. As is well known,
orthogonal term rewriting systems are confluent.
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Let p be a position in a term s, and s→o R t a reduction. A position p ′ in t is a descendant of
p over this reduction if either p ′ = p and o �� p , or R contains a rule l→ r such that for some
substitution �, s/o = l� and t/o = r� , and there exist q ∈ P

V
(l), q′ ∈ P

V
(r) such that l/q = r/q′ and

for some u, p = o.q.u, and p ′ = o.q′.u. We say that p ′ is a descendant of p ∈ P(s0) over a longer
reduction

s0 → · · · → sn−1 → sn

if p ′ is a descendant over sn−1 → sn of a descendant of p over s0 → · · · → sn−1. (We note that adding
rewrite rules may increase the offspring of a position over a given reduction.)

5. Thatte’s transformation

In [11], Thatte introduced a transformation for term rewriting systems that turns an arbitrary
orthogonal system into a constructor-based system. The characteristic property of such a system is
that its signature may be divided into a set of defined symbols (appearing only as outermost function
symbols of left-hand sides of rules) and a set of constructor symbols (not appearing as outermost
symbols).

Definition 15. Let R = 〈�, T ,R〉 be a term rewriting system. A function symbol is defined in R if it
occurs as leading symbol in an element of LR; it is an argument symbol in R if it occurs otherwise
in LR. The constructors of R are the function symbols that are not defined. The system R is con-
structor-based if all argument symbols are constructors.

Systems that are not constructor-based have a symbol that is both defined and appears in some
argument of a left-hand side, i.e., such a symbol has a dual rôle. The idea of Thatte’s transforma-
tion is to remove this duality by adding a fresh symbol CF for each F that is both defined and an
argument symbol, which takes over its argument rôle.

From a system R = 〈�, T ,R〉 we construct the Thatte-transform R% = 〈�%, T %,R%〉 as
follows. The signature �% is � extended with fresh n-ary function symbols CF for all
n-ary F that are both defined and argument symbols in R. We define a function h that
takes �%-terms to �-terms, and a function c vice versa: the first replaces the constructor
variants CF by the original F ; the second replaces the F that are both defined and argument
symbols by CF . Besides c, we have another function c′ that only replaces inner
occurrences:

c′(F(t1, . . . , tn)) = F(c(t1), . . . , c(tn)).

The rule set R% is the union of sets R%

1 and R%

2, separately inducing reduction relations that we shall
denote by →1 and →2. The set R%

1 consists of transformed versions of the rules in R: for every rule
l→ r in R, R%

1 contains c
′(l)→ r. The rules in R%

2 replace function symbols by their constructor
variants: if u is a subtemplate, and the leading symbol of u has a new constructor variant in�%, then
c′(u)→ c(u) belongs to R%

2. The set T % is the closure of T under the reduction relation →R% . We
put R

%

2 = 〈�%, T %,R%

2〉.
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Remark 16. When we consider the Thatte-transform of a term rewriting system, we are only
interested in new terms that are reachable from old terms. Therefore, it seems reasonable to
say that the Thatte-transform of a term rewriting system has property X (where X is one of
SN, WN, CR, WCR, UN→) if all reachable terms have X; so even if X fails for some unreach-
able terms. Note that our alternative definition of term rewriting system allows us to achieve
this.

Clearly R% is constructor-based; and R
%

2 is complete. If R is nonoverlapping and left-linear, then
so is R%. In particular, a left-hand side of an R%

2-rule cannot overlap a left-hand side of R%

1: nonroot
overlaps are impossible because R% is constructor-based, and root overlap would imply overlap in
R. Further note that since the variable occurrences in the right-hand sides in R%

2 are the same as in
the left-hand sides, R%

2 is also right-linear.
Thatte proved [11]:

Lemma 17. Let R = 〈�, T ,R〉 be a term rewriting system, with transform R%. Then

(i) If t1 →R% t2, then h(t1)�R h(t2).
(ii) If t1 →R t2, then t1 →+

R% t2.

For a term rewriting system R, let �R be the function that maps terms of R to their normal forms
in R

%

2. The restriction of h to ran(�R) is the inverse of �R.

Lemma 18. Let R = 〈�, T ,R〉 be a nonoverlapping left-linear term rewriting system. If t ∈ T %, then
h(t)�2 t.

Proof. Induction on the length of a given R%-reduction from a �-term s to t.
If s = t, then h(t) = t.
Suppose s�R% t′ →R% t, and h(t′)�2 t

′. If t′ →2 t, then h(t′) = h(t), so we are done. Otherwise
t′ → t by some R%

1-rule l→ r, say t′ = u[l�] and t = u[r�]. Then since R% is left-linear and construc-
tor-based, h(u[y])�2 u[y] for arbitrary y . On the other hand, for any variable x in l, h(t′)�2 t

′
implies h(x�)�2 x

� , because the rules of R
%

2 only change the leading function symbol. Since r is a
�-term, this adds up to h(t)�2 t. �

Lemma 19. Let R = 〈�, T ,R〉 be a nonoverlapping left-linear term rewriting system. Then for all s, s′
and t, if s′ �2 s→1 t, there exists t′ such that s′ →1 t

′ �2 t.

Proof. It suffices to show that if s′ ←p 2 s→q 1 t, there exists t′ such that s′ →1 t
′ �2 t. We distinguish

cases according to the relation between p and q.

(1) p = q is impossible, since h(s/p) would be both a redex and a pseudoredex.
(2) If q < p , or p and q are disjoint, then t′ may be found as in the standard confluence proof for

orthogonal systems.
(3) The case that p < q is similar, except that by the right-linearity of R%

2 we may be sure that q has
exactly one descendant. �
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Theorem 20. If R = 〈�, T ,R〉 is a nonoverlapping left-linear term rewriting system, then �R is an
ω-simulation of R by R%.

Proof. Let � = �R; that �−1 is a function is immediate from the form of R%

2. We must check the
conditions of Definition 6.

(1) Suppose s→R t; say s/p = l� and t = s[r�]p , with l→ r in R. Then

t←1 s[c′(l)�] �2 �(s),

so by Lemma 5.4 there exists t′ such that t �2 t
′ ←1 �(s). Since t′ �2 �(t) (recall that R

%

2 is
complete), �(s)→+

R% �(t).
(2) Suppose s ∈ ran(�) and s→+

R% t. We must find a reduct t′ of t in ran(�) such that h(s)→+
R h(t

′).
By Lemma 18, h(t)�2 t. By completeness of R

%

2 it follows that t �2 �(h(t)). Take t′ = �(h(t));
then h(t′) = h(t) and t′ ∈ ran(�). Now since s is an R%

2-normal form, the first step of the reduc-
tion must be an application of a rule in R%

1; we have s→1 s
′ �R% t. So h(s)→R h(s′); and by

Lemma 17(17), h(s′)�R h(t). �

Theorem 21.With any term rewriting systemR = 〈�, T ,R〉, the simulations 〈id(T ), h〉 and�R preserve
termination.

Proof. Observe that (1) t→1 t
′ implies h(t)→R h(t

′); and (2) t→2 t
′ implies h(t) = h(t′). Let s be

a term of R that has an infinite reduction in R%. Because R
%

2 is SN, there must be infinitely many
R%

1-steps in this reduction, so it has the form

s�2 s0 →1 s1 �2 s2 →1 · · · �2 s2n →1 s2n+1 �2 · · ·
However, because of (1) and (2) together, this corresponds to

s = h(s0)→R h(s1)→R · · · →R h(s2n−1)→R h(s2n+1)→R · · · ,
an infinite reduction in R. So 〈id(T ), h〉 preserves termination; and since t �2 �R(t), the closure of
ran(�R) is contained in the closure of ran(id(T )) (which is T %). �

From these theorems we get by Corollary 9 that the Thatte transformation of a nonoverlapping
left-linear term rewriting system is correct in the sense of [3].

6. Weakening left-linearity: counterexamples

Thatte originally defined his transformation for orthogonal term rewriting systems [11], for which
preservation of confluence is immediate. As we have seen above, the condition of orthogonali-
ty may be weakened somewhat: the system should be nonoverlapping and left-linear. Naturally,
the further question arises to what extent these two conditions are necessary. That the term re-
writing system to be transformed be nonoverlapping appears to be essential. E.g., transforming
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{F(G(x))→ F(x), G(x)→ x} we would introduce an irreducible divergence x← G(x)→ CG(x). On
the other hand, the part of left-linearity is less clear. Thatte claimed [12] that it may be omitted.
This claim was refuted by Verma [14], who constructed a nonoverlapping confluent term rewriting
system with nonconfluent Thatte transform. We repeat the example, adding a proof of confluence.

Example 22 ([14]). Let R be the term rewriting system consisting of the rules

H(F(x, x))→ H(A),
F(x,G(x))→ A,

C → G(C).

Claim. R is confluent.

Proof. We declare types for the function symbols as follows:

C : ) A : * H : *→ +.

G : )→ ) F : )× )→ *

By a theorem of Aoto and Toyama [1, Theorem 27] it suffices to prove that all terms that are well-
formed according to these declarations are confluent. (Note that the rules preserve well-formedness
of a term.)

Consider a divergence t1 � t0 � t2. We distinguish cases:

(1) All contractions in the given divergence are applications of the rule C→ G(C). Then since the
system R− with signature {F ,G,H ,A,C} and single rule C→ G(C) is orthogonal, there must
be a common reduct.

(2) The divergence is of type *, i.e., t0 may be written as F(s1, s2), and there is an application of the
rule F(x,G(x))→ A in one of the divergent reductions. If there is such an application in both
reductions, then t1 = t2 = A; and if

t0 = F(s1, s2)� F(t,G(t))→ A = t1

and t2 = F(s′1, s
′
2), then, since t→ G(t), by the previous case, s′1, s

′
2 and G(t) have a common

reduct t′, so

t2 � F(t′, t′)→ F(t′,G(t′))→ A.

(3) The divergence is of type + : t0 = H(F(s1, s2)), and there is an application of the ruleH(F(x, x))→
H(A) in one of the divergent reductions. Similar to case 2. �

The rules of the transform R% are

H(CF (x, x))→ H(A),
F(x,G(x))→ A,

C → G(C),
F(x, x)→ CF (x, x)

and this system shows the irreparable divergence
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CF (G(C),G(C))← F(G(C),G(C))→ F(G(C),G(G(C)))→ A.

Apparently some semblance of left-linearity is needed. In [14], the notion of weak persistence is
put forward. The following definition suits the original intuition of [14] somewhat better than the
the definition given there:

Definition 23. A term rewriting system R is weakly persistent if pseudoredexes of R never reduce to
redexes.

The two definitions are in fact equivalent:

Proposition 24. A term rewriting system R is weakly persistent iff in every reduction

s0 −→p0 s1 −→p1 s2 −→p2 · · · −→pn−1
sn −→pn sn+1

of a substitution instance s0 of a subtemplate s of R, either � ∈ {p0, . . . , pn−1} or an initial segment of
pn belongs to P

V
(s).

Proof.

(⇒) Let s0 be a substitution instance of a subtemplate s of R, and

, := s0 −→p0 s1 −→p1 s2 −→p2 · · · −→pn−1
sn −→pn sn+1

a reduction. If nowhere in , a position in P
F
(s) gets contracted, then an initial segment of

pn belongs to P
V
(s). Otherwise let k be minimal with pk ∈ P

F
(s), and let t = s/pk . Then t is a

subtemplate, and s0/pk a substitution instance of t that reduces to the redex sk/pk .
(⇐) Let , := (s� � t) be a reduction of a substitution instance of a subtemplate s to a redex t, of

minimal length. Then , can be extended to a reduction

s� � t →� u.

Since � �∈ P
V
(s), some step in , must be a contraction, which contradicts the minimality of

,. �

A nonoverlapping term rewriting system is trivially weakly persistent if all its subtemplates are
linear. If 〈�, T ,R〉 is a nonoverlapping left-linear term rewriting system, then

〈� ∪ {D,E},R ∪ {D(x, x)→ E}〉
(where D,E �∈ �) is weakly persistent. The term rewriting system of Example 22 is not weakly
persistent: because in the reduction

F(G(C),G(C))→ F(G(C),G(G(C)))→ A

the pseudoredex F(G(C),G(C)) becomes a redex.
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Verma [14] claimed that Thatte’s transformation preserves confluence for weakly persistent
systems—but this claim too is false.

Example 25. Let � consist of constant symbols A, B, C , D and E, unary function symbols G and H ,
and binary F ; consider the rewrite systems

R1 =


F(A,B)→ E,

C → G(C),
G(x)→ F(x,G(x))




and R = R1 ∪ {H(F(x, x))→ D}. The system R = 〈�,R〉 is weakly persistent, since the only inter-
esting subtemplate is F(x, x), the only redex with leading F is F(A,B), and there is no nontrivial
reduction to either A or B. If we can show that R is confluent, the claim of [14] will be refuted, for
R% is not confluent: the divergence

G(C) ��

��

F(C ,G(C)) �� F(G(C),G(C)) �� CF (G(C),G(C))

G(G(C))

��

G(CF (G(C),G(C)))

cannot be recovered. For, since all reducts ofCF (G(C),G(C)) are of the formCF (s, t), to recover the
divergence we need a reduction G(CF (s, t))� CF (u, v). Consider a shortest reduction of this kind.
By the nature of R%, it must have the form

G(CF (s, t))

����

G(CF (s
′, t′)) �� F(CF (s

′, t′),G(CF (s′, t′)))

����

F(CF (s
′′, t′′),CF (s′′, t′′))

����

CF (u, v)

Butwithin this reductionwe have a shorter reduction ofG(CF (s′, t′)) toCF (s′′, t′′), which contradicts
our choice of the initial reduction.

We declare types for the function symbols as follows:

A,B,C ,E : ) D : *
G : )→ ) H : )→ *.

F : )× )→ )



B. Luttik et al. / Information and Computation 195 (2004) 66–87 79

The system R1 = 〈�,R1〉 is orthogonal, hence terms of sort ) are confluent. Consider a diver-
gence t1 � H(s)� t2 of type *. If there is no application of the rule H(F(x, x))→ D in either of
the divergent reductions, then confluence follows from the orthogonality of R1; if there is such
an application in both reductions, then t1 = D = t2. It remains to consider divergences of the
form

H(s′)� H(s)� H(F(t, t))→ D.

The terms s′ and F(t, t) of sort ) have a common reduct s′′. Since R1 is confluent and A and B are
distinct normal forms of R1, s′′ �= E; hence there exist t1 and t2, with common reduct t′, such that
s′′ = F(t1, t2)� F(t′, t′), and we find H(s′)� H(F(t′, t′))→ D.

7. Positive results

In this section, we show that Thatte’s transformation preserves confluence under a condition
intermediate between weak persistence and orthogonality.

We also prove that weak persistence is sufficient to guarantee that Thatte’s transformation pre-
serves the unique normal form property and weak normalization. As a corollary of this, we obtain
that Thatte’s transformation is correct in the sense of [3] for uniquely normalizing, weakly persistent
systems and that it preserves semi-completeness for weakly persistent systems.

7.1. Sublinear systems

Definition 26.A term rewriting system is sublinear if every subtemplate with defined leading symbol
is linear.

A system R is sublinear iff R
%

2 is linear. Since in the proof of Lemma 18 left-linearity is needed
only in the context of R

%

2, we have:

Lemma 27. Let R be a nonoverlapping sublinear term rewriting system. If t ∈ T %, then h(t)�2 t.

Lemma 19 does not generalize so easily. We need a sublemma:

Lemma 28. Let R be a nonoverlapping sublinear term rewriting system. If s′ ←2 s�2 t, then either
s′ �2 t or for some t′, s′ �2 t

′ ←2 t.

Proof. Induction on the length of a given reduction s�2 t. Suppose

s′ ← s� t0 → t.

By induction hypothesis either s′ � t0, hence s′ � t; or there exists t1 such that s′ � t1 ← t0. Sup-
pose we have t1 ←p t0 →q t. If p and q are disjoint, we get t1 →q t′←p t. If p = q, then t = t1. If p < q,
then since R

%

2 is nonoverlapping and left-linear, and R
%

2-steps consist in changing a single function
symbol, t1/q and t/p are still redexes; and t1 →q t′ ←p t. The case that q < p is similar. �
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Lemma 29. Let R be a nonoverlapping sublinear term rewriting system. Then in R%, if s′ �2 s→1 t,
there are t′, t′′ such that s′ �2 t

′ →1 t
′′ �2 t.

Proof. Induction on the length of the given reduction s�2 s
′. Suppose

s′ ←2 s0 �2 s→1 t.

By induction hypothesis there exist t1, t2 such that s0 �2 t1 →1 t2 �2 t. Apply Lemma 28 to the
divergence s′ ←2 s0 �2 t1. If s′ �2 t1, we are done. Otherwise we have t′ such that s′ �2 t

′ ←2
t1. We are left with a divergence t′ ←p 2 t1 →q 1 t2; we must find a common reduct t′′ of t′
and t2.

If p and q are disjoint, this is easy. If p < q, then since R% is nonoverlapping, R%

2 is left-linear, and
R
%

2-rewriting is just replacing function symbols, t′/q and t2/p are redexes and we have t′ →q t′′ ←p t2.
If q < p there may be a complication in that t1/qmay be a redex in virtue of certain subterms being
the same, and one of these is changed by rewriting t1/p . Then to restore the redex at q, the other
subterms must be rewritten as well: we get

t′�2 →q 1 t
′′ �2 ←2t2.

The diagram below illustrates the last case.

�

Now we may reason as in the proof of Theorem 20, using Lemmas 29 and 27 instead of 19 and
18, to prove

Theorem 30. If R is a nonoverlapping sublinear term rewriting system, then �R is an ω-simulation of
R by R%.

Corollary 31. Let R be a nonoverlapping sublinear term rewriting system.

(i) If R is confluent, so is R%.

(ii) R |= s→! t if and only if R% |= �R(s)→! �R(t).

(iii) If R |= SN(t), then R% |= SN(�R(t)).
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Proof.

(i) Consider a divergence t � s� u in R%. By Lemma 17 h(t)�R h(s)�R h(u); hence, since �R is
an ω-simulation, �R(h(t))�R% �R(h(s))�R% �R(h(u)). By Theorem 12 �R(h(t)) and �R(h(u))

have a common reduct v in R%. Furthermore, by Lemma 27, h(t)�2 t and h(u)�2 u; it follows
that t �2 �R(h(t)) and u�2 �R(h(u)), so v is also a common reduct of t and u.

(ii) By Proposition 8(i), t is a normal formofR if and only if�R(t) is a normal formofR%. ByDefini-
tion 6, R |= s� t implies R% |= �R(s)� �R(t); and by Proposition 8(ii), R% |= �R(s)→! �R(t)

implies R |= s→! t.
(iii) By Theorem 21. �

In particular, for nonoverlapping sublinear term rewriting systems the Thatte transformation is
correct in the sense of [3].

7.2. Weakly persistent systems

We proceed to reconsider weak persistence, and show that this condition, though insufficient for
confluence preservation, nevertheless has some useful consequences. Observe that if a term rewriting
system R is weakly persistent, then R, and consequently R%, is nonoverlapping.

Proposition 32. Let R = 〈�, T ,R〉 be a weakly persistent term rewriting system. If s ∈ T % and there
is a t ∈ T such that h(s)→� R t, then s∼� = h(s)∼�.

Proof. We argue by contraposition. Suppose s ∈ T %, h(s)→� R t, and s begins with a constructor
symbol CF . Then there exists a reduction , := u�R% s with u ∈ T ; at some point in , an R%

2-rule
l→ r is applied to obtain the leading CF of s. Then , has the form

u� v[l�]p →2 v[r�]p � s.

Since the occurrence of r� at p in v[r�]p can only be affected by contractions at q > p , we also have
r� � s. Then by Lemma 17, h(r�)�R h(s). But by construction of R%, h(r�) is a pseudoredex. Since
h(s) is a redex, this means that R is not weakly persistent. �

Definition 33. Let R be a term rewriting system. A term s of R% is balanced if for all subterms u, v of
s, h(u) = h(v) implies u = v.

Proposition 34. Let R = 〈�, T ,R〉 be a weakly persistent term rewriting system and s ∈ T % balanced.
If h(s)→R t by application of a rule l→ r at position p ∈ P(s), then there exist l′ ∈ h−1(l) and a
substitution � such that s/p = (l′)� and s�2 s[c′(l)�]p →1 s[r�]p .

Proof. Let h(s)/p = l� . Since s is balanced, there exists a substitution � such that � = h ◦ � and
for some l′ ∈ h−1(l), s/p = (l′)� . By Proposition 32 and the construction of R%

1, (l
′)∼� = s∼p =

h(s)∼p = c′(l)∼�. Use the reduction l′ �2 c
′(l)→1 r. �
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Corollary 35.LetR = 〈�, T ,R〉 be aweakly persistent term rewriting system. If s is a balanced normal
form of R%, then h(s) is a normal form of R.

Let s and t be terms; if P(t) ⊇ P(s) and s∼p = t∼p for all p ∈ P
F
(s) we shall call t a replacement

instanceof s.

Proposition 36. Let R = 〈�, T ,R〉 be a weakly persistent and uniquely normalizing term rewriting
system. If s, t are normal forms of R%, then h(s) = h(t) implies s = t.

Proof. Suppose s and t are distinct normal forms of R%, and h(s) = h(t). We derive a contradiction.
Since subterms of normal forms are normal forms, we may assume that s and t are balanced,

and that they differ only at the root; say s = CF (u1, . . . , un) and t = F(u1, . . . , un). Since s ∈ T %, it is a
reduct of some u ∈ T . At some point in the reduction u� s anR%

2-rule l→ r is applied to obtain the
leadingCF . As in the proof of Proposition 32wemay assume that l(v1, . . . , vm)→2 r(v1, . . . , vm)� s.
Since there are no defined function symbols in r, s is a replacement instance of r, and hence t is a
replacement instance of l. Since t is a normal form, it is not a substitution instance of l, so there
must be p1, p2 ∈ P

V
(l) such that l/p1 = l/p2 and t/p1 �= t/p2. Let l(v1, . . . , vm)/p1 = vj . Apparently

t/p1 � vj � t/p2; so by Lemma 17,

h(t)/p1 �R h(vj)�R h(t)/p2.

Since t is balanced, by Corollary 35 h(t)/p1 and h(t)/p2 are normal forms of R, and h(t)/p1 �=
h(t)/p2, contradicting the assumption that R is uniquely normalizing. �

Corollary 37. Let R be a weakly persistent, uniquely normalizing term rewriting system.

(i) Normal forms of R% are balanced.
(ii) If s, t are terms of R%, s is in normal form and h(s) = h(t), then t �2 s.

Proof.

(ii) Let n be the R%

2-normal form of t. Since u→1 v implies h(u)→R h(v), n is a normal form of R%.
So n = s. �

Theorem 38. If the term rewriting systemR = 〈�, T ,R〉 is weakly persistent, the simulations 〈id(T ), h〉
and �R preserve unique normalization.

Proof. Since id(T )(s)�2 �R(s), it suffices to show that 〈id(T ), h〉 preserves unique normalization.
Suppose R |= UN→(s), and R% |= n1 ←! s→! n2. By Lemma 17(i), h(n1)�R s�R h(n2). By Cor-

ollary 37(i), n1 and n2 are balanced, and by Corollary 35, h(n1) and h(n2) are in normal form. So
h(n1) = h(n2) by unique normalization, and n1 = n2 by Proposition 36. �

Lemma 39.LetR = 〈�, T ,R〉 be weakly persistent and uniquely normalizing.Let n1, . . . , nk be normal
forms of R%, and t(x1, . . . , xk) a �-term such that t(n1, . . . , nk) ∈ T % and t(h(n1), . . . , h(nk)) normalizes
in R. Then t(n1, . . . , nk) normalizes in R%.
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Proof. We use induction on the length of normalizations in R.
If t(h(n1), . . . , h(nk)) is a normal form, then the R%

2-normal form of t(n1, . . . , nk) is a normal form
of R%. So suppose we have

(∗) t(h(n1), . . . , h(nk))→ t′ →! m.

We may assume that t(n1, . . . , nk) is balanced. For if it is not, let p , q be maximal positions with

h(t(n1, . . . , nk)/p) = h(t(n1, . . . , nk)/q) and t(n1, . . . , nk)/p �= t(n1, . . . , nk)/q.

Say

t(n1, . . . , nk)/p = G(t1, . . . , tj) and t(n1, . . . , nk)/q = CG(t1, . . . , tj).

Then t(n1, . . . , nk)/q must be contained in some ni, so t(n1, . . . , nk)/q is a normal form. So by Cor-
ollary 37(ii), t(n1, . . . , nk)/p �2 t(n1, . . . , nk)/q. Continuing in this way we will eventually reach a
balanced term u(m1, . . . ,ml) with u(y1, . . . , yl) a �-term and m1, . . . ,ml in normal form; since

u(h(m1), . . . , h(ml)) = t(h(n1), . . . , h(nk))

u(h(m1), . . . , h(ml)) normalizes in R.
Let the first step of (∗) be an application of rule l→ r of R at position o. By Proposition 34 there

is a substitution � such that

t(n1, . . . , nk)�2 t(n1, . . . , nk)[c′(l)�]o →1 t(n1, . . . , nk)[r�]o
and h(t(n1, . . . , nk)[r�]o) = t′. Since o ∈ P

F
(t(x1, . . . , xk)), t(n1, . . . , nk)[r�]o still is anR-termwithR%-

normal forms substituted for the variables; so by induction hypothesis it has a normal form. �

The following definition gives a sufficient condition on R such that R% is closed under subterms
(needed for the inductive proof of Theorem 42 below).

Definition 40. We call a term rewriting system R = 〈�, T ,R〉 an SR-system if T is

(i) closed under subterms, i.e., if s is a subterm of t ∈ T , then s ∈ T ; and
(ii) closed under right-hand sides, i.e., if r(x1, . . . , xm) is a right-hand side of an element of R, and

u1, . . . , um ∈ T , then r(u1, . . . , um) ∈ T .

Note that a term rewriting system in the sense of [10] is an SR-system.

Lemma 41. If R is an SR-system, then R% is closed under subterms.

Proof. Let s be a subterm of t ∈ T %; say t is a reduct of u ∈ T . We use induction on the length of a
given reduction u� t.

If t = u, then s ∈ T since T is closed under subterms.
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Now suppose u� t′ → t. If s is a reduct of a subterm s′ of t′, then by induction hypothesis s′ ∈ T %,
and s ∈ T % since T % is closed under→R% . Otherwise, s = r1(v1, . . . , vm), where r1 is a proper non-var-
iable subterm of the right-hand side of an R%

1-rule. Then v1, . . . , vm ∈ T % by induction hypothesis,
say uj � vj with uj ∈ T (1 � j � m), and s is a reduct of r1(u1, . . . , um), which belongs to T since T
is closed under right-hand sides and subterms. �

Theorem 42. If R = 〈�, T ,R〉 is a weakly persistent and uniquely normalizing SR-system, then R |=
WN implies R% |= WN.

Proof. By Theorem 38, UN→ is preserved. We proceed by induction on R%-terms (cf. Lemma 41).
Variables are in normal form. Now suppose s1 →! n1, . . ., sk →! nk in R%. If s = CF (s1, . . . , sk),

then CF (n1, . . . , nk) is a normal form of s. If s = F(s1, . . . , sk) with F ∈ �, then we apply Lemma 39
to the term F(n1, . . . , nk). �

Corollary 43. Let R = 〈�, T ,R〉 be a weakly persistent SR-system.

(i) If R is weakly normalizing, then both 〈id(T ), h〉 and �R preserve confluence.
(ii) If R is semi-complete, then so is R%.

Proof.

(i) Suppose t1 �R% s�R% t2, and s ∈ T . By Theorem 42, there are n1, n2 ∈ T % such that R% |=
t1 →! n1, t2 →! n2; and since id(T ) preserves UN→ by Theorem 38, n1 = n2. Since id(T )(s)�2
�R(s) it immediately follows that �R also preserves confluence.

(ii) If R is semi-complete, then by Theorem 42 R% |= WN and by the first part of this corollary and
Proposition 4 R% |= CR. �

Let R = 〈�, T ,R〉 be a weakly persistent, uniquely normalizing SR-system. If n is an R%-normal
form of s ∈ T , then by Corollary 37(i), n is balanced; so by Corollary 35, h(n) is a normal form of
R; and by Lemma 17(i), s�R h(n). Conversely, if s→!

R n
′, then by Lemma 17(ii) s�R% n′. Let n be

the R
%

2-normal form of n′: then n is a normal form of R%, and n′ = h(n). So 〈id(T ), h〉 preserves the
normal form relation. Since by Theorem 21 〈id(T ), h〉 also preserves termination, the transformation
of R into R% is correct in the sense of [3].

8. Weak persistence is undecidable

We reduce the problem of deciding for an arbitrary closed term t of Combinatory Logic whether
t � I to the problem of deciding whether a term rewriting system R(t) is weakly persistent. The un-
decidability of the former problem is a consequence of a theorem of Scott (cf. the proof of Corollary
5.4.2 in [10]), so the undecidability of the latter problem follows.

The signature of Combinatory Logic (CL) consists of the constant symbols S , K , and I and a
binary function symbol for application. It is customary to write the application of s to t as (st), and
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to omit brackets according to the convention of association to the left. The rules of Combinatory
Logic are

Sxyz → xz(yz),
Kxy → x,
Ix→ x.

Combinatory Logic is not weakly normalizing. We obtain a weakly normalizing term rewriting
system if we add to the signature of CL the constant symbols S , K and I and also add the following
three underlining rules:

Sxyz → Sxyz,
Kxy → Kxy ,
Ix→ Ix,

the extended system is denoted CLu. In CLu every term has a normal form, viz. its normal form
with respect to the three underlining rules above. The extension is conservative with respect to
conversion.

Lemma 44. If s and t are CL-terms, then s↔∗ t in CL if and only if s↔∗ t in CLu.

Proof. Since CLu contains all of CL, the implication from left to right is immediate. For the other
implication, we consider the term rewriting system CLr obtained from CLu by reversing the un-
derlining rules. Observe that s↔∗ t in CLr if and only if s↔∗ t in CLu, so it is enough to prove
that s↔∗ t in CLr implies s↔∗ t in CL for all CL-terms s and t. Note that CLr is orthogonal and
hence confluent. So, if s↔∗ t in CLr, then there exists u such that s� u� t in CLr. Further note
that in CLr reducts of CL-terms are CL-terms and that the reversed underlining rules are not ap-
plicable to CL-terms. It follows that the reductions s� u and t � u are CL-reductions, so s↔∗ t
in CL. �

Let t be a closed CL-term, and let t be its normal form with respect to the underlining rules
of CLu. We define the term rewriting system R(t) as the extension of CLu with a binary function
symbol F , a unary function symbol H , constant symbols A and B, and the rules

H(F(x, x))→ A,
F(t, I )→ B.

Let u be a term, let p1, . . . , pn be a sequence of disjoint positions in u and let s1, . . . , sn be a sequence
of terms; we define u[s1, . . . , sn]p1,...,pn by induction on n as follows:

(1) if n = 0, then u[s1, . . . , sn]p1,...,pn = u;
(2) if n > 0, then u[s1, . . . , sn]p1,...,pn = (u[s1, . . . , sn−1]p1,...,pn−1)[sn]pn .

Lemma 45. Let u and v be CLu-terms, let p1, . . . , pn be a sequence of disjoint positions in u, and let
s1, . . . , sn be a sequence ofR(t)-terms with si∼� ∈ {A,B, F ,H } for all 1 � i � n. If u[s1, . . . , sn]p1,...,pn �
v, then u� v.
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Proof. Induction on the length of the reduction u[s1, . . . , sn]p1,...,pn � v.
If u[s1, . . . , sn]p1,...,pn = v, then u[s1, . . . , sn]p1,...,pn is a CLu-term, so n = 0; it follows that u = v.
Suppose that u[s1, . . . , sn]p1...,pn →q u′ � v. If q � pi for some 1 � i � n, then there exists s′i such

that si → s′i and u′ = u[s1, . . . , si−1, s′i, si+1, . . . , sn]. Since s′i∼� ∈ {A,B, F ,H }, it follows by the induc-
tion hypothesis that u� v. On the other hand, if q �� pi for all 1 � i � n, then u[s1, . . . , sn]p1,...,pn →q u′
by an application of a rule in CLu. Since CLu is left-linear and left-hand sides of CLu-rules do not
contain symbols in {A,B, F ,H }, it follows that there exists a CLu-term u′′ such that u→q u′′. More-
over, u′ = u′′[s′1, . . . , s′m]p ′1,...,p ′m , with p ′1, . . . , p ′m the descendants of p1, . . . , pn over u[s1, . . . , sn]p1...,pn →q
u′ and s′1, . . . , s′m ∈ {s1, . . . , sn}. So by the induction hypothesis, it follows that u′′ � v; hence
u� v. �

Theorem 46. If t is a closed CL-term, then t � I in CL iff R(t) is not weakly persistent.

Proof. If t � I in CL, then F(t, t)� F(t, I ) in R(t), so R(t) is not weakly persistent. Converse-
ly, suppose R(t) is not weakly persistent. Note that R(t) is nonoverlapping, so F(x, x) is the on-
ly subtemplate that may give rise to a pseudoredex reducing to a redex (all other subtemplates
are linear); it follows that there exists an R(t)-term u such that the pseudoredex F(u, u) reduc-
es to a redex. Since F(t, I ) is the only redex with F as leading symbol, t � u� I . We may as-
sume by Lemma 45 that u is a CLu-term, so t � t � u� I in CLu. By Lemma 44 it follows
that t↔∗ I in CL, and since CL is confluent and I is a normal form of CL, we conclude that
t � I . �

Corollary 47. The problem of deciding whether a term rewriting system is weakly persistent is recur-
sively unsolvable.

9. Concluding remarks

We have proved that for weakly persistent systems Thatte’s transformation preserves SN,
UN→ and semi-completeness, but in general not CR. We have also proved that for the class of
nonoverlapping sublinear systems, it does preserve CR. Weak persistence is an undecidable proper-
ty of term rewriting systems, whereas both sublinearity and the property of being nonoverlapping
are decidable.

As a convenient tool in our proof that Thatte’s transformation preserves CR for nonover-
lapping sublinear systems, we have proposed the notion of ω-simulation for abstract reduction
systems. We established an ω-simulation from every nonoverlapping sublinear system to its
Thatte transform, and derived the preservation of CR from a general result about ω-simula-
tions.

It seems that our notion ofω-simulation is sufficiently general to be of use in the analysis of other
transformations of term rewriting systems. For instance, currying and the related notion of partial
parameterization studied in [4,8] give rise to functional simulations cur and PP, respectively, that
are easily seen to be ω-simulations (cf. Lemma 2.1 and Theorem 2.1 in [8]).
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