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Abstract

The classical hypergeometric summation theorems are exploited to derive several striking identi-
ties on harmonic numbers including those discovered recently by Paule and Schneider (2003).
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1. Introduction and notation

Let x be an indeterminate. The generalizedhanic numbers are defined to be partial
sums of the harmonic series:

n
1
Ho(x)=0 and Hn(x)zzm forn=1,2.... (1.1)
k=1

Forx = 0 in particular, they reduce to the classical harmonic numbers:

n
1
Ho=0 and H,,:Zz forn=1,2.... (1.2)
k=1
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Given a differentiable functiorf (x), denote two derivative operators by

d d
Dxf(X)=Ef(X) and Dof(JC)=Ef(X)

x=0

Then it is an easy exercise to compute the derivative of binomial coefficients

m
+ x+ 1
2 ()= (00
m m =t 1+x+n—-2¢
which can be stated in terms of the generalized harmonic numbers as

m

Dx<x+n>=<x2n>{Hn(x)—Hn—m(x)} (m < n). (1.3)

In this paper, we will frequently use its evaluationvat O:

Do <x+n)=(::l){Hn_Hn—m} (m < n). (14)

m

For the inverse binomial coefficients, the analogous results read as

-1 -1 m 1
D X+n _ X+n Z -
x m m ezll—i-x—i—n—ﬁ

and the explicit harmonic number expressions

—1 -1

Dy <x;n> :<x;n> {H,,,m(x)—Hn(x)} (m < n), (1.5)
x+n\7t n\ 7t

DO m = m {Hn—m - Hn} (m < n) (16)

As pointed out by Richard Askey (cf. [1] and [3]), expressing harmonic humbers in terms
of differentiation of binomial coefficientsan be traced back to Issac Newton. Following
the work of the two papers cited above, we will explore further the application of deriva-
tive operators to hypergeometric summation formulas. Several striking harmonic number
identities discovered in [3] will be recovered and some new ones will be established.
Because hypergeometric series will play atcalrole in the present work, we reproduce
its notation for those who are not familiar with it. Roughly speaking, a hypergeometric
series is a serie3_ C, where the term rati@,,1/C, is a rational function im. If the
shifted factorial is defined by

(©)o=1 and (¢)p=c(c+1)---(c+n—-1) forn=12,... .7
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then the hypergeometric sesi (cf. [2]) reads explicitly as

ap, d1,..., d . > (aO)n(al)n"'(ap)n n
1+qu[ bl,...,b: H_Z nl(bD)n -+ (bg)n o (1.8)

In order to illustrate how to discover haomic number identitiefrom hypergeometric
series, we start with the Chu—Vandermonde—Gauss formula [2, §1.3]:

2F1|:—n,a ‘1i|=(c—a)n.

¢ (©)n

Under parameter replacements> —n — un andc — 1+ An + x with A, u € Np, it can
equivalently be stated as the following binomial convolution identity

Xn: n+ un x+Ain+n\ _ (x+in+un+2n (1.9)
prd k n—k o n ) '

In view of (1.4), we derive, by applying the derivative operdgrto both sides of the last
identity, the following relation:

n
+ +2
Z <”l k/u’l) (”ln _ kn) {HA/1+n - HAn—i—k}

k=0

_<2n+kn+un

n ) {H)LnJr,unJan - H)\n+/m+n}o

According to the factor inside the bracgs-}, splitting the left-hand side into two sums
with respect tac and then evaluating the first one by (1.9), we get immediately the follow-
ing simplified result.

Theorem 1. With &, u € Ny, there holds the following harmonic number identity
" (n + un n-+An
kZ()( k“)(n_k)Hanc

_(2n+kn+un

n > {Hkn+/1 + HAn+un+n - HAn+;m+2n}-

One interesting special case corresponding te 0 can be stated as

- x 2+
Z <Z) <"n+_ k”) Hyntk = < n—’: n) {2H3 0 — Hanyon}- (1.10)

k=0
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It can be further specialized, with= 0, to

n 2 2n
> (Z) Hy = ( n ) (2H, — Ha,). (1.11)

k=0

There exist numerous hypergeometric series identities. However we are not going to have a
full coverage about how they can be used tal firmrmonic number idwities. The authors

will limit themselves to examine, by the derivative operator method, only the classical
identities named after Pfaff-Saalschutz, Ddlg@ixon and the Whipple transformation

in next three sections. As applications, we will tabulate 26 closed formulas and 21 trans-
formations on harmonic numbers at the end of the paper.

Just like the demonstration of Theorem 1 and (1.10), we will examine the above-
mentioned hypergeometric theorems in the three steps: reformulation in terms of binomial
formulas, application of the derivative operafey and reduction to harmonic number iden-
tities by specifying parameters. Because h# tomputations involved in the paper are
routine manipulations on finite series, we will therefore omit the details for the limit of
space.

2. The Pfaff-Saalschiitz theorem

Recall the Saalschiitz theorem [2, §2.2]

F —-n, a, b ‘1 _(c—a)n(c—b)n
32 c.l+at+b—c—nl"|" (©uc—a—b),

Performing the parameter replacement

a— —n—pun—u'x
b—1+in+Nx (A, u,v € Np)
c—>1+vn+v'x

we may express it as a binomial identity

n n\ (k+in+1'x\ (n+pun+p' x A—v)n+=v)x\ ((+v+2)n+( +v")x

3 @) _ T ’ )
k+vn+v/'x\ (k+A—pu—v—=2)n+AN -/’ —v)x\ ~ (n+vn+v'x\ (A—p—v—Dn+A —u/ —v)x\

im0 (T k ) (T . )

Applying Dp to the caseg’ =1v' = 0,1 =V =0 and)’ = i’ = 0 of the last identity, we
get respectively the following harmonic number identities.

Theorem 2. For A, u, v € Ng with A > 14 u + v, we have the harmonic number identity

S EETHE
kgo (Unk+k) (()L*M*l;{*z)n‘l'k)

{Hypk — H(A—u—v—Z)n-‘rk}
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(O
(vn:n) (Afp.fnvfl)n)

{Ho—vyn — Hp—v—1yn + Hxn — Hp—py—v—1)n}-

Theorem 3. For A, u, v € Ng with A > 14 u + v, we have the harmonic number identity

S @ETHeE
Z (vn]jk) ((A—M—li—Z)n+k)

{Hp.n-i-n—k - H()\fufva)IH»k}
k=0
((A—v)n) ((M+v+2)n

n n

(vn;-n) (A—u—nv—l)n)

{Hu+v+1n — Hp+v+2n + Hundn — Ho—p—v—1)n}-

Theorem 4. For A, u, v € Ng with A > 1+ u + v, we have the harmonic number identity

Z” (Al G
(vn+k) (()L*M*U*Z)Vl‘l’k) {Hontk = Ho—p—v—2)n+k}
k

k=0 \ &k

A— 2
— (( nV)n) ((M+lr)l+ )") H(,u+v+l)n - H(,u+v+2)n + H()Lfv)n - H()\fvfl)n
(un+n) ()‘7“7;71)") + Hoptn — Ho—p—v—1yn ’

n

3. The Dougall-Dixon theorem

This section will explore the Dougall-Dixon theorem [2, §4.3]

F a,1+a/2, b, d, —n ‘1 _(1+a)n(l+a—b—d)n
574 a/2, 1+a-b,1+a—d,1+a+n T A4+a—-b),1+a—d),

to establish harmonic number identities.
3.1. Performing parameter replacement
a—> —n-—Xx
b—1+bn (b,d € Np)
d—1+dn

we can reformulate the Dougall-Dixon threm as the following binomial identity:

Xn:{x +n—2k) <”) (G i (S (L tbmtdny
k=0 k (k;x) (x+bkn+n) (x+a;{n+n) (x+bnn+n) (x+ailn+n)

which leads us, under the derivative operddgr to the following result.
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Theorem 5. With b, d € Ny, there holds the following harmonic number identity

n " 2 (k+bn) (k+dn) l+bn+dn+n)
Z <k> ﬁ{lﬁ- (n — 2k)(2Hy — Hpn+k — Hdn+k)} = m

o NS () ()

3.2. Performing parameter replacement

a— —n—x
b— 1+bn (b,d € Np)
d— —n—dn

we can reformulate the Dougall-Dixon threm as the following binomial identity:

o () GG GO
Z{ + 2k}<k) (k;x)(nerkner)(kerknfx) =D (n+bn+x)(n+dn7x)

k=0 n n

which leads us, under the derivative operddgr to the following result.

Theorem 6. With b, d € Ny, there holds the following harmonic number identity

n n 2 (k-zbn) (n—i;{dn) (bn—dn)
Z(k) W{l‘i‘(”l—Zk)(ZHk_an+k+Hdn+k)}=(_1)n(n_i_lm)nWo
k=0 k k n n

3.3. Performing parameter replacement

a— —n—x
b— —n—>bn (b,d € Np)
d— —n—dn

we can reformulate the Dougall-Dixon threm as the following binomial identity:

n e " (x—]i(—n) (n—i]—(bn) (n—i;{dn) 1y (x-l:n) (2n+bn:—dn—x)
Z{ + 2k} <k ) (k;x) (k+bknfx) (k+dn7x) =1 (n+bn7x) (n+dn7x)

k=0 k n n

which leads us, under the derivative operddgr to the following result.

Theorem 7. With b, d € Ny, there holds the following harmonic number identity

(2n+bn+dn)
. n 7
()

n 2 (n+bn\ (n+dn
Z(Z) W{l—i_(n_Zk)(ZHk+an+k+Hdn+k)}=(—1)n
k=0 k k
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4. The Whippletransformation

In this section, the Whipple transformation [2, §4.3]

el @ 14+a/2, b, c, d, e, —n
76 a/2,1+a—b,14+a—-c,l4+a—-d,l1+a—e,1+a+n

d

_ A+a)n(l+a—-b— d)n —n, b, d, l4a—c—e ‘1
(1+a—b)n(1+a—d),, l1+a—c,14+a—e,b+d—a—n

will be used to derive harmonic number identities.
4.1. Performing parameter replacement

a— —x—n
b—1+bn
c—>1+cn (b,c,d,e e Np)
d— 1+dn
e—1+en

we can restate the Whipple transformation as

g{m_m@(k)(k)( I )

X (n+bn+x) (n+cn+x) (n+dn+x) (n+en+x)

€+dn) (l+x+cn+cn+n)

_. (x:lrn) (l+x+bz+dn+n) n " (Z+bn)(
- (x+bnn+n) (x+¢f1n+n) Z( ) (x+cn+n) (x cn+n) (l+x+bn+dn+€)

=0
which leads us, under the derivative operddgr to the following result.

Theorem 8. For four nonnegative integei®, c, d, e}, there holds

n n 2 (kt{bn) (kt{cn) (kJ;(dn) (kt{en)
kz=o (k) (nJ;(bn) (IHI;cn) (n+dn) (n+en)

k k

x{1+ (n — 2k)2Hy — Hpnyk — Hentk — Hansk — Hent) }

B (l+bn::dn+n) i(’l) (ézbn)(ZJredn)(lJranerenJrn)

- (n-i;lbn) (n-;dn) ¢ (len) (n+en) (l+bn+dn+£) :

(=0 12 12



130 W. Chu, L. De Donno / Advances in Applied Mathematics 34 (2005) 123-137

4.2. Performing parameter replacement

a— —x—n

b—1+bn

c—>1+cn (b,c,d, e eNp)
d—1+dn

e—> —n—en

we can restate the Whipple transformation as

- CEE EEE O
{x+n_2k}<n) —x\ (n+bn+x\ (n+cn+x\ (n+dn+x en—x
;;o K EDORD ) ) ()
(x+n) (l+x+bn+dn+n) n (€+£bn) (ZJr;ln) (x+crelfen)

=X :rl n—+n xnn n (_1)€<n> n+cn+x en—x x+bn+dn
( +bn+ )( +d +) Z ¥4 (+e+ )(E-i— )(l—i— +b@+d +€)

n n £=0 l

which leads us, under the derivative operddgr to the following result.

Theorem 9. For four nonnegative integeli®, ¢, d, e}, there holds

2”: (n )2 (M EEEE )
NS R E R )
X {1 + (n — 2k)(2Hy — Hpn+k — Hen+k — Han+k + Hen+k)}
1+bn+dn+n n L+bny (L+dn\ (cn—en
L b (g) SN

- (ntlbn)( . )Z:O n+cn)(€+en)(l+bn+dn+€)'

¢
4.3. Performing parameter replacement

4 4

a— —x—n
b—1+bn
c—> —n—cn (b,c,d, e eNp)
d— 14+dn

e— —n—en

we can restate the Whipple transformation as

n e n (x-]i(—n) (k+bn) (n+cn) (k+dn) (n+en)
k2=(:){ + 2k} (k ) (k;x) (n+bn+x) (k+cn x) (n+dn+x) (k+en x)
(x+n) (1+x+bn+dn+n) n (Z bn) (£+dn) (£+n+cré+en—x)

=X :Cl n—-—ny(x nrn ( 1)£( ) cn—x en—x X n n
( +b + )( +dn+ ) Z (13+ )(13+ )(l+ +bn+d +IZ)

n =0 12 4 4

which leads us, under the derivative operddgr to the following result.
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Theorem 10. For four nonnegative integer®, ¢, d, e}, there holds

n n 2 (kJ;(bn) (nJ;(cn) (kt{dn) (nJ;(en)
Z (k ) (n—i]—(bn) (k+cn) (n+dn) (k+en)

k=0 k k k

x {14 (n — 2k)(2Hi — Hpntk + Hen+k — Hantk + Hentk) }

14+bn+dn+ny n L+bn\ (L+dn\ (n+cn+en+L
LL () L)
(n-l;lbn) (n—i—dn) pre l (Z-lfn) (€+en) (l+bn—£dn+€)

n 4

4.4. Performing parameter replacement

a— —x—n

b—1+bn

c— —n—cn (b,c,d,e e Np)
d— —n—dn

e— —n—en

we can restate the Whipple transformation as

n e " (x;(rn) (kJ;(bn) (IHI»:n) (nJ;(dn) (nJ;(en)
kZ:O{ + 2k} (k > (k;x) (n+bkn+x) (k+c]:z—x) (k+dkn—x) (k+e]:z—x)

(x;:n) (bn—zln-i—x) (Z-l—ebn) (n-l—gdn) (€+n+cré+en—x)

=(=1)"x Y bntn\ (ntdn—x (n> cn—x en—x\ ((—n+bn—dn+x
(+b+)(+d )zgo Y/ (Z+ )(€+ )(e +b d+)

n n ¢ l £
which leads us, under the derivative operddgr to the following result.
Theorem 11. For four nonnegative integel®, ¢, d, e}, there holds

2 (k+bny (n+ +dny (n+
i (n) )

k (nJ;(bn) (k+cn) (k+dn) (k+en)

k=0 k k k

X {1 + (n — 2k)(2Hy — Hpn+k + Hentk + Han+k + Hen+k)}

(bn;dn) n n (ZJrebn) (nJrgdn) (Z+aneren+n)
(n+bn) (n+dn) Z (ﬁ > (€+cn) (£+en) (£+bn—dn—n) :

n n £=0 l

= (D"

12 4

4.5. Performing parameter replacement

a— —x—n
b— —n—bn
c— —n—cn (b,c,d,e e Np)
d— —n—dn
e— —n—en

131
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we can restate the Whipple transformation as

o (7 40 1 0 G [ [
kZ:O{ + 2k} (k ) (k;x) (k+b:7x) (k+c:7x) (k+dkn7x) (kﬂ)]:,,x)

—can CE LT s () )
(n-‘rbnn—x) (n-‘rdn—x) prs l (€+cé17x) (€+en7x) (2n+bn2»dn—x)

n 4

which leads us, under the derivative operdbgr to the following result.
Theorem 12. For four nonnegative integetd, c, d, e}, there holds

2 (n+bny m+ +dny (n+
Z(") () ")

k (kt{bn) (k+cn) (k+dn) (k+en)

k=0 k k k

{1+ (n — 2k)(2Hx + Hpn+k + Hentk + Hantk + Hen) }
= (—1)'1% Xn: (n) (1) () (renrentty

(n-i;lbn) (n+dn) Y2 (ZJrecn) (€+en) (2n+bn+dn) :

n £=0 12 t

5. Harmonic number identities and transfor mations

In order to facilitate computation of harmonic number sums, we present a useful limiting
relation concerning harmonic numbers. Supposeithatn, k € Ng (the set of nonnegative
integers) withk < n and{ P, (y), Q«(y)} are two families of monic polynomials witB (y)
and Qy (y) being of degreé in y, then there holds

lim

y—00

{ PAk-i—v()’) H P)L(nfk)+v )

ok — Huyini t =0. 5.1
Oik+v(Y) vk Ortn—k)+v () v k} G4

In fact, it is not hard to see thaR;y,(y)/Qik+v(y) tends to one andd,, i ~
log(ny + k) asy — oco. Now rewrite the function in question into two terms

Pyv(y) Py n—ty+v(y)

+k — +n—k
Ok " Qa—tyo () "

Pyn—ty+v ()
Q)\(l”l*k)‘l’v »

Prk+v(¥)  Pr—ty+v ()
= {Hny+k - Hny+n7k} i - bty .

H,
* y*"{kaﬂ(y) Orirtrn ()

Wheny — oo, the former part in the last linertels to zero because the fraction is bounded
and the difference in braces behaves like(lag + k)/(ny +n — k)) — 0; the latter part

in the last line tends to zero too since the fractional difference is a fraction with numerator
degree less than denominator degree in view of the fact that Bogh and Q(y) are
polynomials with the leading coefficients equal to one.
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Theorem 13. Let {Py(y), Qx(y)} be two families of monic polynomials witR(y)
and Qi (y) being of degred in y. If f,(k) is a function independent of which satis-
fies the reflection property, (k) = — f,(n — k), then there holds the following limiting
relation:

Pik+v(y)

I w(k
Ime()Q )

Hyy i =0. (5.2)

Proof. By means of the summation index involutidn— n — k, we can reformulate the
finite sum stated in the theorem as

PAk+u()’) { Ak+v(Y) Prti—k)+v () }
n k n n n - Hn n— .
Zf O iy Ttk = Zf EN Gaerr ) K T 0, iy ek

In view of (5.1), the differences in the braces on the right hand side tends to zere-as
oo. We therefore obtain the limiting relaticabout harmonic number sums stated in the
theorem. O

There is a large class of functions satisfying the reflection property in the theorem, for
example

w (n+kyY
fulk) = (Z) ((zljl))u (n—2k) (u,veNp) (5.3)
k

which come out frequently for the limiting process in the construction of Tables 1 and 2.

Table 1
The harmonic number identities of type}_q A(n, k) = C(n)
No A(n, k) C(n) Note
2
1 (2P0 (Hopy i — Hi) 2(%"){Hp, — Hy) Theorem 23 =2,
n=v=0
2
2 ()22 (Hy — Hy ) (") {Hay — Hy) Theorem 31 =2,
nw=v=0
2
3 () GO Ha i — Hed (3)*(2H3, — Hy — Ha,) Theorem 24 =3,
u=21landv=0
2
4 @) ) (Ho—k — Hi) (") {2H, — Hy — Hz,) Theorem 32 = 3,
u=21landv=0
2 3n+k 3n 9 —
5 (D) CH)  Hank — Hy} (5){H2y + Hay — 2Hy} Theorem 2 =3,
pn=0andv=1
6 (M2C5R) (H — Hyg) (") {Hz, — Ha) Theorem 32 = 3,
pn=0andv=1
7 (2R (Hyy i — Hy) (3"){3Hy, — 2Hy, — Hz,} Theorem 42 = 3,

n=0andv=1
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Table 1
(Continued)
No A(n,k) C(n) Note
8 (){1+(n—2)Hy) 1 Theorem 55 =0,
d — oo, cf. [3, Eq. 1]
9 (Z)Z{l"‘ 2(n — 2k) Hy} 0 Theorem 5b, d — oo,
cf. [3, Eq. 2]
10 (T N+ 0 — 20 H = Hygi0)) (2 Theorem 56 =0,
d=1
2 2
1 (N 20 - 20 (H - He)d  (MHY) Theorem 5b =d =1
12 () (0 + (0 = 26) (Hy + Hyg)) G Theorem 65 =0,
d=1
13 ()G A+ 0 —20Q@H + Hyp)) (-1 Theorem 65 — oo,
d=1
14 (Z)(n:k) (znn_k){1+ (n — 2k)(2H, — Hy+1)} 1 Theorem 66 =1,
d— oo
15 (Z)Z(n:k) "7+ (0 — 20 BHy — Hyyp)) (=D Theorem 65 =1,
d=0
16 (’;)3{1 + 3(n — 2k) Hy} G Theorem 75 =0,
d — oo, cf. [3, Eq. 3]
17 () *1+ 400 - 2% Hy) (%) Theorem 7b =d =0,
of. [3, Eq. 4]
18 ()%(%)( 201+ 0~ 20@H + Hop)) (-1 (%) Theorem 75— 0
k) Ve Mok n k n+k n ° ,
d=
2 2
19 (3702 1L+200 — 20 (Hy + Hy )} " (4 Theorem 7b=d =1
20 (2)71{1*("*2/01#} 1+nmHyqq Theorem 8¢ — oo,
b=c=d=0
2
21 (2)72{1 — 2(n — 2k) Hy} 2(12-:_nn) Hy41 Theorem 8:

b=c=d=e=0

22 1_(n_§kn)(H2kn+Hn+_k) %i—% + 0+ %)H1+2n Theorem 8z =1,
(k)(lH»k) b—c—d=0
()H—k)
23 (2}1) (1= (0 = 2k) Hy 4} (1+ 2n){H142, — Hn} Theorem 8» =d =0,
¢ c¢=1ande - oo
n-+hy 2 2
24 ((2’;))2 {1—2(n —2k)Hy 41} 2(15_251”) {H142, — Hy} Theorem 85 =d =0,
¢ c=e=1
(2151) n(n+1)
25 G {1—(n—2)(Hx — Hp41)} =i {Hpy1+ Hy—1— Hp,} Theorem 9n > 1,
A b=c=d=0ande=1
&’ o
26 nik 2 {14200 — 2k) Hy 4} S {Ho — Hy—1} Theorem 10n > 0,
e b=d=0andc=e=1
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Table 2
The harmonic number transformations of typ&_ A(n, k) =Y j_o B(n, £)
No  A(n k) B(n, 0) Note
(n+k)3 (1+3n 1421 n+()
1 (’;)# {1+ (n — 2k)(Hy — 3Hy1x)} (22)2 x 1;2“”7@ T Theorem 8z =0,
k n b=c=d=1
2(n A (1+3n (n+() (1+3n)
2 () o o (L+ 201 = 2) (H — 2Hy 110} ez < o a Theorem 8:
k n b=c=d=e=1
(n+A) (1+3n (;1-;—()2
3 (W (1+ (0 — 2 (Hg — 2Hy40)} Ay X I Theorem 9 =d =1,
( ) ) e c=0ande — oo
. ( )3( 2 {1+ (n - 2k)(3H on (1+3n 1 ‘ ({)(n-f—() Th Ob—d—1
k) oz k n+)} o X (D e eorem 9h =d =1,
GO én S
n c—ooande=0
2(n A 3 (1+3n ()1)(n+K)2
5 ()Lt s )1+ (- 2k)(2Hy — 3Hp 1)} A X e T Theorem 9z — oo,
(k) Gns o GO b e—d—1
(n+A (1+3n (n)Z(n+()2
6 (k) {1+ 3(n — 2k)(Hx — Hy 1)} (2;’ (-1t ?’%(—”5”) Theorem 92z = 0,
n ent b=c=d=1
(2”)2 (3)1+Z)
7 () A+ (= 20 (i + 2Hy 40} D)) L Theorem 105 =0,
€ Ce) c=e=1andd - oo
4 (n+k) (n)(n-M
8 (1) A1+ (n — 20)(4Hk — Hy ) (—1be Theorem 105 =1,
) ) c=e=0andd — o0
Nty 2 14+3n n+0y2
9 (’,1)3((2’;)) {1+ (1 — 20 (3Hy — 2H, 1)} (@’5) ) x (~1)! (ijz) Theorem 106 = d = 1,
k ¢ c=0ande — co
n-+ky2 14+3n ny 0,3
10 @ ((2’;)) (14201 — 2) (2H — Hy 42} ((Z';) ) x (~1)! (g)jmz) Theorem 106 = d = 1,
k n ¢ c=e=0
a @ 2
) G ){1+ (n — 2k)(4Hk + Hp 1)) =" x (y) (n-t;—é) Theorem 115 — oo,
k ¢ d=1landc=e=0
n 5("7;1‘) _ B D" 2 mt2 B
12 () {1+ (n — 2k)(SHy — Hy14)} 5= x ()" Theorem 116 =1,
(k) G0 c=d=e=0
13 (n)3 (2;)2 {1+ (n—2)(BH +2H,41))  (=1)" x (AR Theorem 115 — oo
k (,lzk)z k n+k ()7[)2 P . )
=0andc=e=
(2n)3 ( )(3n+()
14 () "ik 3{1+ (n — 2k)(Hy + 3Hy44)} nx (-1t W Theorem 11n > 0,
G @=6C¢) b=0Oande=d=e=1
3 n 2ny 3n+L
15 ()? (i,z {1+ (n — 20(2H; +3H,10)) G2 x (f;)% Theorem 115 — oo,
(k) (n) (4) c=d:e:l
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Table 2
(Continued)
No A(n, k) B, ) Note
16 (2)°(1+5(n — 2k) Hy) =D (M2 Theorem 126 =c=d =0,
e — oo, cf. [3, Eq. 5]
17 ()°(1+ 61— 26 Hy) L T ) S e TG Theorem 12:
b=c=d=e=0
2 2n+¢
18 ()° L1t (- 2GH+ Hypp)) (D' (Z) x ()P Theorem 126 =1,
(Y e b=c=d=0
21,2 3 3n+t
4
19 () (iiz)z {14200 — 20 H; + Hyy)) (=D (%) x % Theorem 126 =d =0,
k ¢ ¢ c=e=1

21,3 3n 2ny 3n+L
20 (3)° G (1430 — 200 (B + Ho)) (—D" B x (Z)ZM Theorem 125 =0,

oY @) CHRE) g

m2 G _ L G GO .

21 () A7 14200 = 20 (Hi + 2Hy )} (D" 25 x (}) =g ——L5  Theorem 12:
0 én AT e —d—eet

Now we take entry 4 from Table 2 to exemplify how to derive harmonic number identi-
ties from the theorems established in this paper.
Specifying withb = d = 1 ande = 0, we can state the transformation in Theorem 9 as

n 3 (n+k k+cn
Z <z> ( 2]; )2 Enfcn; {1 + (n — 2k)(3Hy — 2Hn+k - ch+k)}
k=0 (%) k

G E R )9 i)
(zn)Z ;)( 1) (l+2n+£)(n+cn)

n 4 12

It is easy to see that the coefficient correspondingitg, . is given by (5.3) withu = 3
andv = 2. In view of Theorem 13, the limit — oo of the last equation reads as

" a\e (T M &L 00T
Z(k) o2 {1+(n_2k)(3Hk_2Hn+k)}:ﬁZ(_l) W (5.4)
k=0 (k n =0 Y4

which is exactly the fourth identity displayed in Table 2.
We remark that the right-hand side of this last identity can further be evaluated by
Dixon’s formula and we therefore get the following closed formula:

"3 (n+k)2
> <k> (an)z {1+ (n = 2 (3Hy — 2H,11) }
k=0 k
0, n —odd
- { 0" (,3 )/ (@n% n=2m. (53)

2m

m,m,m
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Specifying free parameters in Theorems 2-12 and then applying Theorem 13, we can
similarly establish 26 closed summation formulas and 21 transformations on harmonic
numbers, which are displayed respectively in Tables 1 and 2.

As a partial answer to the question posed at the end of the paper by Paule and Schnei-
der [3], the examples 8, 9, 16, 17 numbered with in Table 1 and 16, 17 in Table 2 confirm
that the sum

n

A
Ein):=)Y (Z) {14100 — 20 Hi) (., eN)

k=0

are representable in terms of terminating hypergeometric seriesfar4 6. In addition,
the hypergeometric method presented in this paper shows that these binomial-harmonic
number sums trace back to the same origin, the very well poised terminating hypergeomet-
ric series. In fact, if we define
—X —n, 1_ (x+}’l)/2, <—l’l>)h_1 ‘ A
2 = F; -1
a(n,x) =14 A|: C4m)/2 (A—x)1 (=D,

where(w), stands for. copies ofw. Then it is not difficult to check that
E5(n) =Do{(x +n)2,.(n, x)}.

However, the problem posed by Paule and Schneider [3] remains opeh $086,
i.e., whetherz, (n) can be expressed as a single terminating hypergeometric series.
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