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Given a monomial ideal I = 〈m1,m2, . . . ,mk〉 where mi are monomials and a polynomial

f by an arithmetic circuit, the Ideal Membership Problem is to test if f ∈ I. We study this

problem and show the following results.

(a) When the ideal I = 〈m1,m2, . . . ,mk〉 for a constant k, we can test whether f ∈ I in

randomized polynomial time. This result holds even for f given by a black-box, when

f is of small degree.

(b) When I = 〈m1,m2, . . . ,mk〉 for a constant k and f is computed by a��� circuit with

output gate of bounded fanin, we can test whether f ∈ I in deterministic polynomial

time. This generalizes the Kayal–Saxena result [11] of deterministic polynomial-time

identity testing for ��� circuits with bounded fanin output gate.

(c) When k is not constant the problem is coNP-hard. We also show that the problem is

upper bounded by coMAPP over the field of rationals, and by coNPModpP over finite

fields.

(d) Finally, we discuss identity testing for certain restricted depth 4 arithmetic circuits.

For ideals I = 〈f1, . . . , f�〉where each fi ∈ F[x1, . . . , xk] is an arbitrary polynomial but k is

a constant, we show similar results as (a) and (b) above.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let F[x1, x2, . . . , xn] be the ring of polynomials over a field F and indeterminates x1, x2, . . . , xn. Let I ⊆ F[x1, x2, . . . , xn]
be an ideal given by a finite generator set {g1, g2, . . . , gr} of polynomials. Then I = {∑r

i=1 aigi | ai ∈ F[x1, x2, . . . , xn]} and
we write I = 〈g1, g2, . . . , gr〉. Given an ideal I = 〈g1, g2, . . . , gr〉 and a polynomial f ∈ F[x1, x2, . . . , xn] the Ideal Membership

Problem is to decide if f ∈ I.

Ideal Membership Testing is a fundamental algorithmic problem with important applications [7]. In general, however,

Ideal Membership Testing is notoriously intractable, even when the generator polynomials gi and the input polynomial f

are given explicitly, i.e. by a sum of monomials over F. The results of Mayr and Meyer show that it is EXPSPACE-complete

[14,15]. Nevertheless, because of its important applications, algorithms for this problem are widely studied, mainly based on

the theory of Gröbner bases [7].

Polynomial Identity Testing (PIT) is a well-known problem in the field of computational complexity and randomization:

givenanarithmetic circuitC computingapolynomial inF[x1, x2, . . . , xn], theproblem is todeterminewhether thepolynomial

computed by C is identically zero. One can view the output of the circuit C as a function from Fn→ F and ask whether it

�
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is the zero function. In general, this is not the same as asking whether the polynomial computed by C is identically zero

as a formal expression in F[x1, x2, . . . , xn]. Notice that xp − x ∈ Fp[x] computes the zero function on Fp but as a formal

expression xp − x is not zero in Fp[x]. However, if the formal degree of the circuit C is smaller than the size of F, then the

interpretations are equivalent.

Over the years, PIT has played a significant role in our understanding of several important algorithmic problems. Well-

known examples are the randomized NC algorithms for the matching problem in graphs [13,17], and the AKS primality test

[2]. The PIT problem has also played an indirect role in important complexity results such as IP = PSPACE [12,19] and the

proof of PCP theorem [3].

It is well known that PIT can be solved in randomized polynomial time [18,21]. A central open problem in the area is to

obtain a deterministic polynomial-time algorithm for PIT. It is shown by Impagliazzo and Kabanets in [10] that this problem

is as hard as proving super-polynomial size lower bounds for boolean circuits. Indeed, it remains open whether there is a

deterministic polynomial-time identity testing algorithm for arithmetic circuits of depth three with an unbounded fanin+
gate as output [8,11].

1.1. Results of this paper

Themain goal of this paper is to bring out interesting connections betweenMonomial Ideal Membership and Polynomial

Identity Testing. The study of monomial ideals is central to the theory of Gröbner bases [7]. In Section 2 we explain this in

more detail.

Suppose I = 〈m1,m2, . . . ,mk〉 is a monomial ideal in F[x1, x2, . . . , xn] generated by the monomials mi. In contrast

to the general Ideal Membership Problem, testing membership in the monomial ideal I is trivial for a polynomial f ∈
F[x1, x2, . . . , xn] that is given explicitly as an F-linear combination of monomials. We only need to check if each monomial

occurring in f is divisible by some generator monomial mi. However, as we show in this paper, the problem becomes

interesting when f is given by an arithmetic circuit. In that case, it turns out that the problem is tractable when k is a

constant and its complexity is similar to that of polynomial identity testing. Given amonomial ideal I = 〈m1,m2, . . . ,mr〉 for
monomials mi ∈ F[x1, . . . , xn] and an arithmetic circuit C over F defining a polynomial f ∈ F[x1, x2, . . . , xn], the Monomial

Ideal Membership Problem is to decide if f ∈ I. Clearly, PIT is a special case of Monomial Ideal Membership: the polynomial f

computed by a given arithmetic circuit C is identically zero if and only if f ∈ 〈0〉.
In this paper, whenever there is an ideal given by a generating set, it will be assumed that the exponent of any variable

appearing in a generator is given in unary.We studydifferent versions of the problembyplacing restrictions on the arithmetic

circuit C and the number ofmonomials generating the ideal I. We also consider amore general version of the problemwhere

we are allowed only black-box access to the polynomial f . Our main results are the following.

– A randomized test for Monomial Ideal Membership when f given by an arithmetic circuit and I = 〈m1,m2, . . . ,mk〉 for
constant k. This is analogous to the Schwartz–Zippel randomized polynomial identity test [18,21]. A similar randomized

test for f given by a black-box when f has small degree.

– When k is unrestricted the problem is coNP-hard, but we show that it is in the counting hierarchy.

– The identity testing problem for ��� circuits has recently attracted a lot of research [8,11]. The main open problem is

whether there is a deterministic polynomial-time identity test for ��� circuits. For the special case of ��� circuits

with bounded fanin output gate Kayal and Saxena [11] recently gave an ingenious deterministic polynomial-time test.

Analogous to their result, we consider Monomial Ideal Membership where a polynomial f is given by a ��� circuit

with bounded fanin output gate and a monomial ideal I = 〈m1,m2, . . . ,mk〉 for constant k. Using the algorithm of [11]

we give a deterministic polynomial-time algorithm for testing if f ∈ I. More interestingly, we develop the algorithm and

its correctness proof based on Gröbner basis theory. We believe this approach is somewhat simpler and more direct. It

avoids properties such as Chinese remaindering in local rings and Hensel lifting that is used in [11]. As a byproduct, this

gives us a different understanding of the identity testing algorithm of [11].

2. Preliminaries

We develop the rudiments of Gröbner basis theory. Details can be found in the text [7] and Madhu Sudan’s notes [20].

Let x̄ denote indeterminates {x1, x2, . . . , xn}. LetF[x̄] denotes the polynomial ringF[x1, x2, . . . , xn]. Let R be a commutative

ring. A subgroup I ⊆ (R,+) is an ideal of R if IR ⊆ I. The Hilbert basis theorem [7] states that any ideal I of F[x1, x2, . . . , xn] is
finitely generated. That is, we can express I = {∑r

i=1 pigi | pi ∈ F[x1, x2, . . . , xn]}, where the finite collection of polynomials

{g1, g2, . . . , gr} is a generating set (or basis) for I.

The notion of monomial ordering is key to defining Gröbner bases. We restrict ourselves to the lexicographic monomial

ordering which we define below. For ᾱ = (α1,α2, . . . ,αn) ∈ Nn, we denote the monomial x
α1

1 x
α2

2 · · · xαn
n by x̄ᾱ .

Definition 1. Let ᾱ = (α1,α2, . . . ,αn) and β̄ = (β1,β2, . . . ,βn) ∈ Nn. We say ᾱ > β̄ if, in the vector difference ᾱ − β̄ ∈
Zn, the left-most nonzero entry is positive. We say, x̄ᾱ > x̄β̄ (equivalently, x̄β̄ < x̄ᾱ) if ᾱ > β̄ .
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The lexicographicmonomial orderingnaturallyfixesa leadingmonomial LM(f ) (i.e. LM(f ) is themonomialwith the largest

exponent) for any polynomial f . Let LC(f ) denote the coefficient of LM(f ). Then the leading term of f is LT(f ) = LC(f )LM(f ).
Using the monomial ordering, we state the general form of the division algorithm over F[x1, x2, . . . , xn].
Theorem 1 (See [7], Theorem3, p.61). Let f ∈ F[x̄] and (f1, f2, . . . , fs) be an ordered s-tuple of polynomials inF[x̄]. Then f can be
written as, f = a1f1 + a2f2 + · · · + asfs + r,where ai, r ∈ F[x̄], and either r = 0 or r is an F-linear combination of monomials,

none of which is divisible by any of LT(f1), LT(f2), . . . , LT(fs).

The proof of the theorem is constructive. We give an intuitive outline as we use it often in the paper. Let f̄ denote an

ordered list of polynomials fi: f̄ = (f1, f2, . . . , fs). The proof describes a division algorithm Divide(f ; f̄ ) which first sorts the

tuple f by the monomial ordering. The algorithm proceeds iteratively. It tries to eliminate the leading monomial in the

current remainder by attempting to divide it with the fi’s in the given order. The fi that succeeds is the first one whose

leading monomial divides the leading monomial of the current remainder. Finally, the remainder r that survives has the

above property. The algorithm is guaranteed to terminate as the monomial ordering is a well ordering. The following time

bound for Divide(f ; f̄ ) is easy to obtain.

Fact 2 (See [20], Section 6, pp. 12–15). The running time of Divide(f ; f̄ ) is bounded by O
(
s
∏n

i=1(di + 1)O(1)
)
, where di is the

maximum degree of xi among the polynomials f , f1, f2, . . . , fs.

If the remainder r output by Divide(f ; f̄ ) is zero then clearly f ∈ 〈f1, . . . , fs〉. However, in general, Divide(f ; f̄ ) need not

produce zero remainder even if f ∈ 〈f1, . . . , fs〉 as the order of division is important. Thus, it cannot be directly used as an

IdealMembership Test. In order to ensure this property, we defineGröbner bases (with respect to the lexicographicmonomial

ordering).

Definition 2. Fix < as the monomial ordering, and let J ⊆ F[x̄] be any ideal. Then the polynomials g1, g2, . . . , gt form

a Gröbner basis for J if J = 〈g1, g2, . . . , gs〉 and 〈LT(g1), . . . , LT(gt)〉 = 〈LT(J)〉, where 〈LT(J)〉 is the ideal generated by the

leading terms of the polynomials in J.

The following lemma states that the general division algorithm of Theorem 1 carried out with respect to a Gröbner basis

results in a unique remainder r regardless of the order in which division is applied.

Lemma 3. Let G = {f1, f2, . . . , fs} be a Gröbner basis for an ideal J ⊆ F[x̄] and f ∈ F[x̄]. Then there is a unique polynomial

r ∈ F[x̄] such that f can be written as, f = a1f1 + a2f2 + · · · + asfs + r, for ai ∈ F[x̄], and either r = 0 or r is an F-linear
combination of monomials, none of which is divisible by any of LT(f1), LT(f2), . . . , LT(fs).

By Lemma 3 we can indeed test if f ∈ J given a Gröbner basis {f1, f2, . . . , fs} for J by computing Divide(f ; f̄ ) and checking

if the remainder is zero.

The following theorem gives us an easy to test sufficient condition to check if a given generating set for an ideal is already

a Gröbner basis.

Theorem 4 (See[7], Theorem 3, Proposition 4, p. 101). Let I be a polynomial ideal given by a basis G = {g1, g2, . . . , gs} such
that all pairs i /= j LM(gi) and LM(gj) are relatively prime. Then G is a Gröbner basis for I.

Recall from Section 1 that amonomial ideal is an ideal generated by a finite set of monomials in F[x̄].2
Lemma 5 (See [7], Lemmas 2 and 3, pp. 67–68). Let I = 〈m1,m2, . . . ,ms〉 be a monomial ideal and f ∈ F[x̄]. Then f ∈ I if and

only if each monomial of f is in I. Furthermore, a monomial m is in the ideal I if and only if there exist i ∈ [s], such that mi divides

m.

An immediate consequence of Lemma 5 is that we can test in deterministic polynomial time if an explicitly given

polynomial f ∈ F[x̄] is in a monomial ideal I.

In this paper, we are primarily interested in the monomial Ideal Membership Problem and its connection to PIT. In the

proof of certain results we will also be making use of properties of Gröbner bases.

3. Monomial Ideal Membership

In this section, we consider Monomial Ideal Membership when f is given by an arithmetic circuit. We show that the

problem is in randomized polynomial time if the number of generators k for themonomial ideal I is a constant.When k is not

2 Indeed, by Dickson’s Lemma an ideal generated by an arbitrary subset of monomials is also generated by a finite subset of monomials and hence is a

monomial ideal.
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a constant we show that it is coNP-hard and is contained in coMAPP. We leave open a tight classification of the complexity

of this problem.

Lemma 6. Let I = 〈m1,m2, . . . ,mk〉 be a monomial ideal in F[x1, x2, . . . , xn]. For i ∈ [k], let mi = x
ei1
1 x

ei2
2 · · · xeinn . Let v̄ be a

k-tuple given by v̄ = (j1, j2, . . . , jk), where ji ∈ [n]. Define the ideal, Iv̄ = 〈xe1j1j1
, . . . , x

ekjk
jk
〉. Then f ∈ I if and only if, ∀v̄ ∈ [n]k ,

f ∈ Iv̄.

Proof. Let f ∈ I. So f can be written as f = p1m1 + p2m2 + · · · + pkmk , where pi ∈ F[x̄] for all i. Then clearly ∀v̄ ∈ [n]k ,
f ∈ Iv̄. To see the other direction, suppose f �∈ I. Write f = c1M1 + c2M2 + · · · + ctMt , where Mi’s are the monomials of f

and ci ∈ F are the corresponding coefficients. As f �∈ I, there is a j ∈ [t], such that Mj �∈ I. Thus, for all i ∈ [k], mi does not

divide Mj . So each of the mi’s contains some x�i such that the exponent of x�i is greater than the exponent of x�i in Mj . Let{�1, �2, . . . , �k} be k such indices. Now consider the ideal Iw̄ , where w̄ = (�1, �2, . . . , �k). By Lemma 5, Mj �∈ Iw̄ and hence

f �∈ Iw̄ . �

Using Lemma 6, we generalize the Schwartz–Zippel Lemma to a form tailored for Monomial Ideal Membership.

Lemma 7. Let f ∈ F[x1, x2, . . . , xn] be a polynomial of total degree d and I = 〈xe11 , x
e2
2 , . . . , x

ek
k 〉 be a monomial ideal contained

in F[x1, x2, . . . , xn]. Fix a finite subset S ⊆ F, and let r1, r2, . . . , rn−k be chosen independently and uniformly at random from S.

Then Probri∈S[f (x1, x2, . . . , xk , r1, r2, . . . , rn−k) ∈ I | f �∈ I] ≤ d
|S| .

Proof. First wewrite f = ∑
v̄ x

j1
1 · · · xjkk fv̄(xk+1, . . . , xn), where v̄ = (j1, . . . , jk). Any term in the above expressionwith ji ≥ ei

for some i is already in I. Thus, it suffices to consider the sum f̂ of the remaining terms. More precisely, Let A = [e1 −
1] × [e2 − 1] × · · · × [ek − 1]. We can write f̂ = ∑

v̄∈A x
j1
1 · · · xjkk fv̄(xk+1, . . . , xn) where v̄ = (j1, j2, . . . , jk) ∈ A. As f̂ �∈ I,

not all fv̄ are identically zero. Choose and fix one ū such that fū is not identically zero. By the Schwartz–Zippel lemma [16],

Probri∈S[fū(r1, r2, . . . , rn−k) = 0 | fū(xk+1, xk+2, . . . , xn) �≡ 0] ≤ d
|S| .

Notice that for any v̄ = (j1, j2, . . . , jk) ∈ A, the monomial x
j1
1 · · · xjkk is not in I. Thus, the polynomial f (x1, x2, . . . , xk ,

r1, r2, . . . , rn−k) ∈ I if and only if for each v̄ ∈ A, fv̄(r1, r2, . . . , rn−k) = 0. But fū(r1, r2, . . . , rn−k) = 0 with probability at

most d/|S|. This completes the proof. �

Theorem 8. Let f ∈ F[x̄] be given by an arithmetic circuit C and the ideal I = 〈m1,m2, . . . ,mk〉 generated by monomials mi’s

where k is a constant. For such instances Monomial Ideal Membership can be solved in randomized polynomial time (in nO(k)

time).

Proof. First, we construct all the ideals {Iv̄ | v̄ ∈ [n]k} as described in Lemma 6. Then for each such Iv̄, we check if f ∈ Iv̄. The

correctness of the algorithm follows from Lemma 6. Let Iv̄ = 〈xe11 , x
e2
2 , . . . , x

ek
k 〉. To check f ∈ Iv̄, we assign random values

to xk+1, . . . , xn from S and then evaluate the circuit C in the ring R = F[x1, x2, . . . , xk]/Iv̄. To evaluate the circuit in R, we

need to compute each gate operation modulo Iv̄, starting from the input gates. Notice that, as 〈xe11 , x
e2
2 . . . , x

ek
k 〉 is a Gröbner

basis for Iv̄ (by Theorem 4), the actual order in which we evaluate the gates is not important. Let e = ∑k
i=1 ei. Then it is easy

to see that the running time of the algorithm is poly(n, s, ek) (notice that ei’s are in unary). Furthermore, by Lemma 7, the

success probability of the algorithm is seen to be ≥ 1− (d/|S|). Thus it is enough to consider sampling from a set S such

that |S| = 2d using O(log d) random bits. �

When themonomial ideal I is not generatedbya constantnumberofmonomials theMonomial IdealMembershipProblem

is coNP hard over any field.

Theorem 9. Given a polynomial f as an arithmetic circuit, and a monomial ideal I = 〈m1,m2, . . . ,mk〉, it is coNP-hard to test

whether f ∈ I.

Proof. Indeed, we prove the coNP-hardness even for f given by a �� arithmetic circuit. First we consider the case when the

field F is Q. We give a reduction from 3-CNF. Let F = C1 ∧ C2 ∧ · · · ∧ C� is a 3-CNF formula over {x1, x2, . . . , xn}, where Ci
are the clauses. Introduce new variables {y1, y2, . . . , yn} for {x̄1, x̄2, . . . , x̄n}. Next, we encode each of the clause as a linear

form (sum of variables). For example, if C1 = x1 ∨ x2 ∨ x̄3 then we encode it as x1 + x2 + y3. Thus we get a polynomial C

corresponding to F : C(x̄, ȳ) = ∏�
i=1 Li(x̄, ȳ) , where Li’s are the linear form corresponding to Ci. Clearly, C(x̄, ȳ) represents a

�� circuit. Define a monomial ideal, I = 〈xiyi | 1 ≤ i ≤ n〉. It follows that, if F is satisfiable then not all the monomials of

C are in I. In that case C �∈ I by Lemma 5. Conversely assume that C �∈ I. That means, C has at least one monomial m such
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thatm does not contain both xi and yi for any i. Thus, the variables of m correspond to a satisfying assignment for F (set the

variables those are not in m to zero).

Now, let the characteristic of the field be finite. The only place the proof differs from the above is that we need to encode

each clause as a sumof all sevenmonomials representing the satisfying assignment of that clause. For example, an assignment

{1, 0, 1} of {x1, x2, x3} corresponds to a monomial x1y2x3. Thus a clause C1 = x1 ∨ x2 ∨ x̄3 will be encoded as a sum of all

possible monomials except y1y2x3. Note that the polynomial C corresponding to F is represented by a ��� circuit. The rest

of the argument follows exactly as above. �

Next, we show some upper bounds for Monomial Ideal Membership when the number of monomial generators is not

restricted to a constant.

Theorem 10.

1. For F = Q, Monomial Ideal Membership is in coMAPP where the input monomial ideal I = 〈m1,m2, . . . ,mk〉 is given by a

list of monomials and f ∈ F[x̄] is given by an arithmetic circuit C.

2. For F = Fp,Monomial Ideal Membership is in coNPModpP.

Proof. For the first part, suppose F=Q and C is the input arithmetic circuit computing f ∈F[x̄] and the monomial ideal I

is 〈m1,m2, . . . ,mk〉. We will show that Nonmembership is in MAPP. It suffices for the MAPP algorithm to exhibit a nonzero

monomial m of f such that m �∈ 〈m1,m2, . . . ,mk〉. That is, mi does not divide m for i = 1, 2, . . . , k. The base MA machine

(call it M) will guess such a monomial m = x
e1
1 x

e2
2 · · · xenn by nondeterministically picking the tuple (e1, . . . , en) ∈ Nn and

check that mi does not divide m for all i. It remains to verify that m is a nonzero monomial of f . W.l.o.g. we can assume

that f ∈ Z[x̄]. We will describe a BPP#P algorithm that takes as input 〈C,m〉 and makes one #P query to decide if m is a

nonzero monomial in f . Write f as a finite sum f = ∑
ᾱ∈Nn cα x̄

ᾱ . Since the input to C are the indeterminates and constants,

the numbers cᾱ are bounded in absolute value by 2K . Notice that 2K is double exponential. Thus, the coefficients cᾱ cannot

be computed by a coMAPP computation. However, in order to test if cᾱ /= 0 it suffices to computes it modulo a randomly

picked prime number of polynomial size, by the Chinese remainder theorem. Observe that cē /= 0 if and only ifm occurs in f ,

where ē = (e1, e2, . . . , en). The BPPmachine guesses a random prime p of polynomial size, where the size is chosen suitably,

so that cē /= 0 if and only if cē /= 0(mod p) with high probability. Now we define the #P query that the BPP machine will

make by defining a suitable NP machine N. The input to N is the triple (m, C, p) and the number of accepting paths has the

property accN(m, C, p) = cē(mod p). Such an NPmachine N would clearly suffice. We now define the NPmachine N. W.l.o.g.

we can assume that each gate of C has fanin two and is either a multiply gate or a plus gate. Suppose there are t plus gates

in C. The NP machine N nondeterministically branches into 2t computation paths, where on each path it picks exactly one

of the two inputs to the plus gate. As a result, on each of the 2t computation paths N has picked a multiplicative subcircuit

of C. Let π ∈ {0, 1}t denote such a computation path of N and let Cπ denote the corresponding multiplicative subcircuit of

C. Notice that each Cπ defines a monomial with a coefficient cπmπ , and from Cπ in deterministic polynomial time we can

compute mπ and cπ (mod p). Next, machine N proceeds as follows: if mπ = m then N extends π into cπmod p accepting

computation paths, and otherwise N rejects along π . Clearly, accN(m, C, p) = cē(mod p).
For the second part when F = Fp the proof is similar. The crucial difference is that we do not need to evaluate the circuit

modulo a randomly chosen prime. Furthermore, we only need the number of accepting paths of N modulo p. Hence aModpP

oracle suffices with an NP base machine. �

4. Monomial Ideal Membership for ��� circuits

Consider instances (f , I) ofMonomial IdealMembershipwhere f is given by a��� circuitwith top gate of bounded fanin

and I = 〈m1,m2, . . . ,mk〉 a monomial ideal for constant k. By Lemma 6 this problem reduces to testing if f is in a monomial

ideal of the form I = 〈xe11 , x
e2
2 , . . . , x

ek
k 〉. As the quotient ring F[x1, x2, . . . , xk]/I is a local ring and f ∈ I if and only if f ≡ 0

over the local ring F[x1, x2, . . . , xk]/I we can apply the Kayal–Saxena deterministic identity test [11] for such ��� circuit

over local rings3 to check this in overall time polynomial in the circuit size.

However, in this sectionwe develop the algorithm and its correctness proof based on Gröbner basis theory. The algorithm

is essentially from [11]. But the Gröbner basis approach is somewhat simpler and direct. It avoids invoking properties such

as Chinese remaindering in local rings and Hensel lifting. The added bonus is that we get a different correctness proof for

the Kayal–Saxena identity test.

Definition 3. A ��� circuit C with n inputs over a field F computes a polynomial of the form: C(x1, x2, . . . , xn) =∑k
i=1

∏di
j=1 Lij(x1, x2, . . . , xn), where k is the fanin of the top � gate, di are the fanins of the k different � gates, and Lij ’s

are linear forms over F[x1, x2, . . . , xn].

3 More precisely, over local rings that allow polynomial-time arithmetic in them.
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First, we transform the circuit C into another circuit C′ as follows: Let Lij = ∑n
t=1 αijtxt + β for αijt ,β ∈ F. We replace

each such Lij by L′ij =
∑n

t=1 αijtxt + βy, where y is a new indeterminate. Let d be the maximum of the fanins of the � gates.

For a � gate of fanin di introduce d− di new input fanin wires each carrying y.

Proposition 11. For I = 〈xe11 , x
e2
2 , . . . , x

ek
k 〉 and a ��� circuit C defined as above, C ∈ I if and only if C′ ∈ I′ = 〈xe11 , x

e2
2 ,

. . . , x
ek
k , y− 1〉.

Proof. Let the circuits C and C′ compute the polynomials C(x̄) and C(x̄, y), respectively. Let C(x̄) = ∑d
i=0 Pi(x̄) where

Pi(x̄) is the homogeneous degree i part of C. Then it is easy to see that C(x̄, y) = ∑d
i=0 Pi(x̄)yd−i. Now, let C ∈ I. In-

voking division algorithm on C′(x̄, y) by y− 1, we can easily see that C′(x̄, y) = q(x̄, y)(y− 1)+ C(x̄) for some polyno-

mial q(x̄, y) ∈ F[x̄, y]. Hence, C′(x̄, y) ∈ I′. Conversely if C(x̄, y) ∈ I′, write C(x̄, y) = q1x
e1
1 + · · · + qkx

ek
k + q(y− 1) where

q1, q2, . . . , qk , q ∈ F[x̄, y]. Putting y = 1, we get C ∈ I. �

Notice that in the process of making this transformation the resulting ideal is not a monomial ideal any more.

Thus, we can assume that in the circuit C itself every Lij is of the form
∑n

t=1 αtxt and the degree of the polynomial

computed at each � gate is d. We can naturally associate to Lij its coefficient vector (α1,α2, . . . ,αn) ∈ Fn. A collection of

linear forms is independent if their coefficient vectors forms a linearly independent set in Fn.

First we fix some notation. Let R denote the polynomial ringF[x1, x2, . . . , xk], where kwill be clear from the contextwhere

R is used. For α = (ek+1, ek+2, . . . , en) ∈ Nn−k , let x̄ᾱ denote x
ek+1
k+1 x

ek+2
k+2 · · · xenn . The only monomial ordering we use is the

lex-ordering defined in Definition 1 with respect to the order x1 < x2 < · · · < xn. We can consider an f ∈ F[x1, . . . , xn] as
a polynomial in R[xk+1, xk+2, . . . , xn]. More precisely, we can write f = ∑

ᾱ∈Nn−k Aᾱ x̄
ᾱ , where Aᾱ ∈ F[x1, x2, . . . , xk]. Some

of the Aᾱ could be zero. Let ᾱ1 be such that x̄ᾱ1 is the lex-largest term such that Aᾱ1
/= 0. Then we denote the R-leading term

Aᾱ1
x̄ᾱ1 of f by LTR(f ). Likewise, LMR(f ) = x̄ᾱ1 and LCR(f ) = Aᾱ1

is the R-leadingmonomial and R-leading coefficient of f . For

any f , g ∈ F[x1, . . . , xn], it is clear that LMR(fg) = LMR(f )LMR(g), LCR(fg) = LCR(f )LCR(g).
Let f ∈ F[x1, . . . , xn] and I = 〈f1, f2, . . . , f�〉 be an ideal such that each fi is in F[x1, x2, . . . , xk]. Then the following easy

lemma states a necessary and sufficient condition for f to be in I.

Lemma 12. Let I ⊆ F[x̄] be an ideal generated by the polynomials f1, f2, . . . , f� such that for all i ∈ [�], fi ∈ F[x1, x2, . . . , xk].
Let g be any polynomial in F[x̄]. Write g = ∑

ᾱ∈Nn−k Aᾱ x̄
ᾱ . Then g ∈ I if and only if for all ᾱ, Aᾱ ∈ I.

Proof. Let f̄ = {f ′1, f ′2, . . . , f ′�′ } is a Gröbner basis for I where f ′i ∈ F[x1, x2, . . . , xk]. Let g ∈ I and without loss of generality,

assume that Aᾱ �∈ I for all ᾱ. Write Aᾱ = qᾱ + rᾱ , where rᾱ ∈ F[x1, x2, . . . , xk] are the unique remainders when we invoke

Divide(Aᾱ , f̄ ) and LM(rᾱ) < LM(f ′i ) for all i. Then g ∈ I implies that g′ = ∑
ᾱ rᾱ x̄

ᾱ ∈ I, which is impossible because if we

invoke Divide(g′, f̄ ), the algorithm does not proceed and in particular the algorithm does not return zero remainder. The

converse direction of the lemma is trivial to prove. �

Consider polynomials f , g ∈ F[x1, x2, . . . , xn] and an ideal I such that g ∈ 〈I, f 〉. The following useful lemma gives a

sufficient condition on f under which the remainder r obtained when we invoke Divide(g; f ) (of Theorem 1) is in the

ideal I.

Lemma 13. Let I = 〈f1, f2, . . . , f�〉 be an ideal in F[x1, . . . , xn] where fi ∈ F[x1, . . . , xk] = R. Suppose f is a polynomial such

that LM(f ) contains only variables from {xk+1, xk+2, . . . , xn} (i.e. LM(f ) = LMR(f )). Then for any polynomial g in the ideal 〈I, f 〉
we can write g = qf + r for polynomials q and r such that r ∈ I and no monomial of r is divisible by LM(f ).

Proof. The lemma is an easy consequence of the properties of the Divide algorithm explained in Theorem 1. Notice that

Divide(g; f ) will stop with a remainder polynomial r such that g = qf + r with the property that no monomial of r is

divisible by LM(f ). However, we only know that r ∈ 〈I, f 〉, because both g and qf are in 〈I, f 〉. We now show that r must be in

I. First, as r ∈ 〈I, f 〉we can write r = ∑�
i=1 aifi + af , for polynomials ai and a. Following Lemma 12, we write ai = ∑

ᾱ aiᾱ x̄
ᾱ

for each i and also a = ∑
ᾱ aᾱ x̄

ᾱ . Notice that we can assume aᾱ �∈ I for all nonzero aᾱ . Otherwise, we can move that term to

the
∑

aifi part. Since LM(f ) does not divide any monomial of r, it follows that LM(af ) does not occur in a nonzero term of r.

Therefore, LT(af ) must be cancelled by some term of
∑�

i=1 aifi. Clearly, LT(af ) is of the form c · aβ̄ x̄
ᾱ for some α,β , where

LC(f ) = c ∈ F and aβ̄ = LCR(a). Now, in
∑�

i=1 aifi the coefficient of x̄ᾱ is
∑�

i=1 aiᾱ fi which must be equal to−c · aβ̄ . Since

c ∈ F it follows that aβ̄ is in I contradicting the assumption. �

Again, let I = 〈f1, f2, . . . , f�〉 such that the fi are in F[x1, x2, . . . , xk]. Consider two polynomials f and g such that LM(f )
contains only variables from xk+1, xk+2, . . . , xn and either LM(f ) > LM(g) or LMR(f ) = LMR(g) and LCR(g) ∈ I. Then g is in

the ideal 〈I, f 〉 if and only if g ∈ I.
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Lemma 14. Let I = 〈f1, f2, . . . , f�〉 be an ideal in F[x1, . . . , xn] such that each fi is in F[x1, x2, . . . , xk] = R. Suppose f is a

polynomial such that LM(f ) is over the variables only from {xk+1, xk+2, . . . , xn} (i.e. LM(f ) = LMR(f )). Then for any polynomial

g such that either LM(f ) > LM(g), or LMR(f ) = LMR(g) and LCR(g) ∈ I, g is in the ideal 〈I, f 〉 if and only if g is in the ideal I.

Proof. Suppose g ∈ 〈I, f 〉 and g �∈ I. We canwrite g = a+ bf , for polynomials a and b, where a ∈ I. Also, we can assume that

b �∈ I, for otherwise g ∈ I and we are done. Let b = ∑
ᾱ∈Nn−k bᾱ x̄

ᾱ , where bᾱ ∈ F[x1, x2, . . . , xk] and we can assume bᾱ �∈ I

for all ᾱ (otherwise we canmove that term as part of a). Notice that LTR(bf ) = LTR(b) · LTR(f ) = cbβ̄LMR(b)LMR(f ) = cbβ̄ x̄
γ̄

for some γ̄ and for some bβ̄ , where c = LCR(f ) ∈ F. Since bβ̄ �∈ I it follows that LCR(bf ) �∈ I. Write a = ∑
ᾱ∈Nn−k aᾱ x̄

ᾱ . By

Lemma 12, a ∈ I implies each aᾱ ∈ I. In particular, aγ̄ ∈ I and is not equal to−LCR(b · f ) = −cbβ̄ as bβ̄ �∈ I. Thus, themono-

mial LMR(bf ) survives in a+ bf . It follows that LMR(g) = LMR(a+ bf ) ≥ LMR(bf ) ≥ LMR(f )which forces LMR(f ) = LMR(g)
and LCR(g) ∈ I by assumption. If b /∈ R then LMR(b · f ) > LMR(f )which implies LMR(g) > LMR(f ) contradicting assumption.

If b ∈ R then LTR(g) = LTR(a+ bf ) = (aᾱ + b)LMR(f ) for some aᾱ , which forces b ∈ I because both LTR(g), aᾱ ∈ I. �

Let I ⊆ F[x1, . . . , xn] be an ideal and g1, g2 are two polynomials such that f is in the ideals 〈I, g1〉 and 〈I, g2〉. Using some

Gröbner basis theory we give a sufficient condition on I, g1 and g2 under which we can infer that f is in the ideal 〈I, g1g2〉.
Lemma 15. Let I = 〈f1, f2, . . . , f�〉 be an ideal of F[x1, x2, . . . , xn],where fi are polynomials in F[x1, x2, . . . , xk]. Suppose g1 and

g2 are polynomials such that: g2 = ∏d2
i=1(xk+1 − αi), where each αi is a linear form over x1, x2, . . . , xk , and the leading term

LT(g1) of g1 has only variables from {xk+2, xk+3, . . . , xn}. Then f ∈ 〈I, g1g2〉 if and only if f ∈ 〈I, g1〉 and f ∈ 〈I, g2〉.
Proof. The forward implication is obvious. We prove the reverse direction. Suppose f ∈ 〈I, g1〉 and f ∈ 〈I, g2〉. As f ∈ 〈I, g2〉,
we can write f = a+ bg2, where a ∈ I and b is an arbitrary polynomial. Notice that it suffices to prove bg2 is in the ideal

〈I, g1g2〉. Now, since f ∈ 〈I, g1〉 and a ∈ I it follows that bg2 = f − a ∈ 〈I, g1〉. By applying Lemma13 to ideal I andpolynomial

g1 observe that we can write bg2 = αg1 + β , where β is a polynomial in I such that none of the monomials of β is divisible

by LT(g1). We have the following equation b ·∏d2
j=1(xk+1 − αj) = αg1 + β .

Substituting xk+1 = α1 in the above equation, we get (αg1)|xk+1=α1
= −β|xk+1=α1

. Notice that LT(g1|xk+1=α1
) = LT(g1),

as LT(g1) contains variables only from xk+2, . . . , xn. Thus the above substitution implies LT(β|xk+1=α1
)=−LT((αg1)|xk+1=α1

)
= −LT(α|xk+1=α1

) · LT(g1|xk+1=α1
) = −LT(α|xk+1=α1

) · LT(g1).
Thus LM(g1) divides LM(β|xk+1=α1

). On the other hand, since LM(g1) does not divide any monomial of β , LM(g1)
cannot divide any monomial of LM(β|xk+1=α1

) as the substitution only introduces variables from {x1, . . . , xk}. This gives

a contradiction unless β|xk+1=α1
= 0, which in turn implies α|xk+1=α1

= 0.

Thus we have proved that (xk+1 − α1) is a factor of both α and β . This leads us to the following similar identity:

b ·∏d2
j=2(xk+1 − αj) = α1g1 + β1, where α1 = α/(xk+1 − α1) and β1 = β/(xk+1 − α1). Clearly, by repeating the above

argument we finally get, b = α′g1 + β ′, for some polynomials α′ and β ′ where α = α′g2 and β = β ′g2. Putting it together

we get bg2 = α′g1g2 + β ′g2 = α′g1g2 + β . Asβ ∈ I, it follows that bg2 is in the ideal 〈I, g1g2〉. This completes the proof. �
Let I = 〈P1, P2, . . . , Pk〉 be an ideal in F[x1, . . . , xn] such that Pi ∈ F[x1, x2, . . . , xi] and LT(Pi) = x

di
i for each i. For i /= j the

leading terms LT(Pi) = x
di
i and LT(Pj) = x

dj
j areclearly relativelyprime.ThereforebyTheorem4, it follows that {P1, P2, . . . , Pk}

is in fact a Gröbner basis for I. We summarize this observation.

Lemma 16. Let I = 〈P1, P2, . . . , Pk〉 be an ideal in F[x1, . . . , xn] such that each Pi is in F[x1, x2, . . . , xi] and LT(Pi) = x
di
i . Then

{Pi}i∈[k] is a Gröbner basis for I.

Let f ∈ F[x1, x2, . . . , xk] be a given polynomial and d be the maximum of deg(f ) and deg(Pi), 1 ≤ i ≤ k. We can invoke

Divide(f ; P1, P2 . . . , Pk) (Theorem 1) to test whether f ∈ I. By Fact 2 the running time for this test is O(dk).
Now we state the main theorem of this section.

Theorem 17. Let C ∈ F[x1, x2 . . . , xn] be given by a���(�, d) circuit for a constant � and I = 〈m1,m2, . . . ,mk〉 be amonomial

ideal for constant k. For such instances,Monomial Ideal Membership can be checked in deterministic polynomial time. Specifically,
the running time is bounded by nkpoly(n, dmax{�,k}).

By Lemma 6 it clearly suffices to give a polynomial-time deterministic algorithm for testing if a ���(�, d) circuit C is in

a monomial ideal of the form 〈xe11 , . . . , x
ek
k 〉. As explained in the beginning of this section, we transform the circuit C to C′ in

which all linear forms aremade homogeneous using a new indeterminate y, and C ∈ I if and only if C′ ∈ 〈xe11 , . . . , x
ek
k , y− 1〉.

In fact, in the following theorem we prove a stronger result which along with Lemma 6 yields Theorem 17.

Theorem 18. Let C be a given ���(�, d) circuit for a constant � and I = 〈P1, P2, . . . , Pk〉 be an ideal in F[x1, . . . , xn] such
that Pi ∈ F[x1, x2, . . . , xi] and LT(Pi) = x

di
i for each i. Further, suppose di ≤ d for all i ∈ [k]. Then testing if C ∈ I can be done

deterministically in time poly(dmax{�,k}).
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Proof. As explained in the beginning of the section, we can assume that all linear forms appearing in C are homogeneous and

C itself is a homogeneous degree dpolynomial. By Lemma16, the generating set for I is aGröbner basis. LetC(x1, x2, . . . , xn) =∑�
i=1 Ti. For all i ∈ [�], Ti =

∏d
j=1 Lij , where Lij ’s are the linear forms over F[x1, x2, . . . , xn].

If � = 1, then C = T1. Let g(x1, x2, . . . , xk) be the product of those linear forms of T1 using only variables from {x1, x2,
. . . , xk}. Clearly, g(x1, x2, . . . , xk) has atmost dk monomials.We explicitly compute g bymultiplying out all such linear forms.

By Lemma 12, clearly C ∈ I if and only if g ∈ I, which can be checked in time poly(dk) following the Fact 2.

So assume � > 1. If all the linear forms appearing in T1, T2, . . . , T� are only over {x1, x2, . . . , xk}, then again the Ideal

Membership Testing is easy. Because, in time poly(dk) we can write C itself as an F-linear combination of monomials in

x1, x2, . . . , xk and apply Fact 2 to check if f ∈ I in time poly(dk).
Now we consider the general case. By inspection we can write each Ti = βiT

′
i where the βi are products of linear forms

over only x1, x2, . . . , xk , whereas each linear form in T ′i involves at least one other variable.4 If βi ∈ I (which we can test in

polynomial time using Fact 2) we drop the term Ti from the sum
∑�

i=1 Ti. This enables us to write C as C = β1T
′
1 + β2T

′
2 +· · · + βmT

′
m for somem ≤ �, where we have assumed for simplicity of notation that βi �∈ I for the firstm terms.

As before, let R = F[x1, x2, . . . , xk]. W.l.o.g, assume that LMR(T
′
1) ≥ LMR(T

′
i ) for all i ∈ {2, 3, . . . ,m}. We can determine

LTR(T
′
i ) for each T ′i in polynomial time since they are given as product of linear forms. Thus, LMR(T

′
1) ≥ LMR(C). Now, let

r ∈ R be the coefficient of LMR(T
′
1) in C. We can compute r in polynomial time by computing the coefficient γi of LMR(T

′
1) in

each T ′i and computing r = ∑m
i=1 βiγi. Then we can check whether r ∈ I (which is a necessary condition for C to be in I by

Lemma 12). By Fact 2 we can check r ∈ I in time poly(dk). It is clear that, either LMR(T
′
1) > LMR(C) or LMR(T

′
1) = LMR(C)

and r ∈ I. Thus, by Lemma 14, C ∈ I if and only if C ∈ 〈I, T ′1〉.
Next, we group the linear forms in T ′1: let T ′1 = T11T12 · · · T1t , such that for all i ∈ [t],

T1i = (Li + mi1)(Li + mi2) · · · (Li + misi),

where {Li}ti=1 are distinct linear forms in F[xk+1, . . . , xn] and mij ’s are linear forms in F[x1, . . . , xk]. Notice that the T1i are

relatively prime to each other.

We next compute t linear transformations {σ1, σ2, . . . , σt} from Fn to Fn with the following property: for i ∈ [t], σi fixes

{xj}kj=1, maps Li to xk+1 and maps {xk+2, xk+3, . . . , xn} to some suitable linear forms in such a way that, σi is an invertible

linear transformation. As Li’s are over {xk+1, . . . , xn}, it is easy to see that such σi exist and are easy to compute.

Let C1 = ∑
j∈[�]\{1} Tj . For i ∈ [t], let C1i = σi(C1) and let I1i be the ideal 〈I, σi(T1i)〉. The algorithm will now recursively

check for each of the ���(�− 1, d) circuits C1i, that C1i is in the ideal I1i and declare C ∈ I if and only if C1i ∈ I1i for each i.

Notice that the ideal I1i has generating set G = {P1, P2, . . . , Pk , Pk+1}, where Pk+1 ∈ F[x1, x2, . . . , xk+1] and LM(Pk+1) =
x
dk+1
k+1 . By Lemma 16, G is a Gröbner basis for I1i.

We now describe the algorithm IdealMembership1(C,I) formally (Algorithm 1).

The correctness of the algorithm follows directly from the following claim.

Claim 19. For each s such that 1 ≤ s ≤ t we have C ∈ 〈I, T11T12 · · · T1s〉 if and only if C1i ∈ I1i for 1 ≤ i ≤ s. In particular,

C ∈ 〈I, T ′1〉 if and only if C1i ∈ I1i for 1 ≤ i ≤ t.

Proof of Claim. The forward implication is easy: if C ∈ 〈I, T11T12 · · · T1s〉 then clearly C ∈ 〈I, T1i〉 for each 1 ≤ i ≤ s. As each

σi is an invertible linear map it follows in turn that σi(C) ∈ 〈I, σi(T1i)〉 = I1i for 1 ≤ i ≤ s. Since C1i = σi(C)− σi(T1) and

σi(T1) ∈ 〈σi(T1i)〉 it follows that C1i ∈ I1i for 1 ≤ i ≤ s.

We prove the other direction of the claim by induction on s. The base case s = 1 is trivial. By the induction hypothesis,

assume that it is true for s− 1. That is, if C1i ∈ I1i for 1 ≤ i ≤ s− 1 then C ∈ 〈I, T11T12 · · · T1(s−1)〉.
We nowprove the induction step for s. Suppose C1i ∈ I1i for 1 ≤ i ≤ s. Let T = T11T12 · · · T1(s−1). By induction hypothesis

we have C ∈ 〈I, T〉. Furthermore, C1s ∈ I1s implies by definition that C ∈ 〈I, T1s〉. Now we apply the linear map σs to obtain

σs(C) ∈ 〈I, σs(T)〉 and σs(C) ∈ 〈I, σs(T1s)〉. The map σs ensures that LT(T1s) is of the form x
deg T1s
k+1 . Furthermore, by the

definitionofσs it follows that LT(σs(T))hasonlyvariables in {xk+2, . . . , xn}. Lettingg1 = σs(T)andg2 = σs(T1s) in Lemma15,

it follows immediately that σs(C) ∈ 〈I, σs(T · T1s)〉which implies the induction step since σs is invertible.

Claim 20. The above algorithm runs in time poly(n, dmax{�,k}).

Proof of Claim. To analyze the running time, we need to observe the following recurrence relation : let T(�, n) is the time

required to test C ∈ I. It is easy to see from the description of the algorithm that, T(�, n) ≤ tT(�− 1, n)+ poly(n, dk). Hence
T(�, n) = poly(n, dmax{�,k}), as t = O(d). �

Theorem 17 is an immediate consequence of Theorem 18. For I = 〈0〉, Theorem 17 is actually the Kayal–Saxena deter-

ministic test with a new proof.

4 If there are no linear forms contributing to the product βi (respectively, T
′
i ) we will set it to 1.
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Algorithm 1 The Ideal Membership algorithm for depth 3 ��� circuits

1: procedure IdealMembership1(C(�, d),I = 〈P1, P2, . . . , Pk〉) � {The input circuit has the top+ gate of fanin � and

computes a degree d homogeneous polynomial. The input polynomials Pi satisfy conditions of Theorem 18}

2: if � = 1 then

3: g← ∏
j L1j(x1, x2, . . . , xk). � {Consider the product g of linear forms

4: over F[x1, x2, . . . , xk] and write g explicitly as a sum of at most dk monomials. Here the variables xi are defined as in

Lemma 18.}

5: if g ∈ I then

6: Output C ∈ I.

7: else

8: Output C �∈ I.

9: end if � {By Lemma 12}

10: end if

11: if � > 1 then

12: if ∀i, Ti ∈ F[x1, x2, . . . , xk] then
13: Compute C explicitly and check whether C ∈ I. � {C can be written explicitly as a sum of at most dk monomials}

14: else

15: Write C = ∑m
i=1 βiT

′
i , where βi ∈ F[x1, x2, . . . , xk] andm ≤ �. � {βi is the product of linear forms over

F[x1, x2, . . . , xk] in Ti}

16: For all i, compute LTR(T
′
i ) and let LMR(T

′
1) ≥ LMR(T

′
i ), where R = F[x1, x2, . . . , xk]. � {LTR(T ′i ) are easy to

compute as Ti’s are given as product of linear forms}

17: r← Coefficient of LMR(T
′
1) in C.

18: if r �∈ I then

19: C is not in I. � {By Lemma 12}

20: else

21: Group the linear forms in T ′1 according to distinct linear forms in F[xk+1, xk+2, . . . , xn]. Let T ′1 = T11T12 · · · T1t .
Compute t linear transformations {σ1, σ2, . . . , σt} from Fn to Fn with the following property:

22: for i=1 to t do

23: σi fixes {xj}kj=1, maps Li to xk+1 and maps {xk+2, xk+3, . . . , xn} to some suitable linear forms in such a way

that, σi is an invertible linear transformation.

24: end for � {it is easy to see that such σi exist and are easy to compute}

25: C1← ∑
j∈[�]\{1} Tj .

26: for i=1 to t do

27: C1i ← σi(C1) and I1i ← 〈I, σi(T1i)〉.
28: end for

29: Recursively invoke IdealMembership1(C1i,I1i) for all i. � {C1i are ���(�− 1, d) circuits}
30: Output C ∈ I if and only if all the recursive calls accept. � {By Claim 19}

31: end if

32: end if

33: end if

34: end procedure

4.1. Monomial Ideal Membership for black-box polynomials

In Theorem 8we have shown thatMonomial Ideal Membership is in randomized polynomial timewhen f ∈ F[x̄] is given
as an arithmetic circuit and the monomial ideal is given by a constant number of generator monomials. We now show that

even if f is accessed only via a black-box, if the degree of f is polynomial in the input size we can still solve Monomial Ideal

Membership in randomized polynomial time (assuming I is generated by constant number ofmonomials). In [6], Ben-Or and

Tiwari gave an interpolation algorithm for sparsemultivariate polynomials over integers. Our algorithm is an easy application

of their result. We first recall their result in a form suitable for us.

Theorem 21. [6] Let f ∈ Z[x1, x2, . . . , xn] be a t-sparse multivariate polynomial given as a black-box (by t-sparse we mean

the number of monomials in f is bounded by t), d be the degree of f , and b be a bound on the size of its coefficients. There is a

deterministic algorithm that queries the black-box for values of f on different inputs and reconstructs the entire polynomial f in

time poly(t, n, d, b).

Ben-Or and Tiwari’s result directly gives a deterministic polynomial time algorithm for Monomial Ideal Membership

when f is a t-sparse black-box polynomial over Z, and I is any monomial ideal. The algorithm simply reconstructs f and

checks if each of its monomials is in I.
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Next, suppose f is a black-box polynomial of small degree and I is a monomial ideal generated by a constant number of

monomials.

Theorem 22. Let f ∈ Z[x̄] of degree d given as a black-box such that b is a bound on the size of its coefficients. Suppose

I = 〈m1,m2, . . . ,mk〉 for constant k. Then we can test if f ∈ I in randomized time poly(nk , dk , b).

Proof. By Lemma 6, it suffices to give a randomized polynomial time algorithm for testing if f ∈ Iv̄, where v̄ ∈ [n]k . W.l.o.g.

assume Iv̄ = 〈xe11 , x
e2
2 , . . . , x

ek
k 〉. Fix S = {1, 2, . . . , s} and assign randomvalues {r1, r2, . . . , rn−k} to {xk+1, . . . , xn} from S. Note

that f (x1, x2, . . . , xk , r̄) is a d
k-sparse polynomial. By Theorem 21 we can reconstruct f (x1, x2, . . . , xk , r̄) in poly(n, dk , b) time.

Let g(x1, x2, . . . , xk) = f (x1, x2, . . . , xk , r̄). Our randomized algorithmdeclares f ∈ Iv̄ if eachmonomial of g is in I. By Lemma7,

it follows that the success probability of the algorithm is at least 1− d
s
. �

5. Bounded variable Ideal Membership

In this section, we discuss our results for the IdealMembership problemwhen I = 〈f1, . . . , f�〉 such that fi ∈ F[x1, . . . , xk]
for a constant k and the polynomial f is given by an arithmetic circuit. We call this variant bounded variable Ideal Membership.

A pioneering result in polynomial Ideal Membership Testing is Hermann’s algorithm that is based on the following

theorem.

Theorem 23 (Hermann’s theorem [9]). Let f , f1, f2, . . . , fm ∈ F[x1, x2, . . . , xk] be polynomials such thatmax{deg(f1), deg(f2),
. . . , deg(fm), deg(f )} ≤ d. If f is in the ideal I = 〈f1, f2, . . . , fm〉 then f can be expressed as f = ∑m

i=1 gifi wheredeg(gi) ≤ (2d)2
k

for each i.

Suppose f is given explicitly as an F-linear combination of terms. Using the bounds of Hermann’s theorem, Hermann’s

algorithm treats the coefficients of gi as unknowns and does membership testing in 〈f1, f2, . . . , fm〉 by solving a system of

linear equations withm(2d)k2
k

unknowns. This can be solved using Gaussian elimination in time mO(1)(2d)O(k2k).

Similarly, for an explicitly given f ∈ F[x1, . . . , xn], n > k, using Lemma 12 we can apply Hermann’s algorithm to test if

membership of f in 〈f1, f2, . . . , fm〉 in time polynomial in the size of f and mO(1)(2d)O(k2k). If k is a constant, this gives a

polynomial running time bound.

A natural question here is the complexity of IdealMembershipwhen f is given by an arithmetic circuitwhosemembership

we want to test in ideal I = 〈f1, f2, . . . , fm〉, where fi ∈ F[x1, . . . , xk] for constant k. Recall that in Theorem 8 we showed a

similar problem formonomial idealswith a constant number ofmonomials is in randomized polynomial time. In this section,

we will restrict ourselves to polynomials f computed by arithmetic circuits of polynomial degree in the input size. We can

follow essentially the same proof idea as in Theorem 8. Notice that f ∈ I if and only if f ≡ 0 in the ring R[xk+1, xk+2, . . . , xn]
where R = F[x1, x2, . . . , xk]/I. We need the following proposition about zeros of a univariate polynomial over an arbitrary

ring.

Proposition 24. Let R be a finite commutative ring with unity containing a field F. If f ∈ R[x] is a nonzero polynomial of degree

d then f (a) = 0 for at most d distinct values of a ∈ F.

Proof. Suppose a1, a2, . . . , ad+1 ∈ F are distinct points such that f (ai) = 0, 1 ≤ i ≤ d+ 1. Then we can write f (x) =
(x − a1)q(x) for q(x) ∈ R[x]. Now, dividing q(x) by x − a2 yields q(x) = (x − a2)q

′(x)+ q(a2), for some q′(x) ∈ R[x]. Thus,
f (x) = (x − a1)(x − a2)q

′(x)+ (x − a1)q(a2). Putting x = a2 in this equation gives (a2 − a1)q(a2) = 0. But a2 − a1 is a

nonzero element in F and is hence invertible. Therefore, q(a2) = 0. Consequently, f (x) = (x − a1)(x − a2)q
′(x). Applying

this argument successively for the other ai finally yields f (x) = g(x)
∏d+1

i=1 (x − ai) for somenonzero polynomial g(x) ∈ R[x].
Since

∏d+1
i=1 (x − ai) is a monic polynomial, this forces deg(f ) ≥ d+ 1 which is a contradiction. �

Using an induction argument as in the proof of original Schwartz–Zippel Lemma,we can easily derive the following analog

for finite commutative rings with unity.

Lemma 25. Let R be a finite commutative ring with unity containing a field F. Let g ∈ R[x1, x2, . . . , xm] be any polynomial of

degree at most d. If g �≡ 0, then for any finite subset A of F we have

Proba1∈A,...,am∈A[g(a1, a2, . . . , am) = 0 | g �≡ 0] ≤ d

|A| .

Now we describe our Ideal Membership Test: choose and fix S ⊆ F of size 2(n− k)d and randomly assign values from

S to the variables in {xk+1, . . . , xn}. Notice that f , given by a polynomial degree arithmetic circuit C, is in I if and only if
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f ≡ 0 in the ring R[xk+1, xk+2, . . . , xn]where R = F[x1, x2, . . . , xk]/I, since the given generating set for I uses only variables

x1, . . . , xk . After the random substitution we are left with an arithmetic circuit C′(x1, . . . , xk). Notice that, by Lemma 25 if

f �∈ I then C′(x1, . . . , xk) /∈ I with probability at least 1/2. We now need to test whether the polynomial computed by C′ is
in I. As C′ is of polynomial degree d and k is a constant, we can explicitly write down the polynomial r that it computes as a

F-linear combination of at most dk monomials. We are now left with the problem of testing if r ∈ 〈f1, . . . , f�〉which we can

do in polynomial time using Hermann’s algorithm as k is a constant. Similarly, Theorem 22 for black-box polynomials can be

easily extended to bounded variable Ideal Membership.

Finally, when f is given by a��� circuit with bounded fanin output gate, we can easily argue by following the algorithm

in the proof of Theorem 18 that we will end up with the problem of testing if a polynomial g given by a �� circuit is in an

ideal 〈f1, . . . , f�〉, where fi are all in F[x1, . . . , xt] for a constant t. It is easy to see that we can apply Hermann’s algorithm to

check this in time polynomial in (m+ n+ d)O(t2t) which is a polynomial time bound as t is constant. We summarize this

result in the following theorem.

Theorem 26. Let I = 〈f1, f2, . . . , fm〉 be an ideal in F[x1, x2, . . . , xn] where each fi ∈ F[x1, x2, . . . , xk] for constant k. If f is a

polynomial given by an arithmetic circuit of polynomial degree, then in randomized polynomial time we can test if f ∈ I. This
result holds even if f is given by a black-box and the degree of f is polynomial in the input size. Further, if f is given by a���(�, d)
circuit with � constant, then we can test whether f ∈ I in deterministic polynomial time.

6. Identity testing for a restricted class of ���� circuits

In this section, we examine the possibility of extending [11] to certain depth 4 circuits. We consider certain restricted

���� circuits with the top � gate having bounded fanin.

Any���� circuit is of the form C = ∑�
i=1 Ti, with Ti = ∏d

j=1 Pij , for polynomials Pij . We now define a restricted subclass

of circuits which we denote by ����(�, d, c). A circuit C is in this class if

(a) The fanin � of the output � gate is a constant.

(b) For each variable xk occurring in Pij ’s, the term of maximum xk degree is a power of xk only.

(c) Any variable xk occurs in at most c different Pij for any i ∈ [�], where c is also a constant.

(d) Furthermore, each Pij contains at most c different variables.

We show that the bounded variable Ideal Membership Problem for ����(�, d, c) circuits can be solved in polynomial

time. As a consequence we obtain a deterministic polynomial-time identity testing algorithm for such circuits. The key

observation is the next lemma which generalizes Lemma 15.

Lemma 27. Let I = 〈f1, f2, . . . , f�〉 be an ideal of F[x1, x2, . . . , xn], where fi are polynomials in F[x1, . . . , xk]. Suppose g1 and g2
are the polynomials such that:
1. LM(g1) = x

di
i , where i ∈ {k+ 1, k+ 2, . . . , n}.

2. LM(g2) < LM(g1) and LM(g2), LM(g1) are relatively prime.

Then f ∈ 〈I, g1〉 and f ∈ 〈I, g2〉 if and only if f ∈ 〈I, g1g2〉.
Proof. The reverse implication is obvious. We prove the forward direction. As LM(g2) < LM(g1) and LM(g2), LM(g1) are

relatively prime, it follows that g2 ∈ F[x1, x2, . . . , xi−1].
As f ∈ 〈I, g2〉, we can write f = a+ bg2, where a ∈ I and b is an arbitrary polynomial. Furthermore, by Lemma 13we can

write bg2 = αg1 + β , with β ∈ I such that no monomial of β is divisible by LT(g1). Thus g2 divides αg1 + β . Let p be any

irreducible factor of g2. As the ideal 〈p〉 generated by the polynomial p is a prime ideal of R = F[x1, x2, . . . , xi−1], the quotient
ring D = R/〈p〉 is an integral domain. As p divides αg1 + β , it follows that αg1 = −β in D[xi]. Wewill now argue that β and

α must be both zero in D[xi], which will imply that p divides both α and β . Note that LMD(β) = −LMD(α) · LMD(g1) (by

comparing their xi degrees in the ring D[xi]). But LMD(g1) = LM(g1) = x
di
i from the statement of the lemma. Considering

β as a polynomial of R[xi], notice that β has degree strictly less than di since LM(g1) = x
di
i does not divide any monomial

of β . Since p ∈ R = F[x1, x2, . . . , xi−1], it follows that β as a polynomial of D[xi] also has degree strictly less than di. Thus,

LMD(g1) can not divide LMD(β). The only possibility left is that α = β = 0 in D[xi], which implies that p divides α and β .

This leads us to the following similar identity: bg′2 = α1g1 + β1, where α1 = α/p and β1 = β/p. Clearly, by the same

argument applied to each irreducible factor of g2 (with repetition) we finally get b = α′g1 + β ′, for polynomials α′ and β ′
where α = α′g2 and β = β ′g2. Putting it together, bg2 = α′g1 · g2 + β ′g2 = α′g1 · g2 + β . As β ∈ I, it follows that bg2 is

in the ideal 〈I, g1g2〉. This completes the proof. �
Now we present the polynomial time algorithm for bounded variable Ideal Membership instances (f , I), where the

polynomial f is given by a����(�, d, c) circuit. The polynomial-time identity test for����(�, d, c) circuits is a corollary.
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Algorithm 2 The Ideal Membership algorithm for depth 4 ���� circuits

1: procedure IdealMembership2(C(�, d, c),I = 〈f1, f2, . . . , fm〉) � {The input circuit has the top+ gate of fanin �. The input

polynomials fi satisfy conditions of Theorem 28}

2:

3: if � = 1 then

4: g = ∏
j P1j(x1, x2, . . . , xk). � Consider the product g of polynomials P1j over F[x1, x2, . . . , xk] and write g explicitly

as a sum of monomials

5: if g ∈ I then

6: Output C ∈ I.

7: else

8: Output C �∈ I.

9: end if

10: end if

11: if � > 1 then

12: if ∀i, Ti ∈ F[x1, x2, . . . , xk] then
13: Computes C explicitly and check whether C ∈ I. � {Using Hermann’s theorem (Theorem 23)}

14: else

15: Write C = ∑m
i=1 βiT

′
i , where βi ∈ F[x1, x2, . . . , xk] andm ≤ �. � {βi is the product of polynomials over

F[x1, x2, . . . , xk] in Ti}

16: For all i, compute LTR(T
′
i ) and let LMR(T

′
1) ≥ LMR(T

′
i ), where R = F[x1, x2, . . . , xk].

17: r̂← Coefficient of LMR(T
′
1) in C.

18: if r̂ �∈ I then � {Check using Hermann’s theorem (Theorem 23)}

19: Output C �∈ I.

20: else

21: Group the factors Pij in T ′1 according to the leading monomials.

22: Let T ′1 =
∏n

r=k+1 T1r , where T1r is the product of all factors P1j of T
′
1 such that LM(P1j) is a power of xr .

23: C1← ∑m
i=2 βiT

′
j .

24: for r = k+ 1 to n do

25: I1r ← 〈I, T1r〉.
26: Invoke IdealMembership2(C1,Iir).
27: end for � {C1 is a ����(�− 1, d, c) circuit}
28: Output C ∈ I if and only if all the recursive calls accept. � {By Claim 29}

29: end if

30: end if

31: end if

32: end procedure

Theorem 28. Let C be a given ����(�, d, c) circuit and I = 〈f1, f2, . . . , fm〉 be an ideal in F[x1, . . . , xn] such that each fi ∈
F[x1, x2, . . . , xk] where k is a constant. Then testing if C ∈ I can be done deterministically in time poly(n, d).

Proof. We first write C = T1 + T2 + · · · + T�, where each Ti = ∏d
j=1 Pij . The case � = 1 and the case when each Ti is only

over indeterminates x1, . . . , xk can be directly handled using Hermann’s algorithm (Theorem 23), in time poly(d2
k

).
We describe the general case. Let R = F[x1, x2, . . . , xk]. We can write C = β1T

′
1 + β2T

′
2 + · · · + βmT

′
m for some m ≤ �,

where βi ∈ R and βi �∈ I, and T ′i are nontrivial polynomials in R[xk+1, . . . , xn]. We can easily determine LTR(T
′
i ) for each T ′i

from the polynomials Pij , and rearrange the T ′i so that LMR(T
′
1) ≥ LMR(T

′
2) ≥ · · · ≥ LMR(T

′
m).5 Thus, LMR(T

′
1) ≥ LMR(C). The

coefficient r̂ of LMR(T
′
1) in C is also easily computable in polynomial time: we find the coefficient γi of LMR(T

′
1) in T ′i for

i = 1, 2, . . . ,m. Note that r̂ = ∑m
i=1 βiγi. If r̂ /= 0 then notice that r̂ /∈ I implies C /∈ I. We check if r̂ ∈ I using Hermann’s

algorithm (Theorem 23) in time poly(d2
k

). We need to continue the test if r̂ ∈ I. That means either LMR(T
′
1) > LMR(C) or

LMR(T
′
1) = LMR(C) and r̂ ∈ I. By Lemma 14, C ∈ I if and only if

∑m
i=2 βiT

′
i ∈ 〈I, T ′1〉.

Next, we group the factors Pij occurring in T ′1 according to the leading monomials. Let T1r be the product of all factors P1j
of T ′1 such that LM(P1j) is a power of xr , for r = k+ 1, k+ 2, . . . , xn. For an index r if there are no such factors P1j then set

T1r = 1. Thus we have T ′1 =
∏n

r=k+1 T1r , where some of the factors T1r are 1 and can be ignored. Clearly, for all T1r /= 1 and

T1s /= 1 we have LM(T1r) > LM(T1s) if r > s.

Let C1 = ∑m
i=2 βiT

′
i . For each r such that T1r /= 1, let I1r denote the ideal 〈I, T1r〉. Notice that T1r is a polynomial over

at most c2 different variables. The algorithm recursively checks if C1 is in the ideal I1r for each ideal I1r and declares C ∈ I

if and only if C1 ∈ I1r for each r. Notice that C1 is a ����(�− 1, d, c) circuit and the generators of I1i’s are now over

5 Notice the condition (b) in the definition of ����(�, d, c) circuit.
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k+ c2 indeterminates (at most) which is still a constant. We now describe the algorithm IdealMembership2(C,I) formally

(Algorithm 2).

Claim 29. C1 = ∑m
i=2 βiT

′
i ∈ 〈I, T ′1〉 if and only if C1 ∈ I1r for each r such that T1r /= 1.

Proof of Claim. We first write T ′1 as T ′1 = T1i1T1i2 · · · T1it , where all T1ij /= 1. Letting g2 = T1i1T1i2 · · · T1it−1 and g1 = T1it
in Lemma 27, we get that C1 ∈ 〈I, T ′1〉 = 〈I, g2g1〉 if and only if C1 ∈ I1it and C1 ∈ 〈I, T1i1T1i2 · · · T1it−1〉. A similar repeated

application of Lemma 27 yields C1 ∈ 〈I, T ′1〉 if and only if C1 ∈ 〈I, T1ij〉 for each j = 1, . . . , t. This completes the correctness

proof of the algorithm.

We now show that the time bound is poly(n, dmax{�,2k}). Let T(�, d, n) denote the time taken to test if C ∈ I. The algorithm

description implies the following recurrence relation for T from which the running time bound is immediate.

T(�, d, n) ≤
{
dT(�, d, n)+ poly(n, d2

k

) if � > 1;
poly(n, d2

k

) if � = 1. �
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