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For any convex operator f from a convex set C of a topological vector space E 
into another one F endowed with a convex cone F, a notion of C’-subdifferential 
?vf(a) ofJat aE C is introduced. Although it is equivalent to the notion of s-sub- 
differential when F= R, it enjoys many important properties which are not satisfied 
by the e-subdifferential whenever int F, = 0. The nonvacuity of 3,-f(a) is proved 
whenever V is a neighbourhood of zero in F and f belongs to a large class of map- 
pings analogous to the class of lower semicontinuous real-valued convex functions. 
Other properties of V-subdifferentials are studied and applications to differen- 
tiability off are made. ‘C’ 1986 Academtc Press. Inc. 

INTRODUCTION 

The notion of s-subdifferential of a real-valued convex function has been 
introduced by Bronsted and Rockafellar [IS]. Important properties of this 
notion has been studied by many authors. Bronsted [S] gave a charac- 
terisation of the subdifferential of the supremum of two lower semicon- 
tinuous real-valued convex functions in terms of c-subdifferentials. Moreau 
[22,23] and Asplund and Rockafellar [2] established some results on 
equicontinuity of s-subdifferentials. But one of the major results on the E- 
subdifferential (proved by Asplund and Rockafellar [2]) is the continuity 
of the s-subdifferential multifunction (for a lower semicontinuous convex 
function defmed on a Banach space and for E> 0) with respect to the 
Hausdorff topology on subsets. This property which is one of the strongest 
properties which can be-required on a multifunction is not satisfied by the 
subdifferential multifunction. Actually more can be said. Indeed 
Hiriart-Urruty [14] (for Banach spaces) and Nurminskii [25] (for W) 
have recently proved that the c-subdifferential multifunction of a lower 
semicontinuous real-valued convex function f is locally Lipschitz on the set 
of points of continuity off: 

Besides many studies of convex operators and their subdifferentials (see, 
e.g., [3-7, 1619, 21, 26, 29, 33-37, 39) Borwein [6], Kutateladze [20], 
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Thera [32] have considered the notion of e-subdifferentials for convex 
mappings taking values in an ordered topological vector space and for E in 
the positive cone of that ordered vector space. Essentially these authors 
have established an operational calculus for &-subdifferentials. Their 
definition has the same formulation than the one for real-valued functions. 
More precisely, if F is a topological vector space ordered by a convex cone 
F,, f is a convex mapping from a convex set C of a topological vector 
space E into F and E is in F, , the s-subdifferential off at a E C, d&f (a), is 
the set of all continuous linear mappings T from E into F such that 

T(x-u)Qf(.x)-f(a)+& for all x E C. 

Although this notion has some interesting properties, it does not enjoy the 
above locally Lipschitz behavior if int F, = a. This state of affairs leads us 
to define the notion of V-subdifferentials which, as will be proved in [36], 
enjoys the locally Lipschitz behavior whenever V is a neighbourhood of 
zero. Moreover taking V= C-E, E] one sees this notion encompass that of 
s-subdifferentials since d,f (a) is the set of all continuous linear mappings 
T from E into F such that 

T(x-u)Ef(x)-f(u)+ V-F, for all x E C. 

This paper is concerned with the study of some properties of V-subdif- 
ferentials. It is divided in five parts. In the first section we recall some 
preliminary definitions which will be used in the next parts. Section two is 
devoted to the introduction of a class of mappings which is important for 
the notion of V-subdifferentials, the class of mappings f which are at each 
point of their domain, the limit of nested families of continuous affine 
minorants forf: In section three we introduce and we define the notion of 
V-subdifferential. Non vacuity of V-subdifferentials of mappings in the 
above class is proved. In section four we establish some equicontinuity 
properties of V-subdifferentials as subsets of continuous linear mappings 
and in section live we study the relationship between the differentiability 
and the V-subdifferentials of convex operators following the way opened by 
Asplund and Rockafellar [2]. In particular we prove that a convex 
operatorfis Frechet-differentiable at a point on a neighourhood of whichf 
is continuous and subdifferentiable if and only if the subdifferential mul- 
tifunction off is continuous at that point in the Hausdorff sense. So we 
complete a result of Borwein (see [3, Theorem 5.51) which states that this 
property is implied by the Frechet-differentiability of the convex operatorf: 

Before concluding this introduction let us indicate that a substantial sur- 
vey on e-subdifferentials of real-valued convex functions can be found in 
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Hiriart-Urruty [ 151 and that we refer the reader to the papers of Borwein 
[3] and [S] for many important results on conditions for subdifferentials 
of convex operators to be nonempty. 

1. PRELIMINARIES 

Throughout this paper E and F will be two (real separated) topological 
vector spaces. We shall always assume that F, is a convex cone in F (i.e., 
SF, + tF+ c F, for all real numbers s, t > 0 and F, n ( -F+ ) = (0)) and 
hence it induces an ordering in F by J* <J’ if F’ - ~9 E F, . So F is an ordered 
topological vector space. 

We shall denote by L(E, F) the set of all continuous linear mappings 
from E into F and by L, (F, F) the set of all mappings TE L(F. F) satisfy- 
ing T(x) 20 for all s 2 0. Such mappings are called positive continuous 
linear mappings and we write S 6 T whenever T(x) - S(x) >, 0 for all .Y >, 0. 

One says that F, is normal if there exists a neighbourhood basis { C’), I, of 
zero in F such that 

V=(P’+F+)n(V-F,). 

Such neighbourhoods are said to befuN. For properties of normal cones we 
refer to [28] where it is proved that most classical ordered topological vec- 
tor spaces are normal. 

We adjoin an abstract greatest element infinity and a lowest one to F 
and we shall write F’=Fu(+xj) and F=Fu{-x, +a). 

We shall say that F is order-complete if every nonempty subset with an 
upper bound in F has a supremum in F. 

A mapping f: E + F’ is convex if 

.f(ss+t??)Q(sf(-Kj+tf(?~) (1.1) 

whenever x, J lie in E and s and f are positive numbers with s + t = 1. We 
recall that the domain domf and the epigraph epif of .f are defined by 

domf= {x~E:f(x)~ FJ and epif= {(x,Y)E Ex F:f(x),<~,}. 

The subdifferential or subgradient for f at a E E is defined by 

df(a)= {TEL(E, F): T(x-a)<f(x)-,f(a).VxEE} 

whenever a E dom f and af (a) = 0 whenever a $ dom f 
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2. MAPPINGS WHICH ARE AT EACH POINT LIMIT OF 

CONTINUOUS AFFINE MINORANTS 

Before defining the notion of P’-subdifferentials we introduce a class of 
convex operators which will appear very useful for proving some important 
properties of V-subdifferentials. 

2.1. DEFINITION. Let j E + F’ be a convex mapping. We shall say that 
.f~ A(E) F) if for each x~domf there exists a directed set J, and a collec- 
tion (Ai( . ) + b,)j,Jr of continuous affme mappings (here A ; E L( E, F) and 
b, E F) with 

A,(H+b,6f(d for every J E domj 

and 

.f(x)= lim (A,(~u)+h~). 
.IEJr 

Remark. Obviously f+ g E A( E, F) and [f E .4( E, F) whenever J g lie in 
4(E, F) and t is a positive real number. 

2.2. DEFINITION (see [28]). One says that F is a topological vector lat- 
tice if sup(x, y) exists for all I, J’E F and if F has a neighbourhood basis 
{ V} c. of zero such that 

where 1 x 1 = sup( -x, x). 

The following lemma will be used in the next proposition. Although its 
proof is similar to the one of Theorem 6 in Valadier [37], we did not find 
the statement below in the literature. In fact, the classical formulation is 
that for each (continuous) sublinear mapping f: E-t F we have 
f(x) = max{ T(x): 7’~ @(O)} w h enever F is order complete (and normal) 
(see, e.g., Valadier [37], Rubinov [29], and Kutateladze [ 191). 

2.3. LEMMA. Assume that F is order complete and F, is normal. Let f be 
a continuous sublinear mapping (i.e., positively homogeneous and convex) ’ 
from E into F. Then for each x E E Mve have 

df (O)(*y) = c -f (--x),f (-~)I, 
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f?f‘(O)(.r) = ; T(s): TE q.(O)) 

and 

Proof: If T~af(0) we have T(s)<J‘(x) for every XE E and hence 
-j--X)< -T(-x)= T(x)<f( ) f x or every s E X, which proves that 

G-(Oblc)~ [ -f( -x),f(u~)l. 

Let us show the reverse inclusion. Let QE E and bE [ -f( -a),f(a)]. 
Consider the linear mapping T from iw. a into F defined by T( ta) = tb for 
every t E R. Then for every real number t 2 0 we have 

and 

T(ta) = tb 6 rf(a) =f(ta) 

T(-ta)=t(-b)<tf-a)=f(-ta) 

and hence by the generalized Hahn Banach extension theorem for order 
complete vector space (see [ 111) there exists a linear mapping T from E 
into F such that 

for all ?I E E 

and this relation implies that T is continuous since f is continuous at zero. 
Therefore TE Q-(O) and b E ilf(O)(a), which completes the proof of the 
lemma. 1 

Remark. If one considers the algebraic subdifferential it is enough to 
assume that F is order complete. 

2.4. PROPOSITION. Let F be an order complete topological vector lattice. 

(1) For .Y,)IEF there exist li,k, in L+(F,F) with I,+f,= 
k, + k, = Id, (here Id, denotes the identity mapping) such that 

sup( x, J’) = 1, X + I, J’ and inf( ?c, JV) = k, .Y + k,r. 

(2) Zfxby, then 

[x, y] = (1,~ + 12~,: ii E L + (F. F) and I, + I, = Id,} 
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(3) For each finite family (x~)~~ K there exists a finite family (fk)kE K 
of elements of L, (F, F) such that 

s”p-uk= c Ik(ak) 
ksK 

and c /k=IdF. 
ksK k E h- 

Proof: Let f: F+ F defined by f(x) =x+, where x + = sup(x, 0). The 
mappingfis sublinear and continuous since F is a topological lattice. Then 
by Lemma 2.3 

and hence 

iy(O)(*K)= [-.K-,x+1, where x ~ = sup( -x, 0). 

Moreover making use of the relationf(x) = sup(Id,(x), 0) it is not difficult 
to show that 

$f(O)= (IE L(F, F):O<i<Id,). 

Therefore 

[-x-,x+]={l.r:I~L(F,F),odl~Id,). (2.1) 

Consider now x, y E F. By relation (2.1) there exists IE L(F, F) with 
0 Q I < Id, such that 

sup(x, 4’) = sup(x - ,r’ + j’. j’) = (x -J) + + J’ 

=I(-~)+.r=I(.u)+(Id,-I)(+r). 

In the same way, if x <y we have again by relation (2.1), 

(2.2) 

[x,y]=x+ [O,y-x]=x+ [-(y-X-, (y-x)‘] 

=x+ (I(px):kL(F, F),O<I<Id,i 

= {(Id.-/).u+ly:IsL(F, F),OG/IIdF).. 

So the proof is complete since statement (3) and relation inf(x, 4’) = 
k, x + k, )’ are direct consequences of relation (2.2). 1 

Following Moreau [23] we shall denote by T(E, F) the set of all map- 
pings J E+ F’ such that f is the pointwise supremum on domf of the 
collection of all continuous affine minorants for J 
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We recall that F is a Dini space (see [3] and [26] for many examples of 
Dini spaces) if every increasing net with a supremum converges to that 
supremum. 

2.5. PROPOSITION. [f’F ix a Dini order complete topological oector lattice, 
then f(E, F) c A( E, F). 

Proof. LetJ‘E T(E, F) and a E dom,f: Let us denote by (A ;( ) + h,),, , the 
collection of all continuous afftne mappings pointwise majorized byf: If .Y 
denotes the set of all finite subsets of I and if we put for each K E Y 

fK(x!=~~~,(Ak(S)+bk) for every s E E, 

then the family (fK( a) )KE ,v is upper bounded in F and is an increasing net 
with respect to the order defined by the inclusion relation on .Y’ and as 

f(a)=sup{f,(a):KEY\ 

we have 

f(a) = ;jFfiT.fw(a) 

since F is Dini. By Proposition 2.4, for each KE Y there exists a finite 
family (lkjkeK of elements in L + (F, F) satisfying 

1 fk=IdF and fK(a)= 1 (lk,;.4k(a)+~,(b,)). 
keK k E h- 

If we put 

then 

fKt”) = TK(a) + CK 

and for each x E dom f we have 

TK(ax) + cK= 1 f,@,(x) + bk) 

ktK 

d c Ik(f(-‘I)) 

ksK 
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Therefore T,( . ) + cK is a continuous afline minorant for .f‘and 

f(a,=&y-, (T,(a)+c,). 

which completes the proof. 1 

To give another class of mappings in A( E, F) let us recall the following 
notion. 

A subset C of a vector space X is said to be lineall?~ closed if the intersec- 
tion of C with every line in X is a closed set in the natural topology of the 
line. 

2.6. COROLLARY. Let f be a comes mapping jiom E into F’ with 
int(dom f) # @. Assume F is a Dini order complete topological l’ector lat- 
tice, epi f is lineall)? closed in E x F andf is continuous on int(domf ). Then 

f~ A(& 0. 

Proof This is a direct consequence of Proposition 2.5 and Theorem 2.2 
in [7] which holds only with the assumption that epif is lineally closed 
but non-necessarily topologically closed. 1 

3. V-SUBDIFFERENTIALS 

We introduce in this section the notion of C’-subdifferentials. 

3.1. DEFINITION. Let f: E + F’ be a convex operator. For a subset S of 
F containing zero, the S-subdifferential ir,f(a) off at a is the set 

a,f(a)= (TEL(E, F): T(x-u)E,~(s)-f(a)+S-F+,V.u~domf) 

if a E domf, and Zsf (a) = @ if a I$ dom,f: 

Remarks. ( 1) Obviously if 0 E S’ c S, then 

(2) If F, is closed and if ,,+” denotes a neighbourhood basis of zero 
in F, then for every a E domf 

df (4 = n w(a). 
I’t 1 

Until now the notion of V-subdifferential has not been defined. Borwein 
[6], Kutateladze [20], and Thera [32] have only studied the notion of E- 
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subdifferential (E E F, ) of a convex operator, a notion which is a direct 
transcription of the usual definition of c-subdifferentials of real-valued con- 
vex functions. 

The notion of V-subdifferential is equivalent to that of s-subdifferential 
when F= 1w by Remark 2 following Definition 3.2. However, this is not true 
whenever int(F+ ) = 0 and many results established in this paper for V- 
subdifferentials are not true for c-subdifferentials. 

3.2. DEFINITION. Let .f E + F’ be a convex mapping and E E F, The E- 
subdi'fereritiul of .f at a point a E domf is the set 

Pf(a)= {TEL(E,F): T(r-a)df(s)-f(a)+~,V.~~dom,fi, 

Remarks. ( 1) The reader will note the notation used for s-subdifferen- 
tials to reserve the usual notation for V-subdifferentials when F is normed 
and C’ is the closed ball around zero of radius E. see Corollary 4.4. 

(2) For EEF,, ?f=~?~,,,, where [-E,c]=(-e+++)n(c-F+). 

(3) For every E E F, and every neighbourhood P’ of zero in F there 
exists a real number r > 0 such that ?j’c ?,[-,f: 1 

Let us give a first remarkable property of I-subdifferentials. 

3.3. PROPOSITION. Let .fe A( E. F). [f UE domJ’ and [f’ k’ is u 
neighbourhood of zero in F, rhen (1, f‘( u ) # 0. 

Proqf: As f'e A( E, F), there exists a directed set J and a collection 
(A,( . ) + b,),,, of continuous affme minorants for ,f such that 

and hence there exists in J such that 

A;(a) + h, EJ’(U) - c: 

Therefore for every s E domf‘ we have 

.4,(.va)=A;(s)+b,-A,(L1)-hh, l ,f(x- F, -f(u)+ V 

and hence A, E 2,.,f(a). m 

Before stating the next proposition and its corollary, which give a second 
remarkable property of V-subdifferentials, let us recall that a family (.f,),t, 
of mappings from E into F’ is said to be equiconfinuous at a point 
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UE nie, domf, if for every neighbourhood V of zero in F there exists a 
neighbourhood X of zero in E such that 

fi(a+X)-fi(a)c V for all iGI. 

3.4. PROPOSITION. Let (fi)ic, be a family of convex mappings from E 
into F’ equicontinuous at a point UE niE,dom,f,. Then for every 
neighbourhood V of zero in F there exist a neighbourhood V’ qf zero in F and 
a neighbourhood X of zero in E such that 

s,.f;(a+x)cc?vfi(a) for aNxEXandieI. 

Proof. Let V be any neighbourhood of zero in F. Let us choose a cir- 
cled neighbourhood v’ of zero in F satisfying 

v’+v+v’+v’+v’cv. 

By equicontinuity, there exists a neighbourhood A” of zero in E such that 
fi(a + X’) -fi(a) c v’ for all iE I. Let us choose a neighbourhood X of zero 
in E with X+ Xc X’ and let us show that 

8,,.h(a+x)c?l,fi(a) for all xEX and iel. 

Consider any point x E X, any point i E I and any element TE a,f;(a + x). 
For every y E dom f we have 

T(y*-a)= T(x)+ T(~,-a-.u)Efi(a+x+.u)-~~(a+,~) 

+ V’+f,(y)-.f,(a+x)+ V-F, 

and hence 

T(~-a)~fi(y)-fi(a)+2(f,(a)-~~fi(a+-~)) 

+(L(a+x+x)-h.(a))+ v’+ V-F, 

Cfi(J*)-.fi(U)+ V”+ V’+ I”+ V’+ V-F+ 

Cfi(y)-fi(a)+ V-F+. 

Therefore TE a,f(a) and the proof is complete. 1 

3.5. COROLLARY. Let ( fi)ic t be a family of convex mappings from E into 
F’ equicontinuous at a point a E fli, t domf.. Then for every neighbourhood 
V of zero in F there exists a neighbourhood X of zero in E such that 

X(a+x)c~Yfr(a) for all xE X and iE1 
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Proof This is a direct consequence of Proposition 3.4 and Remark 2 
following Definition 3.1. 1 

4. EQUICONTINUITY OF V-SUBDIFFERENTIALS 

In this section we shall study equicontinuity properties of V-subdifferen- 
tials as subsets of L(E, F). 

Let us begin by recalling the following result which has been established 
in [ 16, Proposition 2.51. 

4.1. PROPOSTITION. Let (fi)is, be a family of comex mappings ,from E 
into F’. Then the family is equicontinuous at a-point a tf and only if it is 
equilipschitzian around a in the sense that for each closed circled 
neighbourhood W of zero in E there exists a neighbourhood X of zero and a 
closed circled neighbourhood V of zero in E such that 

p~(fj(U+.u)-,fi(U+x’))6p,.(x-~K’) ,for all x, x’ E X and i E I, 

where 

The following proposition gives a first result on equicontinuity of subdif- 
ferentials. 

4.2. PROPOSITION. Let (fi)itl be a .family of convex mappings jrom E 
into F’ equicontinuous at a point a. If F, is normal, then for any 
topologically bounded subset S of F containing zero, there exists a 
neighbourhood X of zero in E such that U ie t 8, fj (a + X) is equicontinuous in 
L(E, F), where a,f,(a+X)=U.,.,a,fi(a+x). 

Proof Let W be a full-circled neighbourhood of zero in F and W, a 
closed-circled neighbourhood of zero satisfying W,, + W,C W. By 
Proposition 4.1 there exists a neighbourhood U of zero in E such that 

fi(a+x)-fi(a+x’)E W, for all i E I and s, x’ E U. 

Choose a real number t E 10, l] with tS c W, and a circled 
neighbourhood X of zero in E with X + Xc CJ. We may assume that 
(JiEI d&a + X) is nonempty. Then for each y E X, each x E X, each i e I 
with a,f,(a+x)#@ and each Ti~dsfi(a+x) we have 

T,(y)Efi(a+x+y)-fi(a+x)+S-F+c W,+S-F, 
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and hence 

T,(ty)EtW,,+tS-F+c W,+ W,,-F+c W-F,. 

Therefore we have 

T;(tX)c(W-F+)n(W+F+)= W 

and hence Uis, a,f,(a + X) is equicontinuous in L(E, F). m 

As a first immediate corollary we have: 

4.3. COROLLARY. Let f: E -+ F’ be a convex mapping continuous at a 
point a E dom f: If F, is normal, then for every’ topologically bounded subset 
S of F containing zero there exists a neighbourhood X of zero in E such that 
as.f(a + X) is equicotinuous in L( E, F). 

If F is normed and if B, is the closed unit ball around zero of F, then for 
every real number r > 0 we shall denote the rBrsubdifferential off’at a by 
S,f(a). 

4.4. COROLLARY. Assume F is normed and normal. Let (J;)icr be a 
family of convex mappings from E into F’ equicontinuous at a point a. Then 
for every real number r > 0 there exists a neighbourhood X of zero in E such 
that U is t a,A(a + X) is equicontinuous in L(E, F). 

Reciprocally to Proposition 4.2 we have the following result. 

4.5. PROPOSITION. Assume that F, is normal. Let (fi)i,t be a family of 
convex mappings from E into F-for which there exist a neighbourhood X of 
zero in E, a topologically bounded subset S of F containing zero and an 
equicontinuous family ( Tj,r)Ci.x, E tx x in L(E, F) satisfying T,, E d,f,(a + x) 
for each ie I and each XE X. Then the family (fi)ict is equicontinuous at a. 

Proof: Let W be a full circled neighbourhood of zero in F and W, a cir- 
cled neighbourhood of zero in F with W,, + W, c W. Choose a real number 
t E IO, l] with tS c W,, and a circled neighbourhood U of zero such that 
UcXand 

T,x( u) c Wo for alliEIandxEX. 

Then for each XE U and each ie I we have 

L(a)-fAa+x)~ Ti..x( -x)-S+F, 
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and hence 
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.&(a + .u) -f;(u) E T,,.(x )+S-F, c w,,+s-F,. 

Therefore for each x E U and each i E I we have by the convexity of 1;. 

fi(~+t*~)-.fi(a)~t[fi(a+s)-,fi(a)]-F+ ctWo+tS-F+ 

and hence 

fi(a + tx)-fi(~) E W-F+ 

By the convexity of fi once again we have for each x E U and each i E I 

fj(u+tx)-fib -[J;.(u-t-u)-f;(u)]+F+ c W+F+ 

and hence 

f;(u+rU)-h(u)c(W-F+)n(W+F+)= W 

for all i E I and the proof is complete. 1 

Making use of the class of convex mappings n(E, F) we can give the 
following necessary and sufficient condition for equicontinuity of families of 
mappings in A(& F). 

4.6. COROLLARY. Assume F is normed and normal. Let (fi)it, he a 
family of mappings in A( E, F). Then this family is equicontinuous at a point 
a E ni, I dom fi if and only if there exists a real number r > 0 and a 
neighbourhood X of zero in E such that U,, , drfi(u + X) is equicontinuous in 

L(E, F). 

Proof. Since by Proposition 3.3 drfi(x) # Qr for each x~domf,, the 
corollary follows from Proposition 4.5 and Corollary 4.4. 1 

5. DIFFERENTIABILITY AND V-SUBDIFFERENTIALS 

In this section following the way opened by Asplund and Rockafellar 
[2] for real-valued convex functions (see also [ 133) we shall study the 
relationship between the differentiability and the V-subdifferentials of con- 
vex operators. 

Let 99 be a family of bounded subsets of E such that E = U {B: BE 23 ) 
and for any BE 99 the set -B = { -b: b E B} belongs to B. A mapping 
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J E + F’ is said to be a-differentiable at a point a E domf if there exists a 
continuous linear mapping TE L( E, F) such that for each BE 9 

l$ t-‘[f(a + tb) -f(a)] = T(b) 

uniformly with respect to b E B. 
If 9 consists of singleton (resp. compact or bounded) subsets of E, f is 

said to be Gateaux (resp. Hudamard or Frechet) differentiable at a. 
Obviously if f is g-differentiable at a and F, is closed then Sf(a) = (A ), 

where A is the B-differential off at a. So we shall always assume in the 
sequel that F, is closed. 

5.1. PROPOSITION. Assume that F, is normal. If a convex mapping 
f: E + F * is Sdtfferentiable at a point a E dom f, then for each BE 23 and 
each neighbourhood W of zero in F there exists a neighbourhood V of zero in 
E such that 

avf(a)(b) c df(a)(b) + W for every b E B, 

ac,f(a)(b)= {T(b): TE&f(a)} 

Proof Put 8f(a) = {A}. Let BE 99 and W any neighbourhood of zero 
in F. Choose a full circled neighbourhood IV’ of zero in F with w’ c Wand 
a neighbourhood V of zero in F with V+ V c IV’. By differentiability there 
exists a real number t > 0 such that 

t?[f(a+tb)-f(a)]EA(b)+ V for every bE Bu( -B). 

Then for any TEC?,,f(a) and any be Bu (-B) we have 

T(b)c’[f(a+tb)-f(a)]+ V-F+ CA(~)+ V+ V-F, 

and hence 

T(b)EA(b)+ W-F+. 

Therefore for any TE 8 V f (a) and any b E B we have 

T(b)EA(b)+(W-F+)n(W’+F+)=A(b)+ W’cA(b)+ W 

and the proof is complete. 1 

The following result states a kind of continuity of the subdifferential 
mapping. Borwein [3] has also established a similar property in the con- 
text of normed vector spaces. 
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5.2. COROLLARY. Assume that F, is normal. If a convex mapping 
f: E + F’ is continuous at a point a E domf and 28-differentiable at a, then 
for each BE%~ and each neighbourhood W of zero in F there exists a 
neighbourhood V of zero in F and a neighbourhood X of zero in E such that 

c?fi-f(a+x)(b)cc?f(a)(b)+ W 

forallbEBandxEX. 

Proof This is a direct consequence of Propositions 3.4 and 5.1. 1 

Remark. If the topology of E is metrizable and .a contains the set of all 
compact subsets of E, then the continuity assumption is redundand (see, 
e.g., Proposition 1.7.1 in [38] ). 

In [36] it is proved that for each neighbourhood V of zero in F the V- 
subdifferential mapping d,.f is locally Lipschitz (on the set of points at 
which f is continuous and subdifferentiable) with respect to the Haussdorff 
metric on the set of subsets of L(E, F) whenever E and Fare normed. This 
property which is one of the strongest properties which can be required on 
a multifunction is satisfied neither by the subdifferential multifunction ?j 
nor by the s-subdifferential multifunction SEf for E E F, and int F, = /zI. 
We now proceed to show that, in fact, the continuity of the subdifferential 
multifunction 6f characterizes the Frechet-differentiability of ,f: 

5.3. PROPOSITION. Assume F, is normal and.f: E + F’ is a convex mapp- 
ing with a E domf: If f is subdtfferentiable at a (i.e., <f(a) # 0) and iffor 
each BE J?? and each neighbourhood W of zero in F there exists a 
neighbourhood X of zero in E such that 

if(a)(b)c~f(a+.u)(b)+ W 

for all x E X and b E B, then ,f is J-differentiable at a. 

Proof Choose A E Y(a). Let B be in .9 and I+’ any full circled 
neighbourhood of zero in F. Choose a neighbourhood X of zero in E such 
that 

af(a)(b) = iif(a + .x)(b) + W for all .Y E X and b E B. 

Let r be a positive number with sB cz X for every s E 10, r]. Consider any 
point t E IO, r] and any point b E B and choose T,.h E @(a + tb) such that 
(A - T,,,)(b) E W. Then 

t 'C.f(a+tb)-.f(a)l-A(b)EF+ (5.1) 
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and 

t-‘[f(a+tb)-f(a)]= -tr’[f(a+tb-tb)-f(a+tb)]ET,,,(b)-F,. 
(5.2) 

Therefore by relation (5.2) 

tr’[f(u+tb)-f(u)]-A(bkT,,,(b)-A(b)-F+c W-F+ 

and hence by relation (5.1) 

t-‘[f(u+tb)-f(u)]-A(b)e(W-F+)nF+c W, 

which proves that f admits A as B-differential at the point LZ. 1 

5.4. COROLLARY. Assume F, is normal and f: E + F’ is a convex mup- 
ping which is continuous at a point u and subdifferentiable on a 
neighbourhood of a. Then f is ~-differentiable at a if and only if for each 
BE 2? and each neighbourhood W of zero in F there exists a neighbourhood X 
of zero in E such that 

if(u)(b)c8ff(u+x)(b)+ W j?wullxEXundbEB. 

Proof: The assertion is obviously sufficient by Proposition 5.3. Suppose 
now f is a-differentiable at a. Then if BE a and W is a neighbourhood of 
zero in F there exists by Corollary 5.2 a neighbourhood x’ of zero in E 
such that 

c?f(u+x)(b)cSf(u)(b)- W for all be B and XEX’. (5.3) 

Choose a neighbourhood of zero Xc A” such that f is subdifferentiable on 
a + X. Then for each ?I E X and each b E B we have by relation (5.3) 

ilf(u)(b) c if(u + x)(b) + W 

since df(u) is a singleton and df (a +x) is nonempty, and hence the proof is 
finished. 1 

Remark. For a list of conditions ensuring subdifferentiability off on a 
neighbourhood of a we refer the reader to the papers of Borwein [3, 51. 

In the next corollary E and F will be normed and L(E, F) will be 
endowed with the topology defined by the norm IITII = { IIT(x)ll: /lxll < 1). 
The closed unit ball around zero of radius r > 0 in L(E, F) or F will be 
denoted by L, or F, respectively. 
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5.5. COROLLARY. Assume E and F are normed and F, is normal. Let 
f: E + F’ be a comex mapping continuous at a point a and subdifferentiable 
on a neighbourhood of that point. Then f is Frechet-differentiable at a if and 
only if the subdifferential mult[function ?f is Hausdorff continuous at a in the 
sense that for each real number r > 0 there e.uists a neighbourhood X of :ero 
in E such that 

?f(a + x) c Cf(a)+ L, and ;If(a) c df(a + x) -t L, 

for every x E X. 

Proof It is easy to see that the inclusion df (a) c Sf(a + X) + L, implies 
that df(a)(b) c Sf(a + x)(b) + F, for every b in the closed unit ball around 
zero in E and hence by Corollary 5.4 the condition is sufficient. Assume 
now that f is Frechet-differentiable at a and consider a real number r > 0. 
By Corollary 5.2 there exists a neighbourhood X of zero in E such that f is 
subdifferentiable on a + X and 

Jf(a + -x)(b) c df(a)(b) + F, 

for all x in X and b in the closed unit ball around zero in E. Then as c?f (a) 
is a singleton it follows that 

df(a+x)cdf(a)+ L, for every .Y E X. 

Invoking the fact that df(a) is a singleton once again and the nonvacuity of 
df(a + X) one sees that the second inclusion of the statement of the 
corollary is equivalent to the first one and hence the proof is complete. 1 
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