Corrigendum

Corrigendum to "An equivalence of categories for graded modules over monomial algebras and path algebras
 of quivers" [J. Algebra 353 (1) (2012) 249-260]

Cody Holdaway*, S. Paul Smith

Department of Mathematics, Box 354350, Univ. Washington, Seattle, WA 98195, United States

ARTICLE INFO

Article history:

Received 23 January 2012
Available online 2 March 2012
Communicated by Michel Van den Bergh

MSC:

05C20
16B50
16G20
16W50
37B10

Keywords:

Monomial algebras
Ufnarovskii graph
Directed graphs
Representations of quivers
Quotient category

Abstract

Our published paper contains an incorrect statement of a result due to Artin and Zhang. This corrigendum gives the correct statement of their result and includes a new result that allows us to use the correct version of Artin and Zhang's Theorem to prove our main theorem. Thus the main theorem of our published paper is correct as stated but its proof must be modified.

© 2012 Elsevier Inc. All rights reserved.

1. The error

1.1. We retain the notation and definitions in our published paper [2].
1.2. Proposition 2.1 in [2] is stated incorrectly. It should be replaced by the following statement.

[^0]Proposition 1.1. (See [1, Prop. 2.5].) Let A and B be \mathbb{N}-graded k-algebras such that $\operatorname{dim}_{k} A_{i}<\infty$ and $\operatorname{dim}_{k} B_{i}<\infty$ for all i. Let $\phi: A \rightarrow B$ be a homomorphism of graded k-algebras. If $\operatorname{ker} \phi$ and coker ϕ belong to Fdim A, then $-\otimes_{A} B$ induces an equivalence of categories

$$
\mathrm{QGr} A \rightarrow \frac{\mathrm{Gr} B}{\mathrm{~T}_{A}}
$$

where

$$
\mathrm{T}_{A}=\left\{M \in \operatorname{Gr} B \mid M_{A} \in \operatorname{Fdim} A\right\} .
$$

1.3. As in our published paper, A is a finitely presented connected monomial algebra and $k Q$ is the path algebra of its Ufnarovskii graph, Q. Proposition 3.3 in [2] proved the existence of a homomorphism $\bar{f}: A \rightarrow k Q$ of graded k-algebras and [2, Prop. 4.1] showed that ker \bar{f} and coker \bar{f} belong to Fdim A. Therefore Proposition 1.1 implies that $-\otimes_{A} k Q$ induces an equivalence of categories

$$
\mathrm{QGr} A \rightarrow \frac{\mathrm{Gr} k Q}{\mathrm{~T}_{A}} .
$$

Thus to prove our main theorem, [2, Thm. 4.2] and [2, Thm. 1.1], which says that $-\otimes_{A} k Q$ induces an equivalence of categories

$$
\mathrm{QGr} A \equiv \mathrm{QGr} k Q=\frac{\operatorname{Gr} k Q}{\operatorname{Fdim} k Q},
$$

we must prove that $F \operatorname{dim} k Q=\mathrm{T}_{A}$. We do this in Proposition 2.3 below.

2. Corrected proof

2.1. The algebra A has a distinguished set of generators called letters and its relations are generated by a finite set of words in those letters. The vertices in Q are certain words, the arrows in Q are also words, and the arrow corresponding to a word w is labeled by the first letter of w. The details are in [2, Sect. 3.3].

Lemma 2.1. The arrows in Q have the following properties.
(1) Different arrows ending at the same vertex have different labels.
(2) Different arrows having the same label end at different vertices.

Proof. (1) Let a and a^{\prime} be different arrows ending at the vertex v. By definition, there are words w and w^{\prime} such that $a=a_{w}$ and $a^{\prime}=a_{w^{\prime}}$, and letters x and x^{\prime} such that $w=x v$ and $w^{\prime}=x^{\prime} v$. But $a \neq a^{\prime}$ so $w \neq w^{\prime}$ and therefore $x \neq x^{\prime}$. But a is labeled x and a^{\prime} is labeled x^{\prime}.
(2) This is obviously equivalent to (1).
2.2. The homomorphism $\bar{f}: A \rightarrow k Q$ is defined as follows: if x is one of the letters generating A, then

$$
\bar{f}(x):=\left\{\begin{array}{l}
\text { the sum of all arrows labeled } x \\
0 \quad \text { if there are no arrows labeled } x .
\end{array}\right.
$$

Lemma 2.2. Let $\bar{f}: A \rightarrow k Q$ be the homomorphism above and write $A_{n}(k Q)$ for the right ideal of $k Q$ generated by $\bar{f}\left(A_{n}\right)$. For all $n \geqslant 0$,

$$
A_{n}(k Q)=k Q \geqslant n .
$$

Proof. Write $B=k Q$.
We will prove that $A_{n} B_{0}=B_{n}$ for all $n \geqslant 0$. This is certainly true for $n=0$.
We will now show that $A_{1} B_{0}=B_{1}$. To prove this, let a be an arrow in Q that begins at vertex u and ends at vertex v. Then there are letters x and y such that $a=a_{w}$ and $w=u y=x v$. The arrow a is therefore labeled x and $\bar{f}(x)=\cdots+a+\cdots$. By Lemma 2.1, a is the only arrow labeled x that ends at v; hence, if e_{v} is the trivial path at vertex v, then $f(x) e_{v}=a e_{v}=a$. Hence $a \in A_{1} B_{0}$. Thus $B_{1} \subset A_{1} B_{0}$. It is clear that $A_{1} B_{0} \subset B_{1}$ so this completes the proof that $A_{1} B_{0}=B_{1}$.

We now argue by induction on n. If $A_{n-1} B_{0}=B_{n-1}$, then

$$
A_{n} B_{0}=\left(A_{1}\right)^{n} B_{0}=A_{1}\left(A_{1}\right)^{n-1} B_{0}=A_{1} B_{n-1}=A_{1} B_{0} B_{n-1}=B_{1} B_{n-1}=B_{n} .
$$

This completes the proof that $A_{n} B_{0}=B_{n}$ for all $n \geqslant 0$. It follows that $A_{n} B=B \geqslant n$.
Proposition 2.3. $\mathrm{T}_{A}=\mathrm{Fdim} k Q$.
Proof. Every $k Q$-module is an A-module so a right $k Q$-module that is the sum of its finite dimensional $k Q$-submodules is also the sum of its finite dimensional A-submodules. Therefore Fdim $k Q \subset T_{A}$.

To prove the reverse inclusion, let $M \in \operatorname{Grk} Q$ and suppose M is in T_{A}; i.e., M is the sum of its finite dimensional A-submodules. Let m be a homogeneous element in M. Then $\operatorname{dim}_{k}(m A)<\infty$ so $m A_{\geqslant n}=0$ for $n \gg 0$. In particular, $m A_{n}=0$ so

$$
m(k Q \geqslant n)=m A_{n}(k Q)=0 .
$$

Hence $m(k Q)$ is isomorphic to a quotient of $k Q / k Q \geqslant n$ and therefore finite dimensional. In particular, m belongs to the sum of the finite dimensional $k Q$-submodules of M. Hence $M \in \operatorname{Fdim} k Q$.

Thus, $T_{A} \subset$ Fdim $k Q$ and the claimed equality follows.
This completes the proof of [2, Thm. 4.2] and [2, Thm. 1.1].

References

[1] M. Artin, J.J. Zhang, Non-commutative projective schemes, Adv. Math. 109 (1994) 228-287.
[2] Cody Holdaway, S. Paul Smith, An equivalence of categories for graded modules over monomial algebras and path algebras of quivers, J. Algebra 353 (1) (2012) 249-260, doi:10.1016/j.jalgebra.2011.11.033.

[^0]: DOI of original article: 10.1016/j.jalgebra.2011.11.033.

 * Corresponding author.

 E-mail addresses: codyh3@math.washington.edu (C. Holdaway), smith@math.washington.edu (S.P. Smith).

