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Abstract 

The regression accuracy and generalization performance of the support vector regression (SVR) model depend 
on a proper setting of its parameters. An optimal selection approach of SVR parameters was put forward based on 
chaotic simulated annealing algorithm (CSAA), the key parameters C and  of SVM and the radial basis kernel 
parameter g were optimized within the global scope. The support vector regression model was established for chaotic 
time series prediction by using the optimum parameters. The time series of Lorenz system was used to testify the 

effectiveness of the model. The root mean square error of prediction reached
-48.756 10 . Simulation results show 

that the optimal selection approach based on CSAA is available and the CSAA-SVR model can predict the chaotic 
time series accurately. 
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1.  Introduction 

With the development of chaos theory and its application, the analysis and forecasting of chaotic 
time series has become a very important research direction in signal processing field in recent years. The 
prediction of chaotic time series has been used to stock finance, electricity load forecasting, geological 
environment, weather forecasting [1-4]. 

Support Vector Machine (SVM) is new machine learning based on statistical theory[5]. It can solve 
small-sample, non-linear and high dimension problems by using structural risk minimization (SRM) 
instead of empirical risk minimization (ERM). It has stronger generalization ability and a very good 
application potentiality has been shown in classification and regression. The parameters selection of 
support vector machine is very important. The accuracy of classification or regression is determined by 
selecting a group of appropriate parameters. In recent years many researches on model selection have 
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been done including grid search[6], mutative scale chaos optimization algorithm[7], Genetic Algorithm [8], 
etc. 

Chaotic simulated annealing algorithm (CSAA) is a global optimization algorithm based on of 
simulated annealing algorithm (SAA) and chaos optimization algorithm (COA), possessing  the 
advantages of efficiency, robustness and flexibility of SAA and the regularity, ergodicity and intrinsic 
stochastic properties of chaotic motion. The advantages above mentioned make CSAA more superior than 
the simulated annealing algorithm searching randomly, and CSAA can converge to the global optimal 
solution quickly [9-10]. 

In this paper, a chaotic time series forecasting model was established based on SVM, and the key 
parameters C and the  radial basis kernel function parameter g were optimized and trained by using 
CSAA. Then, the time series of Lorenz system was used to testify the effectiveness of the model, and 
Simulation results show that the optimal selection approach based on CSAA is available and the 
Convergence rate is faster than standard simulated annealing algorithm.  

2. Overview of SVM and Prediction Model for Chaotic Time Series 

2.1 SVM regression (SVR) theory 

Prediction of chaotic time series can be attributed to support vector machine regression problems. In SVR, 
the basic idea is to map the data into a higher dimensional feature space via a nonlinear mapping ( )  
and then to do linear regression in the space. Therefore, regression approximation addresses the problem 
of estimating a function based on a given data set , ; 1, 2, ,i iy i Nx (where n

i Rx  is the input 
vector and iy R  is the desired value). SVM approximates the function with the form 

T( ) ( ) , : ,nf b R F Fx w x w                      (1)  
where 1{ ( )}N

i ix are the data in features space, 1{ }N
i kw and b are coefficients. They can be estimated by 

minimizing the regularized risk function: 
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Where ( , ( ))i iL y f x is loss function measuring the approximation errors between expected output iy and 
calculated output ( )if x , and C is regularization constant determining the tradeoff between the training 

error and the generalization performance. The second term 21
2

w  is used as a measurement of function 

flatness. Introduction of relaxation factor *,  leads Eq. (2) to the following constrained function: 
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Finally, by introducing Lagrange multipliers and exploiting to the optimality constraints, the 
decision Eq. (1) has become the follow form: 
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Where *, , 1, ,i i i N are Lagrange multipliers, satisfying the equalities * 0,i i 0i  
and * 0i . They are obtained by maximizing the dual formula of Eq. (3), which has the following form: 
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According to the nature of SVM regression, most of the *andi i are zeros. Hence, The final 
formulation can be arrived by solving optimization problem mentioned above and the support vector 
regression has the following form: 

*

1
( ) ( ) ( , )

N

i i i
i

f K bx x x                           (6) 

Although nonlinear function ( ) is usually unknown, all computations related to ( ) could be 
reduced to the form T( , ) ( ) ( )i iK x x x x . So what we need to do is selecting the appropriate kernel 
function. The advantages of RBF kernel function make it universally applied to SVM. The RBF kernel 
function can be applied to any sample by choosing right parameters.  

2.2 Prediction model for chaotic time series based on SVM 

1) Phase space reconstruction
Chaotic time series prediction is based on the theory of phase space reconstruction under Takens 

embedding theorem. A reconstructed phase space is a m-dimensional metric space into which a time 
series is embedded[10].  

Given an observation chaotic time series ( ) , 1,2, ,x t t N , selecting the embedding dimension m , 
the delay time , the phase space can be expressed as the following form:  

( ) ( ( ), ( ), ( ( 1) ),
( ) , ( 1,2, , )m

X t x t x t x t m

X t R t M
                       (7) 

where ( )X t  is a vector or a point in the construction phase space, ( 1)M N m is the number of 
points in the reconstructed phase space. If the embedding dimension is large enough, the phase space is 
homeomorphic to the state space that generated the time series, that is,  the phase space contains the 
same information as the original state space. There is a determinism map ( )f  meeting the following 
equation: 

( ) ( ( ))x t T f X t                                     (8) 
Local model is usually used to predict the next-step, in which, 0T  is the Step of forward prediction. 

( )f  is so called the predicting model for chaotic time series. 

2) SVM predicting model for chaotic time series  



 Hu Yuxia and Zhang Hongtao  /  Physics Procedia   25  ( 2012 )  506 – 512 509

Setting the ( )f of Eq. (8) as the support vector regression corresponding to Eq. (6) and 1T , the 
one-step prediction model for chaotic time series based on SVM has the following form:  

*

1

ˆ( 1) ( )K( ( ), ( ))
M

i i
i

x t X t X i b                  (9) 

where ˆ( 1)x t  is the value of one-step forecasting, then the next points in phase space can be expressed 

as ˆ ˆ( 1) ( ( 1), ( 1 ), ( ( 2) ))X t x t x t x t m   

3. Csaa For Parameters Optimization of SVM 

3.1 CSAA  
One-dimensional Logistic map is usually applied to chaos optimization algorithm whose 

mathematical model is the following form: 
1Z Z (1 Z ), Z [0,1], 1, 2, ,k k k k k                (10) 

where kZ is the value of the variable Z at the kth iteration, kZ  in the interval [0, 1], is a so-called 
bifurcation parameter of the system ( 0 4 ). If 3.5699456 4 , logistic mapping works in 
chaotic state, that is, no steady-state solution, the system is a full map interval of [0, 1]. The logistic map 
has special characters such as the ergodic property, stochastic property and sensitivity dependence on 
initial conditions of chaos. 

Consider the following continuous global optimization problem 

   
min ( )
s.t.     [ , ], 1, 2, ,i i i

f
J

x a b i m

x
                  (11) 

where [ , ] , 1,2, , .i ia b R i m and f is a real-valued continuous function. Based on the chaos system 
and simulated annealing, the chaos simulated annealing algorithm (CSAA) is proposed for solving the 
problem J , which combines the features of chaotic system and simulated annealing. CSAA for solving 
problem J  is described as follows. 
Step 1: Chaotic initialize. Given an initial value 0Z . Generate the different chaotic variables ,k

iZ  
1, 2, , , 1,2, ,i m k N by formula (10), where N is the length of chaotic time series, k is a random 

integer in set{1, , }N , the length of chaotic time series should not be much bigger. The initial solution 
T

0 0,1 0,2 0,( , , , )mx x xx  is produced by the formula 

      0, ( ) , 1,2, ,k
i i i i ix a b a Z i m                  (12) 

Step 2: Initialize the initial temperature. Calculate the values of the objective function of the N feasible 
solutions obtained in step 1, record the maximum value maxf  and minimum value minf , and take minf  
as the best value, take x  Corresponding to minf  as the current optimal solution *X , the Corresponding 
chaotic state is denoted by *C .  If the acceptance probability of the solutions with Poor performance 
is rP , according to Boltzman distribution, the initial temperature can be obtained by the following 
formula: 

          
*

max
0

rln
f f

T
P

                             (13) 

Step 3: Simulated annealing process.  
 (1) set 1 kZ Z , 1, 0k n . 
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(2) while ( minT T ) do 
(i) Generate a new solution T

,1 ,2 ,( , , , )n n n n my y yy based on the formula 

, , ( ) ,k
n i n i i i iy x b a Z i is randomly chosen from the set {1, 2, …, m}. k  is a random 

integer in set {1, …, N}.  is a variable which decreases by the formula e  in 
each iteration. Other components of ny  are same as that of nx . 

(ii) Evaluate the change in energy level * *( )nE f fy and ( ) ( )n nE f fy x . 
(iii) If * 0E , update the best solution *

nx y and the best value * *( )f f x . 

(iv) If 0E , update current state with new state, 1n nx y . 

(v) If 0E , update current state with new state with probability exp( )E

T
. 

(vi) 1n n . 
(3) Decrease temperature T according to annealing schedule by formulaT = T . 

Step4: Output the best solution *x and the best value *f . 

3.2  the parameters optimization of SVM 
IN SVR, the values of parameter C ,  and  affect the model complexity in different ways. 

Parameter C  determines the trade-off between model complexity and the degree to which deviations 
larger than are tolerated. Parameter  controls the width of the insensitive zone and can affect 
the number of SV in the optimization problem. Kernel parameter  determines the kernel width and 
relates to the input range of the training data set. 

In Matlab environment, the LIBSVM developed by scholars Chih-Jen Lin was applied to realize 
chaotic time series prediction. Setting the ranges of the parameters: 

5 15(2 , 2 )C , 12 0(2 ,2 ) , 15 5(2 , 2 )g , It was evident that ranges of the parameters were y large 
enough to meet most systems. The length of Logistic time series was 400N , annealing temperature 
decreasing coefficient was 0.95 . 

4. Chaotic Time Series Prediction Experiments 

Lorenz attractor was taken to examine the SVM prediction model optimized by CSAA whose 
formula is following form: 

( )x a y x

y xz rz cy

z xy bz

                                (14) 

The system is chaotic when 10a , 8 3b , 28c . And the differential equations were solved 
numerically using 4th order Runge-Kutta integration with a step size 0.01t  and initial 
value (0) 0 (0) 1 (0) 0x y z . In order to eliminate the influence of the initial value, the initial 1000 
points were discarded, the phase space reconstruction of x chaotic time series was done with the 
embedding dimension m , the delay time . Then 1500 points were taken as training data, 600 points were 
taken as test data.  

The absolute error was taken to measure the accuracy of the prediction model. 
ˆ( ) ( ) ( )e i y i y i                                (15) 

Where ( )y i and ˆ( )y i  were the actual values and predicted values of chaotic time series. 
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   The root mean square error(RMSE) was used as integral performance index to evaluate the model . 
 

2

1 1

ˆ( ( ) ( )) /
N

RMSE y i y i N                           (16) 

Where N was the number of test points. 
Normalizing dates to [0 1] and training SVR with CSAA, the optimal values of , ,C g were 

obtained, 2333.4C , 0.002925, 0.01603g .Then  the prediction experiment was done with the 
SVR model obtained, 48.756 10RMSE , and the prediction and absolute error curves was shown in 
Figure 1 and Figure 2. 

 

Fig 1. Predicted results and the original curve of Lorenz system 

 

Fig 2. Absolute prediction error curve of Lorenz system 
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5. Conclusion 

IN this paper, the chaotic simulated annealing algorithm was used for selecting the key parameters of 
support vector machine regression model, and the time series of Lorenz system was employed to examine 
the SVR model. Simulation results show the effectiveness of the algorithm, that is the SVM prediction 
model optimized with CSAA has a fast convergence rate and strong generalization capability, and can 
more accurately predict chaotic time series. 
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