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Abstract

The classical hypergeometric summation theorems are exploited to derive several striking
ties on harmonic numbers including those discovered recently by Paule and Schneider (2003
 2004 Elsevier Inc. All rights reserved.
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1. Introduction and notation

Let x be an indeterminate. The generalized harmonic numbers are defined to be par
sums of the harmonic series:

H0(x) = 0 and Hn(x) =
n∑

k=1

1

x + k
for n = 1,2, . . . . (1.1)

Forx = 0 in particular, they reduce to the classical harmonic numbers:

H0 = 0 and Hn =
n∑

k=1

1

k
for n = 1,2, . . . . (1.2)
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Given a differentiable functionf (x), denote two derivative operators by

Dxf (x) = d

dx
f (x) and D0f (x) = d

dx
f (x)

∣∣∣∣
x=0

.

Then it is an easy exercise to compute the derivative of binomial coefficients

Dx

(
x + n

m

)
=

(
x + n

m

) m∑
�=1

1

1+ x + n − �

which can be stated in terms of the generalized harmonic numbers as

Dx

(
x + n

m

)
=

(
x + n

m

){
Hn(x) − Hn−m(x)

}
(m � n). (1.3)

In this paper, we will frequently use its evaluation atx = 0:

D0

(
x + n

m

)
=

(
n

m

)
{Hn − Hn−m} (m � n). (1.4)

For the inverse binomial coefficients, the analogous results read as

Dx

(
x + n

m

)−1

=
(

x + n

m

)−1 m∑
�=1

−1

1+ x + n − �

and the explicit harmonic number expressions

Dx

(
x + n

m

)−1

=
(

x + n

m

)−1 {
Hn−m(x) − Hn(x)

}
(m � n), (1.5)

D0

(
x + n

m

)−1

=
(

n

m

)−1

{Hn−m − Hn} (m � n). (1.6)

As pointed out by Richard Askey (cf. [1] and [3]), expressing harmonic numbers in t
of differentiation of binomial coefficientscan be traced back to Issac Newton. Follow
the work of the two papers cited above, we will explore further the application of de
tive operators to hypergeometric summation formulas. Several striking harmonic n
identities discovered in [3] will be recovered and some new ones will be established

Because hypergeometricseries will play a central role in the present work, we reprodu
its notation for those who are not familiar with it. Roughly speaking, a hypergeom
series is a series

∑
Cn where the term ratioCn+1/Cn is a rational function inn. If the

shifted factorial is defined by

(c)0 = 1 and (c)n = c(c + 1) · · · (c + n − 1) for n = 1,2, . . . (1.7)
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t

s
low-
then the hypergeometric series (cf. [2]) reads explicitly as

1+pFq

[
a0, a1, . . . , ap

b1, . . . , bq

∣∣∣z
]

=
∞∑

n=0

(a0)n(a1)n · · · (ap)n

n!(b1)n · · · (bq)n
zn. (1.8)

In order to illustrate how to discover harmonic number identitiesfrom hypergeometric
series, we start with the Chu–Vandermonde–Gauss formula [2, §1.3]:

2F1

[ −n, a

c

∣∣∣1

]
= (c − a)n

(c)n
.

Under parameter replacementsa → −n − µn andc → 1+ λn + x with λ,µ ∈ N0, it can
equivalently be stated as the following binomial convolution identity

n∑
k=0

(
n + µn

k

)(
x + λn + n

n − k

)
=

(
x + λn + µn + 2n

n

)
. (1.9)

In view of (1.4), we derive, by applying the derivative operatorD0 to both sides of the las
identity, the following relation:

n∑
k=0

(
n + µn

k

)(
n + λn

n − k

)
{Hλn+n − Hλn+k}

=
(

2n + λn + µn

n

)
{Hλn+µn+2n − Hλn+µn+n}.

According to the factor inside the braces{· · ·}, splitting the left-hand side into two sum
with respect tok and then evaluating the first one by (1.9), we get immediately the fol
ing simplified result.

Theorem 1. With λ,µ ∈ N0, there holds the following harmonic number identity:

n∑
k=0

(
n + µn

k

)(
n + λn

n − k

)
Hλn+k

=
(

2n + λn + µn

n

)
{Hλn+n + Hλn+µn+n − Hλn+µn+2n}.

One interesting special case corresponding toµ = 0 can be stated as

n∑(
n

k

)(
n + λn

n − k

)
Hλn+k =

(
2n + λn

n

)
{2Hλn+n − Hλn+2n}. (1.10)
k=0
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It can be further specialized, withλ = 0, to

n∑
k=0

(
n

k

)2

Hk =
(

2n

n

)
{2Hn − H2n}. (1.11)

There exist numerous hypergeometric series identities. However we are not going to
full coverage about how they can be used to find harmonic number identities. The authors
will limit themselves to examine, by the derivative operator method, only the clas
identities named after Pfaff–Saalschütz, Dougall–Dixon and the Whipple transformatio
in next three sections. As applications, we will tabulate 26 closed formulas and 21
formations on harmonic numbers at the end of the paper.

Just like the demonstration of Theorem 1 and (1.10), we will examine the a
mentioned hypergeometric theorems in the three steps: reformulation in terms of bin
formulas, application of the derivative operatorD0 and reduction to harmonic number ide
tities by specifying parameters. Because all the computations involved in the paper a
routine manipulations on finite series, we will therefore omit the details for the lim
space.

2. The Pfaff–Saalschütz theorem

Recall the Saalschütz theorem [2, §2.2]

3F2

[ −n, a, b

c, 1+ a + b − c − n

∣∣∣1

]
= (c − a)n(c − b)n

(c)n(c − a − b)n
.

Performing the parameter replacement

a → −n − µn − µ′x
b → 1+ λn + λ′x
c → 1+ νn + ν′x


 (λ,µ, ν ∈ N0)

we may express it as a binomial identity

n∑
k=0

(
n
k

)(
k+λn+λ′x

k

)(
n+µn+µ′x

k

)
(
k+νn+ν ′x

k

)(
k+(λ−µ−ν−2)n+(λ′−µ′−ν ′)x

k

) =
(
(λ−ν)n+(λ′−ν ′)x

n

)(
(µ+ν+2)n+(µ′+ν ′)x

n

)
(
n+νn+ν ′x

n

)(
(λ−µ−ν−1)n+(λ′−µ′−ν ′)x

n

) .

ApplyingD0 to the casesµ′ = ν′ = 0, λ′ = ν′ = 0 andλ′ = µ′ = 0 of the last identity, we
get respectively the following harmonic number identities.

Theorem 2. For λ,µ, ν ∈ N0 with λ > 1+ µ + ν, we have the harmonic number identit:

n∑ (
n
k

)(
λn+k

k

)(
µn+n

k

)
(
νn+k

)(
(λ−µ−ν−2)n+k

) {Hλn+k − H(λ−µ−ν−2)n+k}

k=0 k k
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y

y

=
(
(λ−ν)n

n

)(
(µ+ν+2)n

n

)
(
νn+n

n

)(
λ−µ−ν−1)n

n

) {H(λ−ν)n − H(λ−ν−1)n + Hλn − H(λ−µ−ν−1)n}.

Theorem 3. For λ,µ, ν ∈ N0 with λ > 1+ µ + ν, we have the harmonic number identit:

n∑
k=0

(
n
k

)(
λn+k

k

)(
µn+n

k

)
(
νn+k

k

)(
(λ−µ−ν−2)n+k

k

) {Hµn+n−k − H(λ−µ−ν−2)n+k}

=
(
(λ−ν)n

n

)(
(µ+ν+2)n

n

)
(
νn+n

n

)(
λ−µ−ν−1)n

n

) {H(µ+ν+1)n − H(µ+ν+2)n + Hµn+n − H(λ−µ−ν−1)n}.

Theorem 4. For λ,µ, ν ∈ N0 with λ > 1+ µ + ν, we have the harmonic number identit:

n∑
k=0

(
n
k

)(
λn+k

k

)(
µn+n

k

)
(
νn+k

k

)(
(λ−µ−ν−2)n+k

k

) {Hνn+k − H(λ−µ−ν−2)n+k}

=
(
(λ−ν)n

n

)(
(µ+ν+2)n

n

)
(
νn+n

n

)(
λ−µ−ν−1)n

n

)
{
H(µ+ν+1)n − H(µ+ν+2)n + H(λ−ν)n − H(λ−ν−1)n

+ Hνn+n − H(λ−µ−ν−1)n

}
.

3. The Dougall–Dixon theorem

This section will explore the Dougall–Dixon theorem [2, §4.3]

5F4

[
a, 1+ a/2, b, d, −n

a/2, 1+ a − b, 1+ a − d, 1+ a + n

∣∣∣1

]
= (1+ a)n(1+ a − b − d)n

(1+ a − b)n(1+ a − d)n

to establish harmonic number identities.

3.1. Performing parameter replacement

a → −n − x

b → 1+ bn

d → 1+ dn


 (b, d ∈ N0)

we can reformulate the Dougall–Dixon theorem as the following binomial identity:

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
k+bn

k

)(
k+dn

k

)
(
k−x
k

)(
x+bn+n

k

)(
x+dn+n

k

) = x

(
x+n
n

)(1+x+bn+dn+n
n

)
(
x+bn+n

n

)(
x+dn+n

n

)

which leads us, under the derivative operatorD0, to the following result.



128 W. Chu, L. De Donno / Advances in Applied Mathematics 34 (2005) 123–137
Theorem 5. With b, d ∈ N0, there holds the following harmonic number identity:

n∑
k=0

(
n

k

)2 (
k+bn

k

)(
k+dn

k

)
(
n+bn

k

)(
n+dn

k

){
1+ (n − 2k)(2Hk − Hbn+k − Hdn+k)

} =
(1+bn+dn+n

n

)
(
n+bn

n

)(
n+dn

n

) .

3.2. Performing parameter replacement

a → −n − x

b → 1+ bn

d → −n − dn


 (b, d ∈ N0)

we can reformulate the Dougall–Dixon theorem as the following binomial identity:

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
k+bn

k

)(
n+dn

k

)
(
k−x
k

)(
n+bn+x

k

)(
k+dn−x

k

) = (−1)nx

(
x+n
n

)(
x+bn−dn

n

)
(
n+bn+x

n

)(
n+dn−x

n

)

which leads us, under the derivative operatorD0, to the following result.

Theorem 6. With b, d ∈ N0, there holds the following harmonic number identity:

n∑
k=0

(
n

k

)2
(
k+bn

k

)(
n+dn

k

)
(
n+bn

k

)(
k+dn

k

){
1+ (n − 2k)(2Hk − Hbn+k + Hdn+k)

} = (−1)n

(
bn−dn

n

)
(
n+bn

n

)(
n+dn

n

) .

3.3. Performing parameter replacement

a → −n − x

b → −n − bn

d → −n − dn


 (b, d ∈ N0)

we can reformulate the Dougall–Dixon theorem as the following binomial identity:

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
n+bn

k

)(
n+dn

k

)
(
k−x

k

)(
k+bn−x

k

)(
k+dn−x

k

) = (−1)nx

(
x+n
n

)(2n+bn+dn−x
n

)
(
n+bn−x

n

)(
n+dn−x

n

)

which leads us, under the derivative operatorD0, to the following result.

Theorem 7. With b, d ∈ N0, there holds the following harmonic number identity:

n∑
k=0

(
n

k

)2 (
n+bn

k

)(
n+dn

k

)
(
k+bn

k

)(
k+dn

k

) {
1+ (n − 2k)(2Hk +Hbn+k + Hdn+k)

} = (−1)n

(2n+bn+dn
n

)
(
n+bn

n

)(
n+dn

n

) .
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4. The Whipple transformation

In this section, the Whipple transformation [2, §4.3]

7F6

[
a, 1+ a/2, b, c, d, e, −n

a/2, 1+ a − b, 1+ a − c, 1+ a − d, 1+ a − e, 1+ a + n

∣∣∣1

]

= (1+ a)n(1+ a − b − d)n

(1+ a − b)n(1+ a − d)n
4F3

[ −n, b, d, 1+ a − c − e

1+ a − c, 1+ a − e, b + d − a − n

∣∣∣1

]

will be used to derive harmonic number identities.

4.1. Performing parameter replacement

a → −x − n

b → 1+ bn

c → 1+ cn

d → 1+ dn

e → 1+ en




(b, c, d, e ∈ N0)

we can restate the Whipple transformation as

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
k+bn

k

)(
k+cn

k

)(
k+dn

k

)(
k+en

k

)
(
k−x
k

)(
n+bn+x

k

)(
n+cn+x

k

)(
n+dn+x

k

)(
n+en+x

k

)

= x

(
x+n
n

)(1+x+bn+dn+n
n

)
(
x+bn+n

n

)(
x+dn+n

n

)
n∑

�=0

(
n

�

) (
�+bn

�

)(
�+dn

�

)(1+x+cn+en+n
�

)
(
x+cn+n

�

)(
x+en+n

�

)(1+x+bn+dn+�
�

)

which leads us, under the derivative operatorD0, to the following result.

Theorem 8. For four nonnegative integers{b, c, d, e}, there holds:

n∑
k=0

(
n

k

)2
(
k+bn

k

)(
k+cn

k

)(
k+dn

k

)(
k+en

k

)
(
n+bn

k

)(
n+cn

k

)(
n+dn

k

)(
n+en

k

)
×{

1+ (n − 2k)(2Hk − Hbn+k − Hcn+k − Hdn+k − Hen+k)
}

=
(1+bn+dn+n

n

)
(
n+bn

n

)(
n+dn

n

)
n∑

�=0

(
n

�

) (
�+bn

�

)(
�+dn

�

)(1+cn+en+n
�

)
(
n+cn

�

)(
n+en

�

)(1+bn+dn+�
�

) .
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4.2. Performing parameter replacement

a → −x − n

b → 1+ bn

c → 1+ cn

d → 1+ dn

e → −n − en




(b, c, d, e ∈ N0)

we can restate the Whipple transformation as

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
k+bn

k

)(
k+cn

k

)(
k+dn

k

)(
n+en

k

)
(
k−x

k

)(
n+bn+x

k

)(
n+cn+x

k

)(
n+dn+x

k

)(
k+en−x

k

)

= x

(
x+n

n

)(1+x+bn+dn+n
n

)
(
x+bn+n

n

)(
x+dn+n

n

)
n∑

�=0

(−1)�
(

n

�

) (
�+bn

�

)(
�+dn

�

)(
x+cn−en

�

)
(
n+cn+x

�

)(
�+en−x

�

)(1+x+bn+dn+�
�

)

which leads us, under the derivative operatorD0, to the following result.

Theorem 9. For four nonnegative integers{b, c, d, e}, there holds:

n∑
k=0

(
n

k

)2 (
k+bn

k

)(
k+cn

k

)(
k+dn

k

)(
n+en

k

)
(
n+bn

k

)(
n+cn

k

)(
n+dn

k

)(
k+en

k

)
×{

1+ (n − 2k)(2Hk − Hbn+k − Hcn+k − Hdn+k + Hen+k)
}

=
(1+bn+dn+n

n

)
(
n+bn

n

)(
n+dn

n

)
n∑

�=0

(−1)�
(

n

�

) (
�+bn

�

)(
�+dn

�

)(
cn−en

�

)
(
n+cn

�

)(
�+en

�

)(1+bn+dn+�
�

) .

4.3. Performing parameter replacement

a → −x − n

b → 1+ bn

c → −n − cn

d → 1+ dn

e → −n − en




(b, c, d, e ∈ N0)

we can restate the Whipple transformation as

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
k+bn

k

)(
n+cn

k

)(
k+dn

k

)(
n+en

k

)
(
k−x
k

)(
n+bn+x

k

)(
k+cn−x

k

)(
n+dn+x

k

)(
k+en−x

k

)

= x

(
x+n
n

)(1+x+bn+dn+n
n

)
(
x+bn+n

n

)(
x+dn+n

n

)
n∑

�=0

(−1)�
(

n

�

) (
�+bn

�

)(
�+dn

�

)(
�+n+cn+en−x

�

)
(
�+cn−x

�

)(
�+en−x

�

)(1+x+bn+dn+�
�

)

which leads us, under the derivative operatorD0, to the following result.
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Theorem 10. For four nonnegative integers{b, c, d, e}, there holds:

n∑
k=0

(
n

k

)2 (
k+bn

k

)(
n+cn

k

)(
k+dn

k

)(
n+en

k

)
(
n+bn

k

)(
k+cn

k

)(
n+dn

k

)(
k+en

k

)
×{

1+ (n − 2k)(2Hk − Hbn+k + Hcn+k − Hdn+k + Hen+k)
}

=
(1+bn+dn+n

n

)
(
n+bn

n

)(
n+dn

n

)
n∑

�=0

(−1)�
(

n

�

) (
�+bn

�

)(
�+dn

�

)(
n+cn+en+�

�

)
(
�+cn

�

)(
�+en

�

)(1+bn+dn+�
�

) .

4.4. Performing parameter replacement

a → −x − n

b → 1+ bn

c → −n − cn

d → −n − dn

e → −n − en




(b, c, d, e ∈ N0)

we can restate the Whipple transformation as

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
k+bn

k

)(
n+cn

k

)(
n+dn

k

)(
n+en

k

)
(
k−x

k

)(
n+bn+x

k

)(
k+cn−x

k

)(
k+dn−x

k

)(
k+en−x

k

)

= (−1)nx

(
x+n
n

)(
bn−dn+x

n

)
(
x+bn+n

n

)(
n+dn−x

n

)
n∑

�=0

(
n

�

) (
�+bn

�

)(
n+dn

�

)(
�+n+cn+en−x

�

)
(
�+cn−x

�

)(
�+en−x

�

)(
�−n+bn−dn+x

�

)

which leads us, under the derivative operatorD0, to the following result.

Theorem 11. For four nonnegative integers{b, c, d, e}, there holds:

n∑
k=0

(
n

k

)2
(
k+bn

k

)(
n+cn

k

)(
n+dn

k

)(
n+en

k

)
(
n+bn

k

)(
k+cn

k

)(
k+dn

k

)(
k+en

k

)
×{

1+ (n − 2k)(2Hk − Hbn+k + Hcn+k + Hdn+k + Hen+k)
}

= (−1)n

(
bn−dn

n

)
(
n+bn

n

)(
n+dn

n

)
n∑

�=0

(
n

�

) (
�+bn

�

)(
n+dn

�

)(
�+cn+en+n

�

)
(
�+cn

�

)(
�+en

�

)(
�+bn−dn−n

�

) .

4.5. Performing parameter replacement

a → −x − n

b → −n − bn

c → −n − cn

d → −n − dn

e → −n − en




(b, c, d, e ∈ N0)
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iting
e

ded

erator
we can restate the Whipple transformation as

n∑
k=0

{x + n − 2k}
(

n

k

) (
x+n

k

)(
n+bn

k

)(
n+cn

k

)(
n+dn

k

)(
n+en

k

)
(
k−x
k

)(
k+bn−x

k

)(
k+cn−x

k

)(
k+dn−x

k

)(
k+en−x

k

)

= (−1)nx

(
x+n
n

)(2n+bn+dn−x
n

)
(
n+bn−x

n

)(
n+dn−x

n

)
n∑

�=0

(
n

�

) (
n+bn

�

)(
n+dn

�

)(
�+n+cn+en−x

�

)
(
�+cn−x

�

)(
�+en−x

�

)(2n+bn+dn−x
�

)

which leads us, under the derivative operatorD0, to the following result.

Theorem 12. For four nonnegative integers{b, c, d, e}, there holds:

n∑
k=0

(
n

k

)2 (
n+bn

k

)(
n+cn

k

)(
n+dn

k

)(
n+en

k

)
(
k+bn

k

)(
k+cn

k

)(
k+dn

k

)(
k+en

k

)
×{

1+ (n − 2k)(2Hk + Hbn+k + Hcn+k + Hdn+k + Hen+k)
}

= (−1)n

(2n+bn+dn
n

)
(
n+bn

n

)(
n+dn

n

)
n∑

�=0

(
n

�

) (
n+bn

�

)(
n+dn

�

)(
n+cn+en+�

�

)
(
�+cn

�

)(
�+en

�

)(2n+bn+dn
�

) .

5. Harmonic number identities and transformations

In order to facilitate computation of harmonic number sums, we present a useful lim
relation concerning harmonic numbers. Suppose thatλ, ν,n, k ∈ N0 (the set of nonnegativ
integers) withk � n and{Pk(y),Qk(y)} are two families of monic polynomials withPk(y)

andQk(y) being of degreek in y, then there holds

lim
y→∞

{
Pλk+ν(y)

Qλk+ν(y)
Hny+k − Pλ(n−k)+ν(y)

Qλ(n−k)+ν(y)
Hny+n−k

}
= 0. (5.1)

In fact, it is not hard to see thatPλk+ν(y)/Qλk+ν(y) tends to one andHny+k ≈
log(ny + k) asy → ∞. Now rewrite the function in question into two terms

Pλk+ν(y)

Qλk+ν(y)
Hny+k − Pλ(n−k)+ν(y)

Qλ(n−k)+ν(y)
Hny+n−k

= {Hny+k − Hny+n−k} Pλ(n−k)+ν(y)

Qλ(n−k)+ν(y)
+ Hny+k

{
Pλk+ν(y)

Qλk+ν(y)
− Pλ(n−k)+ν(y)

Qλ(n−k)+ν(y)

}
.

Wheny → ∞, the former part in the last line tends to zero because the fraction is boun
and the difference in braces behaves like log((ny + k)/(ny + n − k)) → 0; the latter part
in the last line tends to zero too since the fractional difference is a fraction with num
degree less than denominator degree in view of the fact that bothP(y) and Q(y) are
polynomials with the leading coefficients equal to one.
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Theorem 13. Let {Pk(y),Qk(y)} be two families of monic polynomials withPk(y)

and Qk(y) being of degreek in y. If fn(k) is a function independent ofy which satis-
fies the reflection propertyfn(k) = −fn(n − k), then there holds the following limitin
relation:

lim
y→∞

n∑
k=0

fn(k)
Pλk+ν(y)

Qλk+ν(y)
Hny+k = 0. (5.2)

Proof. By means of the summation index involutionk → n − k, we can reformulate th
finite sum stated in the theorem as

n∑
k=0

fn(k)
Pλk+ν(y)

Qλk+ν(y)
Hny+k = 1

2

n∑
k=0

fn(k)

{
Pλk+ν(y)

Qλk+ν(y)
Hny+k − Pλ(n−k)+ν(y)

Qλ(n−k)+ν(y)
Hny+n−k

}
.

In view of (5.1), the differences in the braces on the right hand side tends to zero ay →
∞. We therefore obtain the limiting relation about harmonic number sums stated in
theorem. �

There is a large class of functions satisfying the reflection property in the theore
example

fn(k) =
(

n

k

)µ
(
n+k
k

)ν
(2n

k

)ν (n − 2k) (µ, ν ∈ N0) (5.3)

which come out frequently for the limiting process in the construction of Tables 1 an

Table 1
The harmonic number identities of type

∑n
k=0 A(n, k) = C(n)

No A(n, k) C(n) Note

1
(n
k

)2(2n+k
k

){H2n+k − Hk} 2
(2n

n

)2{H2n − Hn} Theorem 2:λ = 2,
µ = ν = 0

2
(n
k

)2(2n+k
k

){Hk − Hn−k}
(2n

n

)2{H2n − Hn} Theorem 3:λ = 2,
µ = ν = 0

3
(n
k

)(2n
k

)(3n+k
k

){H3n+k − Hk}
(3n

n

)2{2H3n − Hn − H2n} Theorem 2:λ = 3,
µ = 1 andν = 0

4
(n
k

)(2n
k

)(3n+k
k

){H2n−k − Hk}
(3n

n

)2{2H2n − Hn − H3n} Theorem 3:λ = 3,
µ = 1 andν = 0

5
(n
k

)2(3n+k
2n

){H3n+k − Hk}
(3n

n

){H2n + H3n − 2Hn} Theorem 2:λ = 3,
µ = 0 andν = 1

6
(n
k

)2(3n+k
2n

){Hk − Hn−k}
(3n

n

){H3n − H2n} Theorem 3:λ = 3,
µ = 0 andν = 1

7
(n
k

)2(3n+k
2n

){Hn+k − Hk} (3n
n

){3H2n − 2Hn − H3n} Theorem 4:λ = 3,
µ = 0 andν = 1
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Table 1
(Continued)

No A(n, k) C(n) Note

8
(n
k

){1+ (n − 2k)Hk} 1 Theorem 5:b = 0,
d → ∞, cf. [3, Eq. 1]

9
(n
k

)2{1+ 2(n − 2k)Hk} 0 Theorem 5:b, d → ∞,
cf. [3, Eq. 2]

10
(n+k

k

)(2n−k
n

){1+ (n − 2k)(Hk − Hn+k)}
(1+2n

n

)
Theorem 5:b = 0,
d = 1

11
(n+k

k

)2(2n−k
n

)2{1+ 2(n − 2k)(Hk − Hn+k)} (1+3n
n

)
Theorem 5:b = d = 1

12
(2n

k

)( 2n
n+k

){1+ (n − 2k)(Hk + Hn+k)}
(2n−1

n

)
Theorem 6:b = 0,
d = 1

13
(n
k

)(2n
k

)( 2n
n+k

){1+ (n − 2k)(2Hk + Hn+k)} (−1)n Theorem 6:b → ∞,
d = 1

14
(n
k

)(n+k
n

)(2n−k
n

){1+ (n − 2k)(2Hk − Hn+k)} 1 Theorem 6:b = 1,
d → ∞

15
(n
k

)2(n+k
n

)(2n−k
n

){1+ (n − 2k)(3Hk − Hn+k)} (−1)n Theorem 6:b = 1,
d = 0

16
(n
k

)3{1+ 3(n − 2k)Hk} (−1)n Theorem 7:b = 0,
d → ∞, cf. [3, Eq. 3]

17
(n
k

)4{1+ 4(n − 2k)Hk} (−1)n
(2n

n

)
Theorem 7:b = d = 0,
cf. [3, Eq. 4]

18
(n
k

)2(2n
k

)( 2n
n+k

){1+ (n − 2k)(3Hk + Hn+k)} (−1)n
(3n

n

)
Theorem 7:b = 0,
d = 1

19
(2n

k

)2( 2n
n+k

)2{1+ 2(n − 2k)(Hk + Hn+k)} (−1)n
(4n

n

)
Theorem 7:b = d = 1

20
(n
k

)−1{1− (n − 2k)Hk} (1+ n)Hn+1 Theorem 8:e → ∞,
b = c = d = 0

21
(n
k

)−2{1− 2(n − 2k)Hk} 2(1+n)2

2+n
Hn+1 Theorem 8:

b = c = d = e = 0

22
1−(n−2k)(Hk+Hn+k)

(2n
k )( 2n

n+k)

1+2n
2+2n

+ (n + 1
2 )H1+2n Theorem 8:e = 1,

b = c = d = 0

23
(n+k

k )

(2n
k )

{1− (n − 2k)Hn+k} (1+ 2n){H1+2n − Hn} Theorem 8:b = d = 0,
c = 1 ande → ∞

24
(n+k

k )
2

(2n
k )

2 {1− 2(n − 2k)Hn+k} 2(1+2n)2

2+3n
{H1+2n − Hn} Theorem 8:b = d = 0,

c = e = 1

25
(2n

k )

(nk)(
n+k
k )

{1− (n − 2k)(Hk − Hn+k)} n(n+1)
n−1 {Hn+1 + Hn−1 − H2n} Theorem 9:n > 1,

b = c = d = 0 ande = 1

26
(2n

k )
2

(n+k
k )

2 {1+ 2(n − 2k)Hn+k} 2n
3 {H2n − Hn−1} Theorem 10:n > 0,

b = d = 0 andc = e = 1
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Table 2
The harmonic number transformations of type

∑n
k=0 A(n, k) = ∑n

�=0 B(n, �)

No A(n, k) B(n, �) Note

1
(n
k

) (n+k
k )

3

(2n
k )

3 {1+ (n − 2k)(Hk − 3Hn+k)} (1+3n
n )

(2n
n )

2 × 1+2n
1+2n−�

(n+�
� )

2

(1+2n+�
� )

Theorem 8:e = 0,

b = c = d = 1

2
(n
k

)2 (n+k
k )

4

(2n
k )

4 {1+ 2(n − 2k)(Hk − 2Hn+k)} (1+3n
n )

(2n
n )

2 × (n
�

) (n+�
� )

2
(1+3n

� )

(2n
� )

2
(1+2n+�

� )
Theorem 8:

b = c = d = e = 1

3
(n
k

) (n+k
k )

2

(2n
k )

2 {1+ (n − 2k)(Hk − 2Hn+k)} (1+3n
n )

(2n
n )

2 × (n+�
� )

2

(1+2n+�
� )

Theorem 9:b = d = 1,

c = 0 ande → ∞

4
(n
k

)3 (n+k
k )

2

(2n
k )

2 {1+ (n − 2k)(3Hk − 2Hn+k)} (1+3n
n )

(2n
n )

2 × (−1)�
(n�)(

n+�
� )

2

(1+2n+�
� )

Theorem 9:b = d = 1,

c → ∞ ande = 0

5
(n
k

)2 (n+k
k )

3

(2n
k )

3 {1+ (n − 2k)(2Hk − 3Hn+k)} (1+3n
n )

(2n
n )

2 × (n�)(
n+�
� )

2

(2n
� )(1+2n+�

� )
Theorem 9:e → ∞,

b = c = d = 1

6
(n
k

)3 (n+k
k )

3

(2n
k )

3 {1+ 3(n − 2k)(Hk − Hn+k)} (1+3n
n )

(2n
n )

2 × (−1)�
(n�)

2
(n+�

� )
2

(2n
� )(1+2n+�

� )
Theorem 9:e = 0,

b = c = d = 1

7
(n
k

) (2n
k )

2

(n+k
k )

2 {1+ (n − 2k)(Hk + 2Hn+k)} (−1)�
(n
�

) (3n+�
� )

(n+�
� )

2 Theorem 10:b = 0,

c = e = 1 andd → ∞

8
(n
k

)4 (n+k
k )

(2n
k )

{1+ (n − 2k)(4Hk − Hn+k)} (−1)�
(n�)(

n+�
� )

2

(2n
n )

Theorem 10:b = 1,
c = e = 0 andd → ∞

9
(n
k

)3 (n+k
k )

2

(2n
k )

2 {1+ (n − 2k)(3Hk − 2Hn+k)} (1+3n
n )

(2n
n )

2 × (−1)�
(n�)(

n+�
� )

2

(1+2n+�
� )

Theorem 10:b = d = 1,

c = 0 ande → ∞

10
(n
k

)4 (n+k
k )

2

(2n
k )

2 {1+ 2(n − 2k)(2Hk − Hn+k)} (1+3n
n )

(2n
n )

2 × (−1)�
(n�)(

n+�
� )

3

(1+2n+�
� )

Theorem 10:b = d = 1,

c = e = 0

11
(n
k

)4 (2n
k )

(n+k
k )

{1+ (n − 2k)(4Hk + Hn+k)} (−1)n × (n
�

)2 (2n+�
� )

(n+�
� )

Theorem 11:b → ∞,
d = 1 andc = e = 0

12
(n
k

)5 (n+k
k )

(2n
k )

{1+ (n − 2k)(5Hk − Hn+k)} (−1)n

(2n
n )

× (n
�

)2(n+�
�

)2
Theorem 11:b = 1,
c = d = e = 0

13
(n
k

)3 (2n
k )

2

(n+k
k )

2 {1+ (n − 2k)(3Hk + 2Hn+k)} (−1)n × (n�)
2
(3n+�

� )

(n+�
� )

2 Theorem 11:b → ∞,

d = 0 andc = e = 1

14
(n
k

) (2n
k )

3

(n+k
k )

3 {1+ (n − 2k)(Hk + 3Hn+k)} n × (−1)�
(n�)(

3n+�
� )

(2n−�)(n+�
� )

2 Theorem 11:n > 0,

b = 0 andc = d = e = 1

15
(n
k

)2 (2n
k )

3

(n+k
k )

3 {1+ (n − 2k)(2Hk + 3Hn+k)} (−1)n

(2n
n )

× (n
�

) (2n
� )(3n+�

� )

(n+�
� )

2 Theorem 11:b → ∞,
c = d = e = 1
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(Continued)

No A(n, k) B(n, �) Note

16
(n
k

)5{1+ 5(n − 2k)Hk} (−1)n
(n
�

)2(n+�
n

)
Theorem 12:b = c = d = 0,
e → ∞, cf. [3, Eq. 5]

17
(n
k

)6{1+ 6(n − 2k)Hk} (−1)n
(n
�

)2(n+�
n

)(2n−�
n

)
Theorem 12:
b = c = d = e = 0

18
(n
k

)5 (2n
k )

(n+k
k )

{1+ (n − 2k)(5Hk + Hn+k)} (−1)n
(2n

n

) × (n
�

)3 (2n+�
� )

(n+�
� )(2n

� )
Theorem 12:e = 1,
b = c = d = 0

19
(n
k

)4 (2n
k )

2

(n+k
k )

2 {1+ 2(n − 2k)(2Hk + Hn+k)} (−1)n
(2n

n

) × (n�)
3
(3n+�

� )

(n+�
� )

2
(2n

� )
Theorem 12:b = d = 0,
c = e = 1

20
(n
k

)3 (2n
k )

3

(n+k
k )

3 {1+ 3(n − 2k)(Hk + Hn+k)} (−1)n
(3n

n )

(2n
n )

× (n
�

)2 (2n
� )(3n+�

� )

(n+�
� )

2
(3n

� )
Theorem 12:b = 0,
c = d = e = 1

21
(n
k

)2 (2n
k )

4

(n+k
k )

4 {1+ 2(n − 2k)(Hk + 2Hn+k)} (−1)n
(4n

n )

(2n
n )

2 × (n
�

) (2n
� )

2
(3n+�

� )

(4n
� )(n+�

� )
2 Theorem 12:

b = c = d = e = 1

Now we take entry 4 from Table 2 to exemplify how to derive harmonic number id
ties from the theorems established in this paper.

Specifying withb = d = 1 ande = 0, we can state the transformation in Theorem 9

n∑
k=0

(
n

k

)3 (
n+k
k

)2

(2n
k

)2

(
k+cn

k

)
(
n+cn

k

){
1+ (n − 2k)(3Hk − 2Hn+k − Hcn+k)

}

=
(1+3n

n

)
(2n

n

)2

n∑
�=0

(−1)�

(
n
�

)(
n+�
�

)2(cn
�

)
(1+2n+�

�

)(
n+cn

�

) .

It is easy to see that the coefficient corresponding toHcn+k is given by (5.3) withµ = 3
andν = 2. In view of Theorem 13, the limitc → ∞ of the last equation reads as

n∑
k=0

(
n

k

)3 (
n+k
k

)2

(2n
k

)2

{
1+ (n − 2k)(3Hk − 2Hn+k)

} =
(1+3n

n

)
(2n

n

)2

n∑
�=0

(−1)�

(
n
�

)(
n+�
�

)2

(1+2n+�
�

) (5.4)

which is exactly the fourth identity displayed in Table 2.
We remark that the right-hand side of this last identity can further be evaluate

Dixon’s formula and we therefore get the following closed formula:

n∑
k=0

(
n

k

)3 (
n+k
k

)2

(2n
k

)2

{
1+ (n − 2k)(3Hk − 2Hn+k)

}

=
{0, n − odd,

(−1)m
( 3m

)/(4m
)2

, n = 2m.
(5.5)
m,m,m 2m
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Specifying free parameters in Theorems 2–12 and then applying Theorem 13, w
similarly establish 26 closed summation formulas and 21 transformations on har
numbers, which are displayed respectively in Tables 1 and 2.

As a partial answer to the question posed at the end of the paper by Paule and
der [3], the examples 8, 9, 16, 17 numbered with in Table 1 and 16, 17 in Table 2 co
that the sum

Ξλ(n) :=
n∑

k=0

(
n

k

)λ {
1+ λ(n − 2k)Hk

}
(λ,n ∈ N)

are representable in terms of terminating hypergeometric series for 1� λ � 6. In addition,
the hypergeometric method presented in this paper shows that these binomial-ha
number sums trace back to the same origin, the very well poised terminating hyperg
ric series. In fact, if we define

Ωλ(n,x) := 1+λFλ

[ −x − n, 1− (x + n)/2, 〈−n〉λ−1
−(x + n)/2, 〈1− x〉λ−1

∣∣∣ (−1)λ
]

,

where〈w〉λ stands forλ copies ofw. Then it is not difficult to check that

Ξλ(n) =D0
{
(x + n)Ωλ(n, x)

}
.

However, the problem posed by Paule and Schneider [3] remains open forλ > 6,
i.e., whetherΞλ(n) can be expressed as a single terminating hypergeometric series.
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