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• Some ovarian tumors cannot be optimally cytoreduced despite aggressive surgery
• Suboptimally cytoreduced tumors express genes associated with stromal activation
• Stromal activation is linked to increased tumor invasiveness and chemoresistance
• Tumors with stromal activation may require treatments with anti-fibrotic agents
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Objective. Suboptimal cytoreductive surgery in advanced epithelial ovarian cancer (EOC) is associated with
poor survival but it is unknown if poor outcome is due to the intrinsic biology of unresectable tumors or insuffi-
cient surgical effort resulting in residual tumor-sustaining clones. Our objective was to identify the potential mo-
lecular pathway(s) and cell type(s) that may be responsible for suboptimal surgical resection.

Methods. By comparing gene expression in optimally and suboptimally cytoreduced patients, we identified a
gene network associated with suboptimal cytoreduction and explored the biological processes and cell types as-
sociated with this gene network.

Results.We show that primary tumors from suboptimally cytoreduced patients expressmolecular signatures
that are typically present in a distinctmolecular subtype of EOC characterized by increased stromal activation and
lymphovascular invasion. Similarmolecular pathways are present in EOCmetastases, suggesting that primary tu-
mors in suboptimally cytoreduced patients are biologically similar to metastatic tumors. We demonstrate that
the suboptimal cytoreduction network genes are enriched in reactive tumor stroma cells rather than malignant
tumor cells.

Conclusion. Our data suggest that the success of cytoreductive surgery is dictated by tumor biology, such as
extensive stromal reaction and increased invasiveness, which may hinder surgical resection and ultimately
lead to poor survival.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

EOC typically presents at an advanced stage with metastatic tumor
nodules spread throughout theperitoneal cavity. Standard treatment for
EOC is primary surgical cytoreduction followed by adjuvant platinum-
and taxane-based chemotherapy. The goal of surgery is to achieve
complete cytoreduction as multiple studies have shown that
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macroscopically visible residual disease is associated with poor
progression-free and overall survival (reviewed in [1,2]). In cases
where complete cytoreduction cannot be achieved due to difficulty in
resecting tumors that have invaded vital organs, it is preferable to fore-
go primary cytoreduction surgery and use neoadjuvant chemotherapy
to reduce the tumor burden and increase the chances of achieving com-
plete cytoreduction through interval cytoreduction surgery. At present,
there is no clinically-applicable biomarker that can predict suboptimal
cytoreduction [1,2]. Several preoperative modalities have been evaluat-
ed, including computed tomography, serumCA-125, and laproscopic as-
sessment, but did not achieve sufficient specificity and/or sensitivity to
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be used in clinical decision-making [3–9]. Consequently, many patients
are left with a significant amount of residual disease andwill not benefit
from the aggressive surgical effort yet must endure the potential com-
plications, such as extended recovery time and delayed initiation of
chemotherapy.

The crucial question that remains unanswered is what leads to poor
survival in suboptimally cytoreduced patients. Two different theories
have been proposed. In the first theory (reviewed in [2]), the amount
of residual tumor cells dictates the rate of tumor outgrowth and
chemotherapeutic accessibility. Specifically, cytoreduction may reduce
the number of tumor initiating cells or resistant clones and delay
chemoresistance. Additionally, excision of large necrotic masses may
improve drug delivery to smaller, less hypoxic tumors with intact
vascular systems. The residual microscopic implants may also have a
higher fraction of proliferating cells, resulting in better chemosensitivity
to standard cytotoxic agents. Finally, removing tumors in specific loca-
tions, such as tumors causing bowel obstruction, may improve the
patient's overall health status and immunocompetence. In the second
theory (reviewed in [10]), the intrinsic aggressive tumor biology that
is responsible for the failure of surgical resection is also responsible for
resistance to chemotherapy and a higher rate of growth and invasion.
If unresectable tumors are biologically different from resectable tumors,
it is expected that they would have different molecular profiles. Two
recent studies used expression profile data to identify signatures of
suboptimal cytoreduction [11,12]. Although the two studies used differ-
ent datasets and parameters of cytoreduction, the resultant gene signa-
tures largely overlap and represent common biological processes, such
as extracellular matrix remodeling, invasion and angiogenesis [11,12].
These processes have been previously associated with EOC progression
and metastasis, supporting the idea that the success of surgical cyto-
reduction is dictated by tumor biology. Here, we analyze molecular
pathways associated with suboptimal cytoreduction to identify under-
lying biological processes that may determine surgical outcome and
therapeutic efficacy.

2. Materials and methods

2.1. Databases and patient eligibility criteria

The three largest gene expression datasets for ovarian cancer
that contain information on cytoreduction status, TCGA, GSE26712
[13], andGSE9891 [14],were downloaded from the curatedOvarianData
database in R [15]. All datasets in the database had been preprocessed
and normalized at the gene level. We restricted our study to primary,
late-stage, serous ovarian tumors with information available on cytore-
duction status. Samples of low-stage EOC, non-serous EOC, metastases,
or other diseases, were excluded from our analysis. There are 468,
182, and 167 patients available with 136, 93, and 66 suboptimally
cytoreduced patients in the TCGA, GSE26712, and GSE9891 datasets, re-
spectively. The TCGA and GSE26712 datasets were used to identify the
molecular signatures, while the GSE9891 dataset was used for validat-
ing the signatures and evaluating their predictive power.

2.2. Overall strategy for statistical analysis

Candidate gene signatures were identified based on both differen-
tially expressed genes and differential network structures. First, normal-
ized expression profile data from two datasets (TCGA and GSE26712)
were screened for differentially expressed (DE) genes between patients
with suboptimally and optimally cytoreduced tumors with the 2-
sample t-test for each dataset separately. P b 0.05 was considered to
be statistically significant. Common DE genes from both datasets were
then merged together and used to build common and differential
networks as previously described [16,17]. Genes on the differential net-
workwere then selected as the candidate gene signatures and validated
with an independent dataset (GSE9891).
2.3. Network construction

A sparse graphical model [17] was used to simultaneously build the
common and the differential networks. The idea is to apply regularized
regression for network construction by treating each gene, in turn, as
the response variable and the rest of the genes as predictors. In this ap-
proach, for each gene xi, the regression model is

xi ¼ X−iai þ yX−ibi þ ε;

where X−i are the expression values of the common DE genes except
for gene xi, and y (1/0) indicates suboptimal or optimal cytoreduction.
The common and differential networks were formed by collecting all
of the ais and bis, respectively. Parameter ai measures the direct depen-
dency between gene xi and the remaining genes, and aij ≠ 0 shows there
is a partial correlation (edge) between gene xi and xj given the rest of the
genes. On the other hand, bi determines y dependent correlation and in-
dicates differential correlation across different clinical conditions, and
bij ≠ 0 suggests that there is a differential interaction between gene xi
and xj in suboptimally and optimally cytoreduced tumors. The network
structures and tuning parameters were determined through stability
selection [18].We first generated 100 sub-samples consisting of 400 pa-
tients and then constructed each network for every sub-sample and
given tuning parameter. Stability was then defined as the average frac-
tion of disagreements over all edges of the sub-sampled graphs. The
network structure and optimal tuning parameter were determined by
the most stable sets of edges. The differential network was then visual-
ized and networkmoduleswere identified as candidate gene signatures
for suboptimal cytoreduction using cytoscape (www.cytoscape.org/)
[19].

2.4. Multivariate models and validation metrics

To separately validate the candidate gene signatures with an inde-
pendent dataset (GSE9891), multivariate logistic regression and the
two-sided t-test were applied to the expression values of the identified
genes in the validation dataset. The receiving operating characteristic
(ROC) curve and the Area Under the ROC curve (AUC) were used to
evaluate the prediction power of the identified gene signatures. The sta-
tistical toolbox inMATLABwas used for themultivariate logistic regres-
sion model and the AUC assessment (Supplemental Materials).

2.5. Analysis of public expression profile datasets

R2 Genomics Analysis and Visualization Platform (http://hgserver1.
amc.nl/) was used for visual comparison of gene expression in different
groups.

2.6. Human tissue specimens

Archived human tissue specimens and histochemical staining
methods are described in our previous publication [20].

3. Results

3.1. Identification of the suboptimal cytoreduction associated network
(SCAN)

Gene signatures for optimally and suboptimally cytoreduced pa-
tients were identified using both differential genes and differential
gene–gene interactions. Complex diseases, such as EOC, are not only
caused by the mutations of individual genes but also by the dysregula-
tion of molecular networks. Generally, the variations of regulations or
interactions between genes under different clinical conditions are asso-
ciated with the cytoreduction status. Therefore, we adopted a novel ap-
proach [16,17] for gene selection that incorporated both differential
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expression of genes and differential network structures between
patients with or without suboptimal cytoreduction. We used the
curatedOvarianData definition of optimal and suboptimal cytoreduc-
tion for each dataset [15]. We first compared gene expression levels
between ovarian cancer samples from optimally and suboptimally
cytoreduced patients in the TCGA and GSE26712 datasets separately
using 2-sample t-tests. With a P value of 0.05, 1206 differentially
expressed (DE) genes from the TCGA data and 979 DE genes from the
GSE26712 data were selected (Fig. 1A). Among the selected DE genes,
136 genes were common to both datasets (Fig. 1A and Table S1). We
then merged the two datasets and constructed a common and differ-
ential co-expression network using a sparse graphical model [17].
The differential SCANwas created fromhigh-order (partial) correlations
conditioning on common (background) correlations. Eleven differen-
tially expressed genes were identified as the candidate gene signature,
hereafter referred to as the SCAN genes (Fig. 1B). Based on protein–
Fig. 1. Identification and validation of the suboptimal cytoreduction associated network (SCAN
expressed genes and differential networks. (C) External validation of the network genes in the v
red. (D) Predicted Area Under the ROC Curve (AUC) for the SCAN genes in the validation datas
protein interaction (PPI) network analysis, the SCAN genes likely form
a biologically functional network (Fig. S2). The efficiency of the differen-
tial network method to identify genes associated with suboptimal
cytoreduction was demonstrated by comparing the performance of
the 11 SCAN genes identified through the differential network with
the top 11 genes identified through the Student's t-test using an inde-
pendent validation dataset GSE9891 (Table S1B). All of the 11 SCAN
genes had low P values in the validation dataset GSE9891 (Fig. 1C).
The four SCAN genes with the lowest P values are highlighted in red
(Fig. 1C). The predictive power of the 11 SCAN genes as well as the
four SCAN genes with the lowest P values were evaluated separately
with logistic regression and predicted Area Under the ROC Curve
(AUC) (Fig. 1D). In addition to dividing patients into optimally and
suboptimally cytoreduced groups, the TCGA and GSE9891 datasets
stratify patients into four groups based on the increasing amount of re-
sidual disease. We show that transcript levels of the four SCAN genes
). (A) Statistical analysis workflow chart. (B) Selected biomarkers with both differentially
alidation dataset (GSE9891). The top four geneswith the lowest P values are highlighted in
et (GSE9891).
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with the lowest P values in the validation dataset (POSTN, FAP, TIMP3,
and COL11A1) increase proportionally with an increase in the amount
of residual disease in both the TCGA and GSE9891 datasets (Fig. S1).

3.2. The SCAN genes are enriched in distinct molecular subtypes of ovarian
cancer

To determine whether the SCAN genes were associated with any
previously identified molecular subtypes of EOC, we used expression
data from two comprehensive studies that have identified several dis-
tinct molecular subtypes of EOC based on expression profiles [14,21].
In the study by Verhaak et al., 489 high grade serous EOCs from the
TCGAdataset clustered into fourmolecular subtypes (differentiated, im-
munoreactive, mesenchymal, and proliferative) [21]. In the study by
Tothill et al., 251 serous and endometrioid EOC samples clustered into
six molecular subtypes, designated C1–C6 [14]. The majority of the
serous EOCs were found in the C1–C5 subtypes, while the C6 subtype
largely consisted of endometrioid EOCs [14]. In order to identify if the
SCAN genes were enriched in any of the identified molecular subtypes
of EOC, we plotted the expression levels of the 11 SCAN genes in the
differentiated, immunoreactive, mesenchymal, and proliferative molec-
ular subtypes in the TCGA dataset as well as in the C1–C5 subtypes in
the Tothill dataset. The analysis revealed that the SCAN genes were
most highly expressed in the mesenchymal molecular subtype in the
TCGA dataset (Fig. 2A) and in the C1 molecular subtype in the Tothill
dataset (Fig. 2B). Notably, the C1 subtypewas associatedwith extensive
desmoplasia and theworst survival rate in the Tothill dataset [14]while
themesenchymalmolecular subtypewas associatedwith theworst sur-
vival rate in the TCGA dataset [22,23]. Together, these data suggest an
association of the SCAN genes with specific molecular subtypes, which
are characterized by desmoplasia and/or the presence of a mesenchy-
mal cell state and poor survival.

3.3. The SCAN genes are enriched in invasive andmetastatic ovarian cancer

We previously identified three of the four top-scoring SCAN genes
(POSTN, TIMP3, and COL11A1) (Fig. 1C) as part of a 10-gene signature
of poor survival in EOC and observed their upregulated levels in meta-
static EOC in comparison to primary EOC [20,24]. To identify gene
Fig. 2. The SCAN genes are highly enriched in the C1/mesenchymal molecular subtypes of EOC.
and proliferative molecular subtypes in the TCGA dataset and (B) C1–C5 molecular subtypes in
signatures associated with metastasis, we compared the expression
profiles of omental EOC metastases to primary EOC using two micro-
array datasets: Bignotti et al. (17 metastases, 13 primary EOC) and
GSE30587 (matched omental metastases and primary EOC from nine
patients [25]). The SCAN genes were highly enriched in the signatures
of omental metastasis, with five of the 11 SCAN genes (FAP, TIMP3,
COL11A1, CTSK, and COL5A2) present in both metastasis signatures
(Table S2). The TCGA dataset provides information on the presence or
absence of lymphatic and venous invasion in a subset of patients. We
show that the expression levels of the SCAN genes are higher in patients
with lymphatic and/or venous invasion (Fig. 3). Together, these data
suggest that suboptimal cytoreduction may be related to the invasive/
metastatic nature of EOC.

3.4. Tumor stroma, rather than malignant cells, is responsible for increased
expression of the SCAN genes

The Gene Set Enrichment Analysis (GSEA) Molecular Signature
Database (MSigDB) was used for annotation of the 11 SCAN genes into
hallmark genes (H) and GO Gene Sets (C5). The most significant hall-
mark associated with expression of the SCAN genes was “epithelial–
mesenchymal transition (EMT)” in wound healing, fibrosis, and metas-
tasis (P = 6.72E−10), while the “extracellular matrix (ECM)” was
identified as the most likely site of protein expression (P = 6.34E−9)
(data not shown).

Both malignant epithelial cells and supporting stromal cells secrete
ECM in tumors making it difficult to identify the exact source of ECM
proteins. To identify which cell type(s) express the SCAN genes, we
evaluated the expression levels of the SCAN genes in different ovarian
tissue components using the GSE40595 expression profile dataset in
which epithelial and stromal cells were laser-microdissected from nor-
mal ovaries and ovarian cancers [26]. The results showed that the SCAN
genes are most highly expressed in the cancer-associated stroma
(Figs. 4A and S2A).

To test whether the SCAN genes are enriched in malignant cancer
cells, we ranked 1036 cancer cell lines in the Cancer Cell Line Encyclope-
dia (CCLE) by their average expression of the SCAN genes. Ranked at the
top were early-passage primary cultures isolated from various human
tumors by The Naval Biosciences Laboratory (NBL). Since the cultures
Expression levels of the SCAN genes in (A) differentiated, immunoreactive, mesenchymal,
the Tothill dataset.



Fig. 3. EOCs characterized by lymphatic and venous invasion express higher levels of the SCANgenes. Relative expression levels of the SCANgenes inpatient samples based on thepresence
or absence of (A) lymphatic invasion and (B) venous invasion. The number of samples in each category is indicated in parentheses.

Fig. 4. The SCAN genes are enriched in the cancer-associated stroma. (A) Relative expression levels of the SCAN genes inmicrodissected stromal and epithelial components in the normal
ovary and in ovarian cancer. (B) Relative expression levels of the overall stromalmarker VIM, reactive stromamarker ACTA2, and the SCAN genes in patient-matched omentalmetastases
and primary tumors. The number of samples in each category is indicated in parentheses. (C) Representative images of sections of a recurrent serous ovarian tumor show COL11A1 ex-
pression in a subset of α-SMA-positive fibroblasts. Expression of COL11A1 was determined by in situ hybridization (ISH) with a COL11A1-specific probe. The presence of tumor stroma
was determined by immunohistochemical (IHC) staining withα-SMA. The distribution of collagen and smoothmuscle connective tissuewas determined byMasson's trichrome staining.
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were derived from diverse tumor types, including epithelial tumors,
gliomas, and sarcomas (Table S3A), it is likely that the SCAN genes rep-
resent the stromal cells, which are a common ‘contaminant’ in early-
passage primary cultures from tumors. The fibroblast-like morphology
characterizing themajority of these cell cultures (Table S3A) is also con-
sistentwith the presence of stromal cells. Themajority of ovarian cancer
cell lines expressed relatively low average levels of the SCAN genes. The
highest ranked ovarian cancer cell line, HS571T (rank 55), was an early-
passage cell line from the NBL collection (Table S3B). From established
ovarian cancer cell lines, the highest ranked were the TOV112D (rank
83) and A2780 (rank 136) cell lines, both of which have been classified
as mesenchymal based on functional assays (Table S3B) and [27].

We have previously shown by tumor in situ hybridization that one
of the SCAN genes, COL11A1, is primarily expressed in the tumor stroma
and that the amount of stromal cells expressing COL11A1 increases
during ovarian cancer progression in patient-matched primary, meta-
static, and recurrent tumors [20]. Other studies have shown that several
of the SCAN genes, including POSTN, TIMP3, and COL11A1, are enriched
in the stromal rather than the epithelial tumor component during EOC
progression, with the highest levels found in recurrent tumors [28].
The increase in SCAN gene expression in metastatic and recurrent tu-
mors could be a reflection of an increased percentage of stromal cells
and decreased percentage of malignant tumor cells. To test this hypoth-
esis, we compared the expression levels of the SCAN genes with the ex-
pression levels of the stromal marker vimentin (VIM) in nine patient-
matched metastatic and primary tumors in the GSE30587 dataset.
Although metastatic tumors in comparison to primary tumors showed
an increase in VIM, these changesweremodest in comparison to thedif-
ferential expression of most SCAN genes (Figs. 4B and S2B). Thus, an in-
crease in the expression of the SCAN genes in metastatic tumors cannot
be solely explained by an increased ratio of stromal to epithelial cells.
Alternatively, the increased expression of the SCAN genes during cancer
progression could be a reflection of a qualitative change in tumor stro-
ma. The progression of epithelial tumors is known to be associated
with desmoplasia or the increased presence of ‘reactive stroma’ [29].
Reactive stroma is characterized by increased remodeling of ECM com-
ponents and production of α-smooth muscle actin (α-SMA) [29]. We
show that differential expression of the SCAN genes is more in line
with differential expression of the reactive stroma marker ACTA2
(encoding α-SMA) than the overall stroma marker VIM (Figs. 4B and
S2B), indicating that some of the SCAN genes may be associated with
the reactive tumor stroma. Consistent with this hypothesis, COL11A1
is expressed in a subset of α-SMA-positive cells in ovarian cancer
(Fig. 4C and [20]).

4. Discussion

Suboptimal primary cytoreductive surgery in advanced epithelial
ovarian cancer (EOC) is associated with poor patient survival but it is
unknown if this is due to the intrinsic biology of unresectable tumors.
Currently, there are no clinically useful predictive models for surgical
success, highlighting the need to understand the role of tumor biology
in surgical outcome. Recently, two studies have used different statistical
approaches to identify gene signatures of suboptimal cytoreduction
in the TCGA, GSE26712, and GSE9891 datasets [11,12]. Six of the 11
SCAN genes (POSTN, FAP, TIMP3, CTSK, TNFAIP6, and CXCL14) are
among the top ranked genes in the 200-gene signature of suboptimal
debulking identified by Riester [12], and three (FAP, TIMP3, and
COL11A1) are present in the 38-gene signature of residual disease iden-
tified by Tucker [11]. The prediction accuracy of our SCAN is similar to
the prediction accuracy of the signatures identified by Riester [12] and
Tucker [11]. While it may be difficult to achieve clinically useful predic-
tion accuracy with molecular signatures, we hypothesized that closer
examination of the genes that are consistently identified in association
with suboptimal cytoreduction may reveal important information
about the biology of unresectable disease.
Our objectivewas to identify thepotential biological pathway(s) and
cell type(s) that may be responsible for suboptimal cytoreduction.
Significant progress has been made in associating tumor biology with
different molecular subtypes of EOC [14,21]. If tumor biology deter-
mines surgical success, it should be possible to link the molecular sub-
types of EOC with surgical outcome. Indeed, Tothill et al. observed in
their study that themajority of patients with the C1 subtype had exten-
sive residual disease [14]. Our study shows that themolecular pathways
associatedwith suboptimal cytoreduction are highly enriched in the C1/
mesenchymalmolecular subtype of EOC. Additionally, we show that the
SCAN genes are enriched in invasive and metastatic tumors, indicating
that primary tumors of the C1/mesenchymal subtype resemble meta-
static tumors. Alternatively, the C1/mesenchymal subtype tumors may
actually be self-metastases to the ovary rather than primary tumors.

Expression profile data are typically obtained from tumor specimens
that contain various types and amounts of stromal cells, making it diffi-
cult to discern which cell types contribute to specific gene signatures.
Our gene set enrichment analysis identified EMT as themost significant
hallmark associated with the SCAN genes. Studies in cancer and fibrosis
have demonstrated that epithelial cells can generate tumor stroma
through EMT [30,31]. However, two recent studies in colorectal carcino-
ma showed that the EMT gene signature in human colorectal cancer is
derived from tumor-associated stroma rather than from malignant
cells converting to a mesenchymal phenotype [32,33]. Isella et al. ana-
lyzed patient-derived xenograft (PDX) models in which human epithe-
lial tumor cells continued to proliferate when propagated in mice while
non-proliferating human stromal cells died out. Human- and mouse-
specific RNA sequencing demonstrated that the human mesenchymal
signature is decreased in PDXs in comparison to primary tumors,
indicating that the EMT signature is derived from stromal cells in
human tumors [32]. Callon et al. used FACS to isolate epithelial cells
and fibroblasts from primary human tumors and showed that the
mesenchymal signature was enriched in tumor fibroblasts [33]. Thus,
two studies implementing different techniques came to a similar con-
clusion that the EMT signature is derived from stromal cells. Consistent
with these studies, we show that the SCAN gene signature,which signif-
icantly overlaps with the EMT signature in colorectal cancer, is also de-
rived from the tumor stroma in EOC. The tumor microenvironment has
been increasingly recognized as a major player in the pathogenesis of
EOC [34,35]. Our data indicate that stromal activation may also impact
surgical outcome.

It is thought that biomarkers of surgical outcome would signifi-
cantly improve the management of ovarian cancer as patients with a
low probability of optimal cytoreduction are more likely to benefit
from neoadjuvant chemotherapy. However, it is possible that the
same biological features that preclude optimal cytoreduction are re-
sponsible for poor response to chemotherapy. For example, the top
three ranked SCAN genes in our study (POSTN, FAP, and TIMP3) were
also identified as the top three ranked genes associatedwith therapeutic
resistance in EOC [28], suggesting that EOC patients with unresectable
disease may be inherently resistant to neoadjuvant chemotherapy. Ad-
ditionally, five of the 11 SCAN genes (POSTN, FAP, CTSK, COL5A2, and
MMP11) have been identified by Farmer et al. in breast cancer as part
of the 50-gene signature of resistance to neoadjuvant chemotherapy
consisting of 5-fluorouracil, epirubicin and cyclophosphamide [36].
Chemotherapy-resistant breast cancer in the study by Farmer et al.
was shown to be associatedwith increased desmoplasia [36], indicating
that the presence of reactive stroma may cause resistance to diverse
chemotherapeutic agents or generally restrict chemotherapy access.
Thus, it may be necessary to target the reactive tumor stroma before
or concurrently with chemotherapy to achieve therapeutic success in
suboptimally cytoreduced patients.

The development of agents that target tumor stroma will require a
better understanding of the key regulators of stromal activation and
themechanisms bywhich the reactive stroma contributes to unsuccess-
ful surgical resection, tumor progression, and chemotherapy resistance.
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A possible treatment strategymay come from outside of the cancerfield
as stromal activation in cancer has numerous similarities to matrix re-
modeling in fibrosis, a process that has been extensively studied for
targeted therapy. Although there are no Food and Drug Administration
(FDA)-approved treatments for organ fibrosis, a large number of com-
pounds have shown promising results in reversing fibrosis in preclinical
models and are being tested in human clinical trials for systemic fibrosis
conditions [37]. We envision that repurposing these agents for cancer
treatment may be effective in reversing stromal activation in cancer
and increasing the efficacy of cytoreductive surgery and chemotherapy.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ygyno.2015.08.026.
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