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For any convex operator f from a convex set C of a topological vector space £
into another one F endowed with a convex cone F, a notion of V-subdifferential
dyfla) of fat ae C is introduced. Although it is equivalent to the notion of &-sub-
differential when F=R, it enjoys many important properties which are not satisfied
by the ¢-subdifferential whenever int F, = . The nonvacuity of ¢, f(a) is proved
whenever V is a neighbourhood of zero in F and f belongs to a large class of map-
pings analogous to the class of lower semicontinuous real-valued convex functions.
Other properties of F-subdifferentials are studied and applications to differen-
tiabilily Off are made. 'C: 1986 Academic Press. Inc.

INTRODUCTION

The notion of e-subdifferential of a real-valued convex function has been
introduced by Bronsted and Rockafellar {9]. Important properties of this
notion has been studied by many authors. Bronsted {8] gave a charac-
terisation of the subdifferential of the supremum of two lower semicon-
tinuous real-valued convex functions in terms of ¢-subdifferentials. Moreau
[22,23] and Asplund and Rockafellar [2] established some results on
equicontinuity of e-subdifferentials. But one of the major results on the e-
subdifferential (proved by Asplund and Rockafellar [2]) is the continuity
of the e-subdifferential multifunction (for a lower semicontinuous convex
function defined on a Banach space and for &> 0) with respect to the
Hausdorff topology on subsets. This property which is one of the strongest
properties which can be-required on a multifunction is not satisfied by the
subdifferential multifunction. Actually more can be said. Indeed
Hiriart-Urruty [14] (for Banach spaces) and Nurminskii [25] (for R”)
have recently proved that the e-subdifferential multifunction of a lower
semicontinuous real-valued convex function f is locally Lipschitz on the set
of points of continuity of f.

Besides many studies of convex operators and their subdifferentials (see,
e.g, [3-7, 16-19, 21, 26, 29, 33-37, 39) Borwein [6], Kutateladze [20],
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Thera [32] have considered the notion of e-subdifferentials for convex
mappings taking values in an ordered topological vector space and for ¢ in
the positive cone of that ordered vector space. Essentially these authors
have established an operational calculus for e-subdifferentials. Their
definition has the same formulation than the one for real-valued functions.
More precisely, if F is a topological vector space ordered by a convex cone
F., fis a convex mapping from a convex set C of a topological vector
space E into F and ¢ is in F, , the ¢-subdifferential of f at ae C, &°f(a), is
the set of all continuous linear mappings T from E into F such that

T(x—a)<fi(x)—f(a)+e¢ for all xe C.

Although this notion has some interesting properties, it does not enjoy the
above locally Lipschitz behavior if int F, = ¢&. This state of affairs leads us
to define the notion of V-subdifferentials which, as will be proved in [36],
enjoys the locally Lipschitz behavior whenever V is a neighbourhood of
zero. Moreover taking V'=[ —¢, ¢] one sees this notion encompass that of
e-subdifferentials since ¢, f(a) is the set of all continuous linear mappings
T from E into F such that

Tix—a)ef(x)—fla)+ V-F, for all xe C.

This paper is concerned with the study of some properties of V-subdif-
ferentials. It is divided in five parts. In the first section we recall some
preliminary definitions which will be used in the next parts. Section two is
devoted to the introduction of a class of mappings which is important for
the notion of V-subdifferentials, the class of mappings f which are at each
point of their domain, the limit of nested families of continuous affine
minorants for f. In section three we introduce and we define the notion of
V-subdifferential. Non vacuity of V-subdifferentials of mappings in the
above class is proved. In section four we establish some equicontinuity
properties of V-subdifferentials as subsets of continuous linear mappings
and in section five we study the relationship between the differentiability
and the V-subdifferentials of convex operators following the way opened by
Asplund and Rockafellar [2]. In particular we prove that a convex
operator fis Fréchet-differentiable at a point on a neighourhood of which f
is continuous and subdifferentiable if and only if the subdifferential mul-
tifunction of f is continuous at that point in the Hausdorff sense. So we
complete a result of Borwein (see [3, Theorem 5.5]) which states that this
property is implied by the Fréchet-differentiability of the convex operator f.

Before concluding this introduction let us indicate that a substantial sur-
vey on g-subdifferentials of real-valued convex functions can be found in
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Hiriart-Urruty [15] and that we refer the reader to the papers of Borwein
[3] and [5] for many important results on conditions for subdifferentials
of convex operators to be nonempty.

1. PRELIMINARIES

Throughout this paper E and F will be two (real separated) topological
vector spaces. We shall always assume that F, is a convex cone in F (ie.,
sF, +tF, c F, for all real numbers 5,1>0 and F, n(—F,)={0}) and
hence it induces an ordering in Fby y <" if ¥ —ye F,. So Fis an ordered
topological vector space.

We shall denote by L(E, F) the set of all continuous linear mappings
from E into F and by L, (F, F) the set of all mappings T e L(F. F) satisfy-
ing T(x)=0 for all x>0. Such mappings are called positive continuous
linear mappings and we write S < 7 whenever T(x)— S(x)>0 for all x>0.

One says that F, is normal if there exists a neighbourhood basis { ¥}, of
zero in F such that

V=(V+F,)n(V—F,).

Such neighbourhoods are said to be full. For properties of normal cones we
refer to [28] where it is proved that most classical ordered topological vec-
tor spaces are normal.

We adjoin an abstract greatest element infinity and a lowest one to F
and we shall write F*'=Fu {+o}and F=Fu{—x, +x}.

We shall say that F is order-complete if every nonempty subset with an
upper bound in F has a supremum in F.

A mapping f: E - F" is convex if

flsx+ )< (sfx)+1f(p) (L.1)

whenever x, y lie in E and s and ¢ are positive numbers with s+ ¢=1. We
recall that the domain dom f and the epigraph epi f of f are defined by

dom f={xe E:f(x)eF} and epif={(x,y)eExF. f(x)<y}.
The subdifferential or subgradient for f at a€ E is defined by
f(a)={TeL(E, F). T(x—a)<f(x)—~f(a),Vxe E}

whenever ae dom f and df(a) = ¢ whenever a¢ dom f
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2. MAPPINGS WHICH ARE AT EACH POINT LIMIT OF
CONTINUOUS AFFINE MINORANTS

Before defining the notion of V-subdifferentials we introduce a class of
convex operators which will appear very useful for proving some important
properties of V-subdifferentials.

2.1. DeFINITION. Let f: E— F* be a convex mapping. We shall say that
fe A(E) F) if for each xedom f there exists a directed set J, and a collec-
tion (A4;(*)+b,);.,, of continuous affine mappings (here 4, € L(E, F) and
b, e F) with

A¥)+b,<f(y) for every yedom f
and

f(r)—hm (A,(x)+b;).

1€ J¢

Remark. Obviously f+ ge A(E, F) and tfe A(E, F) whenever /. g lie in
A(E, F) and ¢ is a positive real number.

2.2. DerINITION (see [28]). One says that F is a topological vector lat-
tice if sup(x, v) exists for all x, ye F and if F has a neighbourhood basis
{V'}, of zero such that

V=) {yeF|rI<|x|}

xel’
where | x| =sup(—x, x).

The following lemma will be used in the next proposition. Although its
proof is similar to the one of Theorem 6 in Valadier [37], we did not find
the statement below in the literature. In fact, the classical formulation is
that for each (continuous) sublinear mapping f:E—F we have
f(x)=max{T(x): Tedf(0)} whenever F is order complete (and normal)
(see, e.g., Valadier [37], Rubinov [29], and Kutateladze [19]).

2.3. LEMMA. Assume that F is order complete and F _ is normal. Let f be
a continuous sublinear mapping (i.e., positively homogeneous and convex) !
from E into F. Then for each x € E we have

o 0)x)=[—f(—x),f(x)],
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where
f(0)(x)={T(x): Tecf(0);
and

[—f(=x),f()]={yeF: —f{-x)<y<f(X)}.

Proof. If Tedf(0) we have T(x)<f(x) for every xe E and hence
—f(—x)< —T(—x)=T(x) < f(x) for every xe X, which proves that

of (O)(x}= [—f(—x), f(x)}].

Let us show the reverse inclusion. Let ae E and be [ —f(—a), f(a)].
Consider the linear mapping T from R- g into F defined by T(ta)=1tbh for
every t€ R. Then for every real number >0 we have

T(ta)=1th <tf(a)=f(ta)
and
T(—ta)=t(—b)<tf(—a)=f(—ta)
and hence by the generalized Hahn Banach extension theorem for order

complete vector space (see [11]) there exists a linear mapping T from E
into F such that

x) < f(x) for all xe E
and this relation implies that T is continuous since f is continuous at zero.

Therefore Tedf(0) and bedf(0)(a), which completes the proof of the
lemma. ||

Remark. If one considers the algebraic subdifferential it is enough to
assume that F is order complete.

2.4, PROPOSITION. Let F be an order complete topological vector lattice.

(1) For x,yeF there exist I, k, in L, (F,F) with I,+1,=
k,+k,=1d, (here 1d denotes the identity mapping) such that

sup(x, v)=L,x+1,y and inf(x, )=k, x+ k.
(2) If x<y, then
[x,y]={Lx+Ly:l,e L (F.F)and |, +[,=1ds}



V-SUBDIFFERENTIALS 447

(3) For each finite family (x,), . x there exists a finite family (I,) x
of elements of L, (F, F) such that

supx,= Y [l(a,) and Y L, =1d,.
kek kek ke K

Proof. Let f. F— F defined by f(x)=x", where x* =sup(x, 0). The
mapping f is sublinear and continuous since F is a topological lattice. Then
by Lemma 2.3

o (0)(x)=[—f(—=x), flx)]

and hence

AO)x)=[—x",x"], where x~ =sup(—x, 0).

Moreover making use of the relation f(x)=sup(Id(x), 0) it is not difficult
to show that

of(0)={le L(F, F):0<I<Idj}.
Therefore
[—x~,x"]={Ix:le L(F, F),0<I<1d,}. (2.1)

Consider now x, yeF. By relation (2.1) there exists /e L(F, F) with
0</<Id such that

sup(x, y)=sup(x —y+y 3)=(x—r)" +y
=lx—y)+vy=Ix)+ (Id— ) y) (2.2)

In the same way, if x <y we have again by relation (2.1),

[, y]=x+[0,p—x]=x+[-(y—x) ,(yr—x)*]
=x+{l(y—x)leL(F, F),0</<Id;}
= {(Idp— ) x+ Iy [€ L(F, F),0<I<1d,.).

So the proof is complete since statement (3) and relation inf(x, y)=
k,x+k, y are direct consequences of relation (2.2). ||

Following Moreau [23] we shall denote by I'(E, F) the set of all map-
pings f: E— F" such that f is the pointwise supremum on dom f of the
collection of all continuous affine minorants for f.
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We recall that Fis a Dini space (see [3] and [26] for many examples of
Dini spaces) if every increasing net with a supremum converges to that
supremum.

2.5. PrROPOSITION. If F is a Dini order complete topological vector lattice,
then I'(E, FY< A(E, F).

Proof. Let fe I'(E, F) and aedom f. Let us denote by (A;( )+ 5,),., the
collection of all continuous affine mappings pointwise majorized by f. If &
denotes the set of all finite subsets of 7 and if we put for each Ke &

f,((x)=fup (A, (x)+b,) for every xe E,
e K

then the family (f«(a))g. . is upper bounded in F and is an increasing net
with respect to the order defined by the inclusion relation on % and as

fla)=sup{fx(a):Ke¥ |
we have

fla)= lim fy(a)

since F is Dini. By Proposition 2.4, for each Ke . there exists a finite
family (/,), . ¢ of elements in L , (F, F) satisfying

z ly=Idg and frla)= Z (e > A (@) + 1 (b))
kek kek
If we put
TK(X)z Z Ik':‘Ak(x) and Cx= z lk(bk)
ke K keK
then
Srla)=Tg(a)+ck

and for each x edom f we have

Tg(x)+cg= Z L (A (x)+by)

ke K

< Y L(f(x)

ke K

=f(x).
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Therefore T (- )+ ck is a continuous affine minorant for f and

flay= ,lin}/ (Te(a)+ck)

which completes the proof. |

To give another class of mappings in A(E, F) let us recall the following
notion.

A subset C of a vector space X is said to be /ineally closed if the intersec-
tion of C with every line in X is a closed set in the natural topology of the
line.

2.6. COROLLARY. Let f be a convex mapping from E into F' with
int(dom f) # (&. Assume F is a Dini order complete topological vector lat-
tice, epi f is lineally closed in Ex F and f is continuous on int(dom f). Then
fe A(E, F).

Proof. This is a direct consequence of Proposition 2.5 and Theorem 2.2
in [7] which holds only with the assumption that epi f is lineally closed
but non-necessarily topologically closed. |

3. V-SUBDIFFERENTIALS
We introduce in this section the notion of V-subdifferentials.

3.1. DEFINITION. Let f: £ — F* be a convex operator. For a subset S of
F containing zero, the S-subdifferential ¢ f(a) of f at a is the set

Osfla)={TeL(E F):T(x—a)ef(x)—f(a)+S—F,,Vxedom f}
if aedom £, and 05 f(a)= if a¢ dom f.
Remarks. (1) Obviously if 0e §’' = S, then

ifcisfedlst.

(2) If F, is closed and if .4~ denotes a neighbourhood basis of zero
in F, then for every aedom f

fla)= () éifla)

e t

Until now the notion of V-subdifferential has not been defined. Borwein
[6], Kutateladze [20], and Thera {327 have only studied the notion of &-
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subdifferential (¢€ F, ) of a convex operator, a notion which is a direct
transcription of the usual definition of e-subdifferentials of real-valued con-
vex functions.

The notion of V-subdifferential is equivalent to that of e-subdifferential
when F=R by Remark 2 following Definition 3.2. However, this is not true
whenever int(F, )= and many results established in this paper for V-
subdifferentials are not true for e-subdifferentials.

3.2. DEFINITION. Let f: E— F* be a convex mapping and e€ F, . The &-
subdifferential of f at a point aedom f is the set

Oflay={TeL(E, F): T(x —a)<f(x)—fla)+ e Vxedom [}

Remarks. (1) The reader will note the notation used for ¢-subdifferen-
tials to reserve the usual notation for V-subdifferentials when F is normed
and V is the closed ball around zero of radius ¢, see Corollary 4.4.

(2) ForeeF,, =0 ..y, where [—e,e]=(—e+F, )n(e—F,)

(3) For every e€ F, and every neighbourhood V' of zero in F there
exists a real number 7> 0 such that éf<=é,,-f. |

Let us give a first remarkable property of }-subdifferentials.

3.3. PROPOSITION. Let fe A(E, F). If aedomf and if V is a
neighbourhood of zero in F, then ¢, f(a)# .

Proof. As fe A(E, F), there exists a directed set J and a collection
(A,(-)+b,),., of continuous affine minorants for f such that

f(a)=1irrj1 [A4,(a)+b;]

and hence there exists /e J such that

Afa)+ b, eflay—V.

Therefore for every xedom f we have
A(x—a)=A;(x)+b,—A,(a)—b,efix)—F, —fla)+V
and hence 4,€ ¢, f(a). |

Before stating the next proposition and its corollary, which give a second
remarkable property of ¥-subdifferentials, let us recall that a family (f)),.,
of mappings from E into F" is said to be equicontinuous at a point
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ae();c;domf; if for every neighbourhood V of zero in F there exists a
neighbourhood X of zero in E such that

fila+X)—f(a)cV  forall iel

3.4. PROPOSITION. Let (f});c; be a family of convex mappings from E
into F* equicontinuous at a point a€(),.,domf;. Then for every
neighbourhood V of zero in F there exist a neighbourhood V' of zero in F and
a neighbourhood X of zero in E such that

Cpfilatx)cdyfila) forall xeX and i€l

Proof. Let V be any neighbourhood of zero in F. Let us choose a cir-
cled neighbourhood ¥ of zero in F satisfying

V+V+V+V+ Vel

By equicontinuity, there exists a neighbourhood X’ of zero in E such that
fila+ X'Y—fi{a)< V' for all ie I Let us choose a neighbourhood X of zero
in E with X+ X< X" and let us show that

Oy fila+x)c iy fila) forall xeX and iel

Consider any point x € X, any point i€ [ and any element Te€d,. f;(a + x).
For every y e dom f we have

T(y—a)=T(x)+ T(y—a—x)efila+x+x)—f.(a+x)
+V+fi(y)—fla+x)+ V' —F,
and hence
T(y—a)efi(y)—fila)+2(fi(a)—fila+x))
+(fila+x+x)—fila)+ V' +V —F,
cfi(y)—fil@y+V+V'+V+V' +V' —F,
cfily)—fila)+V~-F,.

Therefore Ted,f;(a) and the proof is complete. |

3.5. COROLLARY. Let (f});c be a family of convex mappings from E into
F* equicontinuous at a point ae (\;.,dom f,. Then for every neighbourhood
V of zero in F there exists a neighbourhood X of zero in E such that

f(a+x)cd,fi(a) forallxeXandiel
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Proof. This is a direct consequence of Proposition 3.4 and Remark 2
following Definition 3.1. |

4. EQUICONTINUITY OF V-SUBDIFFERENTIALS

In this section we shall study equicontinuity properties of V-subdifferen-
tials as subsets of L(E, F).

Let us begin by recalling the following result which has been established
in [ 16, Proposition 2.57].

4.1. PROPOSTITION. Let (f;);., be a family of convex mappings from E
into F*. Then the family is equicontinuous at a point a if and only if it is
equilipschitzian around a in the sense that for each closed circled
neighbourhood W of zero in E there exists a neighbourhood X of zero and a
closed circled neighbourhood V of zero in E such that

pulfila+x)—fila+xN<p(x—x') forallx,x'eX and i€l

where

pwl(y)=inf{1>0:yetW}.

The following proposition gives a first result on equicontinuity of subdif-
ferentials.

4.2. PROPOSITION. Let (f));c,; be a family of convex mappings from E
into F' equicontinuous at a point a. If F, is normal, then for any
topologically bounded subset S of F containing zero, there exists a
neighbourhood X of zero in E such that | J;., 0sfi(a+ X) is equicontinuous in
L(E, F), where 05fila+ X)={,cx0sfila+x).

Proof. Let W be a full-circled neighbourhood of zero in F and W, a
closed-circled neighbourhood of zero satisfying W,+ W, W. By
Proposition 4.1 there exists a neighbourhood U of zero in E such that

fila+x)—fila+x)eW, foralliel and x,x' e U.

Choose a real number ¢e]0,1] with tScW; and a circled
neighbourhood X of zero in E with X+ X< U. We may assume that
Uies0sfla+ X) is nonempty. Then for each ye X, each xe X, each ief
with d5f,(a+ x)# & and each T,ed¢ f,(a+ x) we have

T(Mefla+x+y)—fila+x)+S—F, «cW,+S—-F,
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and hence

T(ty)etWy+tS—F, c W+ Wy—F, cW-F,.

Therefore we have

T(tX)c(W—F )n(W+F,)=W

and hence |J;., &5 f;(a+ X) is equicontinuous in L(E, F). |

As a first immediate corollary we have:

4.3. COROLLARY. Let f E— F* be a convex mapping continuous at a
point acdom f. If F_ is normal, then for every topologically bounded subset
S of F containing zero there exists a neighbourhood X of zero in E such that
s fla+ X) is equicotinuous in L(E, F).

If Fis normed and if B is the closed unit ball around zero of F, then for
every real number r >0 we shall denote the rB-subdifferential of / at a by

¢, fla).

4.4. COROLLARY. Assume F is normed and normal. Let (f;);c, be a
Sfamily of convex mappings from E into F equicontinuous at a point a. Then
for every real number r >0 there exists a neighbourhood X of zero in E such
that \ ;.. 0, fi(a+ X) is equicontinuous in L(E, F).

Reciprocally to Proposition 4.2 we have the following result.

4.5. PROPOSITION. Assume that F_ is normal. Let (f;),., be a family of
convex mappings from E into F* for which there exist a neighbourhood X of
zero in E, a topologically bounded subset S of F containing zero and an
equicontinuous family (T, ).cyerxx in L(E, F) satisfying T, € dsfi(a+ x)
for each i€l and each x € X. Then the family (f,);., is equicontinuous at a.

Proof. Let W be a full circled neighbourhood of zero in F and W, a cir-
cled neighbourhood of zero in F with W, + W,< W. Choose a real number
te 10, 1] with tS< W, and a circled neighbourhood U of zero such that
Uc X and

T, (UycWw, for allieIand xe X.
Then for each xe U and each ie I we have

flay—fla+x)eT, (—x)—S+F,
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and hence

fla+x)~fla)eT, (x)+S—F, cW,+S—-F_.

Therefore for each xe U and each /e ] we have by the convexity of f;

fla+ix)—fla)etl fla+x) = fla)] - F, ctWo+1S—F,

and hence

fla+tx)—fla)e W—F,.

By the convexity of f; once again we have for each xe U and each ie [
flatix)—fla)e —=[fla—tx)—fla) ]+ F, cW+F,
and hence
fla+tU)—fla)c(W—F )n(W+F, )=W
for all ie I and the proof is complete. |

Making use of the class of convex mappings A(F, F) we can give the
following necessary and sufficient condition for equicontinuity of families of
mappings in A(E, F).

4.6. COROLLARY. Assume F is normed and normal. Let (f.);,., be a
family of mappings in A(E, F). Then this family is equicontinuous at a point
ae(),c,dom f, if and only if there exists a real number r>0 and a
neighbourhood X of zero in E such that \),.,0.f:(a+ X) is equicontinuous in
L(E, F).

Proof. Since by Proposition 3.3 0,f;(x)# & for each xedomf,, the
corollary follows from Proposition 4.5 and Corollary 4.4. |

5. DIFFERENTIABILITY AND V-SUBDIFFERENTIALS

In this section following the way opened by Asplund and Rockafellar
[2] for real-valued convex functions (see also [13]) we shall study the
relationship between the differentiability and the V-subdifferentials of con-
vex operators,

Let # be a family of bounded subsets of E such that E={) {B: Be #}
and for any Be % the set —B={—b:be B} belongs to #. A mapping
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f: E—> F" is said to be #-differentiable at a point aedom f if there exists a
continuous linear mapping T e L(E, F) such that for each Be %

lilrg t'[fla+th)~fla)]=T(b)

uniformly with respect to be B.
If # consists of singleton (resp. compact or bounded) subsets of E, f is
said to be Gateaux (resp. Hadamard or Fréchet) differentiable at a.
Obviously if f is #-differentiable at a and F_ is closed then éf(a)= {4},
where A4 is the #-differential of f at a. So we shall always assume in the
sequel that F, is closed.

5.1. PROPOSITION. Assume that F, is normal. If a convex mapping
fr E— F’ is B-differentiable at a point acdom f, then for each Be # and
each neighbourhood W of zero in F there exists a neighbourhood V of zero in
E such that

oy fla)(b)c df(a)(b)+ W  for every be B,
where
0y fla)b)={T(b): Ted, f(a)}

Proof. Put df(a)={A4}. Let Be # and W any neighbourhood of zero
in F. Choose a full circled neighbourhood W’ of zero in F with W’ < W and
a neighbourhood V of zero in F with V' + V' < W', By differentiability there
exists a real number 7> 0 such that

t '[fla+th)—f(a)le A(b)+V  for every be Bu(—B).
Then for any Ted, f(a) and any be Bu (— B) we have
T(byer '[fla+th)—fla)]+ V—F, cAbY+V+V—-F,
and hence
T(b)e A(b)+ W' —F .
Therefore for any Ted, f(a) and any be B we have
T(b)e A(b)+ (W —F Y (W +F, )= A(b)+ W < A(b)+ W

and the proof is complete. |

The following result states a kind of continuity of the subdifferential
mapping. Borwein [3] has also established a similar property in the con-
text of normed vector spaces.

409 115 2-11
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5.2. COROLLARY. Assume that F_ is normal. If a convex mapping
fi E— F* is continuous at a point ae dom f and #B-differentiable at a, then
for each Be # and each neighbourhood W of zero in F there exists a
neighbourhood V' of zero in F and a neighbourhood X of zero in E such that

v flat+x)b)y=diflalb)+ W

for all be B and xe X.
Proof. This is a direct consequence of Propositions 3.4 and 5.1. ||

Remark. If the topology of E is metrizable and # contains the set of all
compact subsets of E, then the continuity assumption is redundand (see,
e.g., Proposition 1.7.1 in [38]).

In [36] it is proved that for each neighbourhood V of zero in F the V-
subdifferential mapping ¢, f is locally Lipschitz (on the set of points at
which f is continuous and subdifferentiable) with respect to the Haussdorff
metric on the set of subsets of L(F, F) whenever E and F are normed. This
property which is one of the strongest properties which can be required on
a multifunction is satisfied neither by the subdifferential multifunction éf
nor by the g-subdifferential multifunction é°f for ee F, and int F, = .
We now proceed to show that, in fact, the continuity of the subdifferential
multifunction ¢f characterizes the Fréchet-differentiability of f.

5.3. PROPOSITION. Assume F . is normal and f. E — F* is a convex mapp-
ing with aedom f. If f is subdifferentiable at a (ie., of(a)# &) and if for
each Be B and each neighbourhood W of zero in F there exists a
neighbourhood X of zero in E such that

fla)bycéfta+ xyb)+ W

for all xe X and be B, then [ is #-differentiable at a.

Proof. Choose Aecéf(a). Let B be in # and W any full circled
neighbourhood of zero in F. Choose a neighbourhood X of zero in E such
that

dflaybycéf(a+ x) )+ W for all xe X and be B.

Let r be a positive number with sB< X for every se J0, r]. Consider any
point r€ 10, r] and any point b€ B and choose T, € ¢f(a+ tb) such that
(A—T,,)(b)e W. Then

t '[fla+th)—fla)]—A(b)eF, (5.1)
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and

tT [ fla+th)—fla)]=—t '[flattb—tb)—fla+th)]eT,,(b)—F,.
(5.2)

Therefore by relation (5.2),
t ' [fla+tb)—fla)]— A(b)e T, ,(b)— A(b)—F, c W—F,
and hence by relation (5.1)
t" [fla+th)—fla)]—Ab)e (W—F )nF, W,

which proves that f admits 4 as #-differential at the point a. ||

5.4. COROLLARY. Assume F_ is normal and f. E— F' is a convex map-
ping which is continuous at a point a and subdifferentiable on a
neighbourhood of a. Then [ is B-differentiable at a if and only if for each
Be # and each neighbourhood W of zero in F there exists a neighbourhood X
of zero in E such that

Na)byc dfta+ x)by+ W  for all xe X and be B.

Proof. The assertion is obviously sufficient by Proposition 5.3. Suppose
now f is #-differentiable at a. Then if Be # and W is a neighbourhood of
zero in F there exists by Corollary 5.2 a neighbourhood X' of zero in £
such that

fla+ x)b)=ifla)b)y— W for all e B and xe X". (5.3)

Choose a neighbourhood of zero X < X” such that f is subdifferentiable on
a+ X. Then for each xe X and each be B we have by relation (5.3)

Na)b)cifla+x)b)y+ W

since ¢f(a) is a singleton and Jf{a + x) is nonempty, and hence the proof is
finished. |}

Remark. For a list of conditions ensuring subdifferentiability of f on a
neighbourhood of a we refer the reader to the papers of Borwein [3, 5].

In the next corollary £ and F will be normed and L(E, F) will be
endowed with the topology defined by the norm | 7| = {|| T(x)|: | x| <1}.
The closed unit ball around- zero of radius r>0 in L(E, F) or F will be
denoted by L, or F, respectively.
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5.5. COROLLARY. Assume E and F are normed and F, is normal. Let
f: E— F" be a convex mapping continuous at a point a and subdifferentiable
on a neighbourhood of that point. Then f is Fréchet-differentiable at a if and
only if the subdifferential multifunction ¢f is Hausdorff continuous at a in the
sense that for each real number r > 0 there exists a neighbourhood X of zero
in E such that

fla+x)céf(a)+ L, and fla)ycof(a+x)+ L,

for every xe X.

Proof. 1t is easy to see that the inclusion df(a) = df(a+ x) + L, implies
that df(a)}(b) < éf(a+ x)(b) + F, for every b in the closed unit ball around
zero in E and hence by Corollary 5.4 the condition is sufficient. Assume
now that f is Fréchet-differentiable at a and consider a real number r > 0.
By Corollary 5.2 there exists a neighbourhood X of zero in E such that f'is
subdifferentiable on ¢ + X and

Of (a+ x)b)<df(a)(b)+ F,

for all x in X and b in the closed unit ball around zero in E. Then as d¢f(a)
is a singleton it follows that

f(a+x)cofla)+ L, for every xe X.

Invoking the fact that Jf(a) is a singleton once again and the nonvacuity of
df(a+ x) one sees that the second inclusion of the statement of the
corollary is equivalent to the first one and hence the proof is complete. ||
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