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1. Introduction

Let E be an elliptic curve over Q and put gE/Q = rank of E(Q). Let

ш(E/Q) = Ker

(
H1(Q, E) →

⊕
v

H1(Qv , E)

)
,

where v ranges over all places of Q and Qv is the completion of Q at v , denote its Tate–Shafarevich
group. As usual, L(E/Q, s) is the complex L-function of E over Q. Since E is now known to be
modular, Kolyvagin’s work [10] shows that ш(E/Q) is finite if L(E/Q, s) has a zero at s = 1 of order
� 1, and that gE/Q is equal to the order of the zero of L(E/Q, s) at s = 1. His proof relies heavily
on the theory of Heegner points and the work of Gross and Zagier. However, when L(E/Q, s) has a
zero at s = 1 of order � 2, all is shrouded in mystery. It is unknown whether or not L(E/Q, s) has
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a zero at s = 1 of order � gE/Q , and no link between L(E/Q, s) and ш(E/Q) has ever been proven.
In particular, the finiteness of ш(E/Q) is unknown for a single elliptic curve E/Q with gE/Q � 2.
This state of affairs is particularly galling for number theorists, since the conjecture of Birch and
Swinnerton–Dyer even gives an exact formula for the order of ш(E/Q), which predicts that in the
vast majority of numerical examples ш(E/Q) is zero when gE/Q � 2. We also stress that in complete
contrast to the situation for finding gE/Q , it is impossible to calculate ш(E/Q) by classical descent
methods, except for its p-primary subgroup for small primes p, usually with p � 5.

By contrast, in the p-adic world, it has long been known that the main conjectures of Iwasawa
theory provide a precise link between the Zp-corank of the p-primary subgroup of ш(E/Q) and the
multiplicity of the zero of certain p-adic L-functions at the point s = 1 in the p-adic plane, at least
when E has potential good ordinary reduction at p. However, it seems that little effort has been made
so far to exploit this deep connexion for theoretical purposes, and the only numerical applications to
date are given in the recent paper [16], see also [13,14] for the case of supersingular reduction at p.
The aim of this paper is to make some modest first steps in this direction in the special case of elliptic
curves with complex multiplication. We begin with a theoretical result. For each prime p, let tE/Q,p
denote the Zp-corank of the p-primary subgroup of ш(E/Q). While we cannot prove the vanishing
of tE/Q,p for infinitely many p in any new cases, we can at least establish the following rather general
weak upper bound for tE/Q,p for sufficiently large good ordinary primes p.

Theorem 1.1. Assume that E/Q admits complex multiplication. For each ε > 0, there exists an explicitly com-
putable number c(E, ε), depending only on E and ε , such that

tE/Q,p � (1 + ε)p − gE/Q (1)

for all primes p � c(E, ε) where E has good ordinary reduction.

We remark that a much stronger form of Theorem 1.1 is known in the geometric analogue (i.e. the
case of an elliptic curve over a function field in one variable over a finite field), thanks to the work of
Artin and Tate [20]. Indeed, their work shows that, in the geometric analogue, the number of copies
of Qp/Zp occurring in the Tate–Shafarevich group has an absolute upper bound which is independent
of p. We also note in passing that, after many special cases were established by earlier authors, the
Dokchitser brothers [7] have finally proven that, for all elliptic curves E over Q and all primes p, the
parity of gE/Q + tE/Q,p is equal to the parity of the order of zero at s = 1 of the complex L-function
of E/Q; in particular, the parity of tE/Q,p does not depend on p.

In the second part of the paper, we show that the p-adic methods of Iwasawa theory enable one
to push numerical calculations of tE/Q,p over a much larger range of p where E admits good ordinary
reduction than is possible by classical methods. We consider the elliptic curves

y2 = x3 − 17x (2)

and

y2 = x3 + 14x. (3)

Both curves admit complex multiplication by the ring of Gaussian integers Z[i], and have gE/Q = 2.

The conjecture of Birch and Swinnerton–Dyer predicts that ш(E/Q) = 0 for both curves.

Theorem 1.2. For the elliptic curves (2) and (3), we have tE/Q,p = 0 for all primes p with p ≡ 1 mod 4 and
p < 13500, excluding p = 17 for (2). Moreover ш(E/Q)(p) = 0 for all such primes p.

It is surprising that, for the curve (2), the p-adic L-function we consider has no other zeroes
beyond the zero of order 2 arising from the fact that E(Q) has rank 2, for all primes p < 13500 with
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p ≡ 1 mod 4 and p distinct from 17 (more precisely, our computations show that, for this curve and
these primes p, the power series Hp(T ) in I[[T ]], whose existence is given by Proposition 2.4, is of
the form T 2. Jp(T ), where Jp(T ) is a unit in I[[T ]]). For the curve (3), there are additional zeroes for
precisely the two primes p = 29 and 277 amongst all p ≡ 1 mod 4 with p < 13500.

2. p-Adic L-functions and the main conjecture

In this section, we briefly explain the theoretical aspects of the Iwasawa theory of elliptic curves
with complex multiplication, which underlie the proof of Theorem 1.1, and the computational work
described in Section 3. For a systematic account of the Iwasawa theory for curves with complex
multiplication, see the forthcoming book [4].

Let K be an imaginary quadratic field, and write O K for the ring of integers of K . We fix an
embedding of K in C. Let E be an elliptic curve defined over K such that EndK (E)⊗Z Q is isomorphic
to K , where EndK (E) denotes the ring of K -endomorphisms of E . It is well known that E is isogenous
over K to a curve whose ring of K -endomorphisms is isomorphic to O K . As the results we shall
discuss depend only on the isogeny class of E , we shall assume henceforth that

EndK (E) � O K . (4)

The existence of such an elliptic curve defined over K implies, by the classical theory of complex
multiplication, that K has class number 1. We choose a global minimal Weierstrass equation for E

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6 (5)

whose coefficients ai belong to O K . Write ψE for the Grössencharacter of K attached to E by the
theory of complex multiplication. Recall that if v is a finite place of K such that E has good reduction
at v , and if kv denotes the residue field of v , then the theory of complex multiplication shows that
there is a unique element πv of EndK (E) such that the reduction of πv modulo v is the Frobenius
endomorphism of the reduction of E modulo v , relative to kv . The Grössencharacter ψE is then given
by ψE(v) = πv . We write f for the conductor of ψE . It is well known that the prime factors of f are
precisely the primes of K where E has bad reduction. For each integer n � 1, we define

Lf

(
ψ̄n

E , s
) =

∏
(v,f)=1

(
1 − ψ̄n

E (v)

(N v)s

)−1

.

Further, L(ψ̄n
E , s) will denote the primitive Hecke L-function of ψ̄n

E .

Let L be the period lattice of the Néron differential

� = dx

2y + a1x + a3
,

and let

Φ(z, L): C/L � E(C)

be the isomorphism given by

Φ(z, L) =
(

℘(z, L) − a2
1 + 4a2

12
,

1

2

(
℘′(z, L) − a1

(
℘(z, L) − a2

1 + 4a2

12

)
− a3

))
,
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where ℘(z, L) denotes the Weierstrass ℘-function attached to L. Since O K has class number 1, there
exists Ω∞ in C× such that

L = Ω∞O K . (6)

As we shall explain below (see (24)), it is well known that

Ω−n∞ L
(
ψ̄n

E ,n
) ∈ K (7)

for all integers n � 1. Moreover,

L
(
ψ̄n

E ,n
) 
= 0 for n � 3, (8)

since the Euler product converges when n � 3 (in fact, (8) also holds for n = 2, but the proof is more
complicated). Put

cp(E) = Ω
−p∞ L

(
ψ̄

p
E , p

)
. (9)

If h is any integral ideal of K , we define

Eh = Ker
(

E(K̄ )
h−→ E(K̄ )

)
, (10)

where h is any generator of h. Define Ep∞ = ⋃
n�1 Epn . Let M be any Galois extension of K . For each

non-archimedean place w of M, let M w be the union of the completions at u of all finite extensions
of K contained in M. We recall that the classical p∞-Selmer group of E over M is defined by

Selp(E/M) = Ker
(

H1(Gal(M̄/M), Ep∞
)) →

∏
w

H1(Gal(M̄ w/M w), E(M̄ w)
)
,

where w runs over all non-archimedean places of M. The Galois group of M over K operates on
Selp(E/M) in the natural fashion. If A is any O K -module, A(p) will denote the submodule consisting
of all elements which are all annihilated by some power of a generator of p. Then we have the exact
sequence

0 → E(M) ⊗O K (Kp/Op) → Selp(E/M) → ш(E/M)(p) → 0, (11)

where ш(E/M) denotes the Tate–Shafarevich group of E over M. We will also need to consider the
compact Zp-module

Xp(E/M) = Hom
(
Selp(E/M),Qp/Zp

)
. (12)

When M is any finite extension of K , classical arguments from Galois cohomology show that
Xp(E/M) is a finitely generated Zp-module. In particular, we define

sp = Zp-rank of Xp(E/K ), tp = Zp-corank of ш(E/K )(p). (13)

It is clear from (11) that we have

sp = tp + nE/K , (14)

where nE/K = O K -rank of E(K ). We denote the number of roots of unity in K by w .
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Theorem 2.1. Let p be a prime number such that (i) (p, f) = 1, (ii) (p, w) = 1, and (iii) p splits in K , say
pO K = pp∗. Let mp (resp. mp∗ ) denote ordp(cp(E)) (resp. ordp∗ (cp(E))). Then we always have

mp � sp, mp∗ � sp∗ . (15)

Moreover, if either mp = nE/K or mp∗ = nE/K , then ш(E/K )(p) is finite.

In fact, a stronger form of the theorem holds if E is defined over Q. Assume therefore that E is
defined over Q, and write L(E/Q, s) for the Hasse–Weil L-function of E over Q. By the theorem of
Deuring–Weil, we have

L(E/Q, s) = L(ψE , s), (16)

where the L-function on the right is the complex L-function attached to the Grössencharacter ψE . Put

gE/Q = Z-rank of E(Q), rE/Q = order of zero at s = 1 of L(E/Q, s). (17)

As E is defined over Q, it has real periods, and we define Ω+∞ to be its smallest positive real period.
Thus

Ω+∞ = Ω∞α(E), (18)

where α(E) is some non-zero element of O K . Put

c+
p (E) = (

Ω+∞
)−p

L
(
ψ̄

p
E , p

)
. (19)

Let Ẽ p denote the reduction of E modulo p.

Theorem 2.2. Assume that E is defined over Q. Then c+
p (E) ∈ Q. Let p be a prime number such that (i) E

has good reduction at p, (ii) (p, w) = 1, (iii) p splits in K , and (iv) (p,α(E)) = 1. Assume also that rE/Q ≡
gE/Q mod 2. If we have

ordp
(
c+

p (E)
)
< gE/Q + 2, (20)

then ш(E/K )(p) is finite. Moreover, if

ordp
(
c+

p (E)
) = gE/Q, (21)

and Ẽ p(Fp) has order prime to p with (p,6) = 1, then ш(E/K )(p) = 0.

We shall say a prime p satisfying (i)–(iv) of Theorem 2.2 is exceptional for E if

ordp
(
c+

p (E)
)
> gE/Q. (22)

For example, for the curve (3), with gE/Q = 2, the primes p = 29,277 are the only exceptional
primes congruent to 1 mod 4 for p < 13500. However, for p = 29,277, our calculations show that
ordp(c+

p (E)) = 3, and so ш(E/K )(p) is finite. For these two exceptional primes, C. Wuthrich com-
puted the Mazur–Swinnerton–Dyer p-adic L function for the curve E defined by (3), and showed in
this way that we have also that ш(E/K )(p) = 0 for both primes. It is surprising that there are no
exceptional primes p congruent to 1 mod 4 for the curve (2) with p < 13500.
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For all integers n � 1, let E ∗
n (z, L) denote the Eisenstein series of L, as defined by Eisenstein (see

Weil [19] or [9]). In particular, for n � 3, we have

E ∗
n (z, L) = (−1)n

(n − 1)!
(

d

dz

)n−2(
℘(z, L)

)
. (23)

The following fundamental formula, which will be the basis of our subsequent work, is proven in [5].

Theorem 2.3. Let f be any generator of the conductor f of ψE . Then, for all integers n � 1, we have
E ∗

n (Ω∞
f , L) ∈ K (Ef), and

wΩ−n∞ Lf

(
ψ̄n

E ,n
) = f −n TraceK (E f )/K

(
E ∗

n

(
Ω∞

f
, L

))
. (24)

Note that (7) is an immediate consequence of this result.
We now fix a prime number p satisfying (p, f) = (p, w) = 1 and pO K = pp∗ , where p, p∗ are

distinct ideals of K . We pick one of these primes, say p, and an embedding

ip : K̄ ↪→ Q̄p, (25)

which induces p on K . For simplicity, we shall usually omit ip from subsequent formulae. As was
shown in [6], (see also [4]), there exists a p-adic L-function which essentially interpolates the image
of the L-values (7). We only state the precise result for the branch of this p-adic L-function which is
needed for the proof of Theorem 1.1.

Let Êp be the formal group of E at p, so that we can take t = −x/y to be a parameter of Êp.

Let Ĝm be the formal multiplicative group, and write u for its parameter. Denote by I the ring of
integers of the completion of the maximal unramified extension of Qp . If T is a variable, then I[[T ]]
will denote, as usual, the ring of formal power series in T with coefficients in I . As Êp is a formal
group of height 1 (in fact, it is even a Lubin–Tate group over Zp attached to the parameter ψE (p)), it
is well known that there is an isomorphism over I

δp: Ĝm � Êp, (26)

which is given by a formal power series t = δp(u) in I[[u]]. We can then define the p-adic period Ωp

in I × by

Ωp = δp(u)

u

∣∣∣∣
u=0

. (27)

Proposition 2.4. Assume Ω∞ and Ωp are fixed. Then there exists a unique power series Hp(T ) in I[[T ]] such
that, for all integers n � 1 with n ≡ 1 mod (p − 1), we have

Ω−n
p Hp

(
(1 + p)n − 1

) = Ω−n∞ (n − 1)!L(
ψ̄n

E ,n
)(

1 − ψn
E (p)

Np

)
. (28)

For a proof of the existence of this p-adic L-function Hp(T ), see [6] or [4]. Note that when n ≡
1 mod (p −1), f is the exact conductor of ψ̄n

E , and so Lf(ψ̄
n
E , s) coincides with the primitive L-function

L(ψ̄n
E , s).

This p-adic L-function is related to descent theory on E via the so-called “one variable main con-
jecture” for the Iwasawa theory of E over the unique Zp-extension of K unramified outside p. Define



J. Coates et al. / Journal of Algebra 322 (2009) 657–674 663
F∞ = K (Ep∞), G = Gal(F∞/K ).

The action of G on Ep∞ defines a homomorphism

χp : G → Aut(Ep∞) = Z×
p (29)

which is an isomorphism because Êp is a Lubin–Tate group. Let K∞ be the unique Zp-extension
contained in F∞ (class field theory shows that K∞ is the unique Zp-extension of K unramified out-
side p). Put

Γ = Gal(K∞/K ), Λ(Γ ) = lim← Zp[Γ/U ],

where U runs over the open subgroups of Γ . There is a natural continuous action of Γ on Xp(E/K∞),

and this extends to an action of the Iwasawa algebra Λ(Γ ). Since it is known that Xp(E/K∞) is
a finitely generated torsion Λ(Γ )-module (see [4,6]), it follows from the structure theory for such
modules that there is an exact sequence of Λ(Γ )-modules

0 →
r⊕

i=1

Λ(Γ )/ f iΛ(Γ ) → Xp(E/K∞) → D → 0,

where f1, . . . , fr are non-zero elements of Λ(Γ ) and D is a finite Λ(Γ )-module. We now pick the
unique topological generator γp of Γ such that χp(γp) = 1 + p, and write

j : Λ(Γ ) → Zp[[T ]]

for the unique isomorphism of topological Zp-algebras with j(γp) = 1 + T . For simplicity, put

Bp(T ) = j

(
r∏

i=1

f i

)
. (30)

The power series Bp(T ) is uniquely determined up to multiplication by a unit in Zp[[T ]], and is called
a characteristic power series for Xp(E/K∞). We shall make essential use of the following deep result
(see [15], or [4]).

Theorem 2.5 (One variable main conjecture).

Hp

(
(1 + p)(1 + T ) − 1

)
I[[T ]] = Bp(T )I[[T ]].

In addition, we shall need (see [12, Chapter 4, Corollary 16]).

Proposition 2.6. The two groups ш(E/K )(p) and ш(E/K )(p∗) have the same Zp-corank. In particular, one is
finite if and only if the other is also finite.

We can now prove Theorem 2.1. Since χp is an isomorphism, we have Ep∞ (K∞) = 0. It follows
that the restriction map from Sp(E/K ) to Sp(E/K∞) is injective, and by duality, we obtain a surjective
Γ -homomorphism

Xp(E/K∞) → Xp(E/K ). (31)
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Recall that sp denotes the Zp-rank of Xp(E/K ). As Γ acts trivially on Xp(E/K ), it follows from (31) by
a well-known property of characteristic ideals of torsion Λ(Γ )-modules, that T sp must divide Bp(T )

in Zp[[T ]]. Hence we conclude from Theorem 2.5 that

Hp

(
(1 + p)(1 + T ) − 1

) = T sph(T ) (32)

for some h(T ) in I[[T ]]. Evaluating both sides at (1 + p)n−1 − 1 for any n in Z, we conclude that we
always have

Hp

(
(1 + p)n − 1

) ≡ 0 mod psp . (33)

Taking n = p, and noting that (1 − ψE (p)p

Np
) is a unit at p, we conclude from (33) and Proposition 2.4

that

cp(E) ≡ 0 mod psp . (34)

Replacing p by p∗, the same argument shows that

cp(E) ≡ 0 mod (p∗)sp∗ . (35)

Hence (15) follows. Moreover, if mp = nE/K , then tp = 0 and so tp∗ = 0 by Proposition 2.6. A similar
argument holds if mp∗ = nE/K . This completes the proof of Theorem 2.1.

Corollary 2.7. We have mp = nE/K if and only if the characteristic power series of Xp(E/K∞) can be taken to
be T nE/K .

Proof. If mp = nE/K , the above argument shows that we must have sp = nE/K , and h(0) a p-adic unit.
It follows from Theorem 2.5 that Bp(T ) must be of the form T nE/K times a unit in Zp[[T ]]. Conversely,
if the characteristic power series of Xp(E/K∞) can be taken to be T nE/K , then Theorem 2.5 shows
that Hp(T ) is equal to T nE/K times a unit in I[[T ]], whence it is plain that mp = nE/K . This completes
the proof. �

Our numerical calculations show that, for the elliptic curve

y2 = x3 − 17x, with nE/K = 2,

we have mp = 2 for all primes p with p ≡ 1 mod 4, p 
= 17, and p < 13500. Thus the characteristic
power series of Xp(E/K∞) is T 2 for all such primes. On the other hand, for the elliptic curve

y2 = x3 + 14x, with nE/K = 2,

we have mp = 2 for all primes p with p ≡ 1 mod 4 and p < 13500, except p = 29,277. Thus for all
such primes, with the exception of these two, the characteristic power series of Xp(E/K∞) is T 2.

We now establish Theorem 2.2. Assuming that E is defined over Q, we have

f̄ = f, and ψE(ā) = ψE(a) (36)

for all integral ideals a of K with (a, f) = 1. Hence

L
(
ψ

p
E , s

) = L
(
ψ̄

p
E , s

)
.
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Evaluating at s = p, we conclude that

L
(
ψ̄

p
E , p

) ∈ R.

As Ω+∞ is real, it follows that

c+
p (E) ∈ K ∩ R = Q.

As before, let tp (resp. tp∗ ) be the Zp-corank of ш(E/K )(p) (resp. ш(E/K )(p∗)), and let tE/Q,p be
the Zp-corank of ш(E/Q)(p). Then we claim that

tE/Q,p = tp = tp∗ . (37)

Indeed, the second equality is just Proposition 2.6. To prove the first equality, note that E is isoge-
nous over Q to the twist E ′ of E by the quadratic character of K (see, for example, [8]). Thus,
ш(E/Q)(p) and ш(E ′/Q)(p) have the same Zp-corank, and hence the Zp-corank of ш(E/K )(p) is
equal to 2tE/Q,p . On the other hand, the Zp-corank of ш(E/K )(p) is clearly equal to tp +tp∗ = 2tE/Q,p ,
by Proposition 2.6. Hence tE/Q,p = tp , thereby proving (37).

Assume now that ш(E/K )(p) is infinite, so that tE/Q,p > 0. The parity theorem for E/Q and the
prime p (due to Greenberg in this case, but see the more general results of [7,11]) asserts that

gE/Q + tE/Q,p ≡ rE/Q mod 2.

By our hypothesis that gE/Q and rE/Q have the same parity, it follows that tE/Q,p must be even,
and therefore tE/Q,p � 2, in particular. Hence by (37) tp � 2. Noting that gE/Q = nE/K , and that
(p,α(E)) = 1, we conclude from (34) that

ordp
(
c+

p (E)
)
� gE/Q + 2.

Hence, if (20) holds, then we must have ш(E/K )(p) is finite.
Assume now that ordp(c+

p (E)) = gE/Q . We deduce easily from Theorem 2.5 and (32), that

Bp(T ) = T nE/K Rp(T ),

where Rp(T ) is a unit in Zp[[T ]], so that Rp(0) is a unit in Zp . Hence, by an important general
theorem of Perrin-Riou [12], it follows that the canonical p-adic height pairing

〈,〉p : E(K ) ⊗O Zp × E(K ) ⊗O Zp → Qp,

where O is embedded in Zp via ip , is non-degenerate. Further, we have that

#
(
ш(E/K )(p)

) × det〈,〉p ×
(

1 − ψE/K (p)

Np

)
(38)

is also a p-adic unit, where det denotes the determinant of the height pairing; for this last assertion,
we need our hypothesis that (p,6) = 1. However, if Ẽ p(Fp) has order prime to p and (p,6) = 1, then
it follows from the results of [12] that det〈,〉p is a p-adic integer. Hence we conclude from (38) that
ш(E/K )(p) is trivial. A similar argument proves the corresponding statement for ш(E/K )(p∗) and this
completes the proof of Theorem 2.2.

We next establish an upper bound for tp and tp∗ when p is a sufficiently large prime which splits
in K as pO K = pp∗.
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Theorem 2.8. For each ε > 0, there exists an explicitly computable number c(E, ε), depending only on E
and ε , such that

tp � (1 + ε)p − nE/K , tp∗ � (1 + ε)p − nE/K , (39)

for all primes p � c(E, ε) which split in K as pO K = pp∗.

We note that, when E is defined over Q, Theorem 1.1 is an immediate consequence of this result,
since, thanks to (37), we then have tE/Q,p = tp , nE/K = gE/Q.

We now give the proof of Theorem 2.8 which is a simple application of the formula (24), and the
fact that L(ψ̄

p
E , p) 
= 0 (recall that the latter assertion is true because the Euler product for L(ψ̄

p
E , s)

converges for s = p). Put

Θp = TraceK (Ef)/K

(
E ∗

p

(
Ω∞

f
, L

))
. (40)

We emphasize that in the proof E is fixed and p is varying over all sufficiently large prime numbers
which split in K .

Lemma 2.9. We have |Θp| � dp
1 , where d1 > 1 is a real number depending only on E and not on p.

Proof. We may assume p � 3. By (23), we have

E ∗
p

(
Ω∞

f
, L

)
= (−1)p

(p − 1)!
(

d

dz

)p−2(
℘(z, L)

)∣∣∣∣
z= Ω∞

f

. (41)

Let B denote a set of integral ideals of K , prime to f, such that the Galois group of K (Ef)/K consists
precisely of the Artin symbols σb of the ideals b in B. From the definition of the Grössencharacter ψE

and (41), we have

E ∗
p

(
Ω∞

f
, L

)σb

= E ∗
p

(
ψE(b)

Ω∞
f

, L
)

.

Thus, by Cauchy’s integral formula, we obtain

E ∗
p

(
Ω∞

f
, L

)σb

= (−1)p

(p − 1)2π i

∫
Cb

℘(z, L)dz

(z − ψE (b)Ω∞
f )p−1

,

where Cb is a circle with centre ψE (b)Ω∞
f and sufficiently small radius so that no element of L lies in

or on Cb . Estimating the integral, it is plain that

∣∣∣∣E ∗
p

(
Ω∞

f
, L

)σb
∣∣∣∣ � dp

2 ,

where d2 > 1 depends only on E . Summing over all b in B, the assertion of the lemma follows. �
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Lemma 2.10. There exists a rational integer d3 > 1, depending only on E and not on p, such that

dp
3 (p − 1)!E ∗

p

(
Ω∞

f
, L

)

is an algebraic integer.

Proof. We may assume that p � 5. Since

E ∗
p(λz, λL) = λ−p E ∗

p(z, L)

for any complex number λ, it suffices to prove the lemma when our generalized Weierstrass equa-
tion (5) for E has the property that g2(L)/2 and g3(L) both belong to O K ; here g2(L) and g3(L)

denote the usual Weierstrass invariants attached to (5). Now the differential equation

(
℘′(z, L)

)2 = 4℘(z, L)3 − g2(L)℘ (z, L) − g3(L)

implies that

℘(2)(z, L) = 6℘(z, L)2 − g2(L)

2
.

A simple recurrence argument on n then shows that, for all n � 1, we have

℘(2n)(z, L) = Dn
(
℘(z, L)

)
,

where Dn(X) is a polynomial in O K [X] of degree n + 1. It follows immediately that

℘(2n+1)(z, L) = Bn
(
℘(z, L)

)
℘′(z, L),

where Bn(X) = d
dX (Dn(X)) is a polynomial of degree n in O K [X]. Taking n = p−3

2 , the assertion the
lemma is now clear from (41), on taking d3 to be a positive integer such that

d3.℘

(
Ω∞

f
, L

)
, d3.℘

′
(

Ω∞
f

, L
)

are algebraic integers. �
We can now complete the proof of Theorem 2.8. We may assume that (p, f) = (p, w) = 1. By (24),

we then have

∣∣Ω−p∞ L
(
ψ̄

p
E , p

)∣∣
p

= |Θp|p = ∣∣(p − 1)!Θp
∣∣
p
, (42)

and similarly for p∗ . Moreover, in view of Lemmas 2.9 and 2.10,

dp
3 (p − 1)!Θp

is an element of O K whose complex absolute value is at most dp
4 (p − 1)!, where d4 > 1 does not

depend on p. Since Θp 
= 0 because L(ψ̄
p
E , p) 
= 0, we conclude from the product formula that
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∣∣dp
3 (p − 1)!Θp

∣∣
p

× ∣∣dp
3 (p − 1)!Θp

∣∣
p∗ � d−2p

4

(
(p − 1)!)−2

. (43)

It follows that, we conclude that for each ε > 0, we have

|Θp|p × |Θp|p∗ � p−2(1+ε)p

for all p � c(E, ε). On the other hand, by Theorem 2.1, and (42), we have

|Θp|p × |Θp|p∗ � p−(sp+sp∗ ).

Thus

sp + sp∗ � 2(1 + ε)p

when p � c(E, ε). As sp = sp∗ , the proof of the theorem is complete.
Define the p-adic L-functions

LE,p(s) = Hp

(
(1 + p)s − 1

)
, LE,p∗(s) = Hp∗

(
(1 + p)s − 1

)
,

where s is now a variable in Zp . Put

rE,p = ords=1LE,p(s), rE,p∗ = ords=1LE,p∗(s).

We end this section by remarking that exactly the same argument which establishes Theorem 2.8
proves the following result.

Theorem 2.11. For each ε > 0, there exists an explicitly computable number c(E, ε) such that

rE,p + rE,p∗ � 2(1 + ε)p

for all primes p � c(E, ε) with p splitting in K as pO K = pp∗.

3. Computations for y2 = x3 − Dx

The goal of this section is to explain how one can use formula (24) to compute

cp(E) = Ω
−p∞ L

(
ψ̄

p
E , p

)
in practice, for the family of curves

E: y2 = x3 − Dx,

where D is a fourth-power free non-zero rational integer. For this family of curves, K = Q(i) and the
isomorphism (4) is given explicitly by mapping i to the endomorphism which sends (x, y) to (−x, iy).

See [1] for earlier computational work on the Iwasawa theory of this family of curves.
We begin by analysing the Galois theory of the fields K (Ef) where f again denotes the conductor

of ψE . If h is any integral ideal of K , we write

φ(h) = #
((

Z[i]/h)×)
.
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The next lemma is a very easy consequence of the existence of the Grössencharacter ψE (see
[5, Lemma 3], or [3, Lemma 7]) and the fact that no non-trivial root of unity in K is ≡ 1 mod h,
when h is a multiple of f.

Lemma 3.1. Let h be any integral ideal of K which is divisible by the conductor f of ψE . Then K (Eh) coincides
with the ray class field of K modulo h. In particular, the degree of K (Eh)/K is equal to φ(h)/4.

The following well-known lemma computes f for the curve E .

Lemma 3.2. Let � be the product of the distinct prime factors of D. Then f = 4�Z[i] if D 
≡ 1 mod 4 and
f = (1 + i)3�Z[i] if D ≡ 1 mod 4.

Let E ′ denote the elliptic curve in our family with D = 1, i.e.

E ′: y2 = x3 − x. (44)

Lemma 3.3. Assume that E = E D with D divisible by an odd power of an odd prime. Then the extension
K (E(1+i)k ) is equal to K when k = 1, to K (D1/2) when k = 2, and to K (D1/4) when k = 3. For k � 3, we have

K (E(1+i)k ) = K
(

D1/4, E ′
(1+i)k

)
and this field has degree 2k−1 over K , and degree 4 over K (E ′

(1+i)k ).

Proof. The assertions for k = 1 and k = 2 are readily verified. Put α = D1/4. Over K (α), we have an
isomorphism

E � E ′ (45)

given by mapping the point (x, y) on E to the point (x/α2, y/α3) on E ′. Now E ′ has conduc-
tor (1 + i)3, and K (E ′

(1+i)3 ) = K , whence it follows from (45) that K (E(1+i)3 ) = K (α). Similarly, if

k � 3, then (45) implies that K (E(1+i)k ) = K (α, E ′
(1+i)k ). Now Lemma 3.1 applied to E ′ shows that

the degree of K (E ′
(1+i)k ) over K is 2k−3 when k � 3. Moreover, as E ′ has good reduction outside the

prime (1 + i)Z[i], this is the only prime of K which can ramify in the extension K (E ′
(1+i)k ). Hence

[K (α) : K ] = 4, and K (α) ∩ K (E ′
(1+i)k ) = K because of the existence of the odd prime factor dividing

D to an odd power. This completes the proof of the lemma. �
Lemma 3.4. Assume that D is odd. Then the degree of K (E D)/K is φ(DZ[i]).

Proof. We can assume D 
= 1. By the Weil pairing, K (E ′
D) contains the field generated over K by

the |D|th roots of unity. Hence K (E ′
D) contains

√
D (the sign of D is irrelevant since K contains the

fourth roots of unity). As above, let α = D1/4. Thus K (E ′
D ,α) has degree at most 2 over K (E ′

D).
Let R D denote the ray class field of K modulo DZ[i]. Let (u, v) be a primitive D-division

point on E . Then the classical theory of complex multiplication shows that R D = K (u2), and that
[R D : K ] = φ(DZ[i])/4. To prove the lemma, it therefore suffices to show that there exists an element
τ of Gal(K (E D)/K ) such that τ fixes R D , and τ is of exact order 4. We do this as follows. As remarked
in the previous paragraph, K (E ′

D) has degree φ(DZ[i]) over K because D is odd. Moreover, a primitive
D-division point on E ′ is given by (u′, v ′), where u′ = u/α2, v ′ = v/α3. Recalling that multiplication
by i on E ′ is given by sending (x, y) to (−x, iy), it follows that there exists σ in Gal(K (E ′

D)/K ) such
that
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σ(u′, v ′) = (−u′, iv ′). (46)

Now let σ denote any extension of σ to the field K (E ′
D ,α) = K (E D ,α). Since this field has degree at

most 2 over K (E ′
D), we must have that either σ(α) = −α or σ(α) = α. Applying σ to (u′, v ′), we

conclude from (46) that

σu = −u, σ v = −iv or σu = −u, σ v = iv.

It follows from these formulae that σ 4 fixes K (E D), but σ 2 does not. Also σ fixes R D . Hence we may
take τ to be restriction of σ to Gal(K (E D)/K ), and the proof of the lemma is complete. �
Lemma 3.5. Let D = 2a M, where a = 1 or 3, and M is odd. Then K (EM) has degree φ(MZ[i]) over K , and
K (EM , D1/4) has degree 4φ(MZ[i]) over K .

Proof. As remarked earlier, K (E ′
M) has degree φ(MZ[i]) over K because M is odd. Also, by

Lemma 3.1, K (E ′
8M) is the ray class field of K modulo 8M , and hence we have

[
K

(
E ′

8M

) : K
] = 8φ

(
MZ[i]).

Since [K (E ′
8) : K ] = 8 by Lemma 3.1, we conclude that

K
(

E ′
M

) ∩ K
(

E ′
8

) = K . (47)

By the Weil pairing, K (E ′
M) contains the field of |M|th roots of unity, and hence also

√
M. Similarly,

K (E ′
8) contains the eighth roots of unity, and so also

√
2. But K (

√
2)/K is an extension of degree 2,

and thus, by (47),
√

2 does not belong to K (E ′
M). It follows that

√
D does not belong to K (E ′

M) since
a = 1 or 3. Hence

[
K

(
E ′

M ,α
) : K

] = 4φ
(
MZ[i]).

But E and E ′ are isomorphic over K (α), whence

K
(

E ′
M ,α

) = K (EM ,α).

On the other hand, it is clear that [K (EM ,α) : K ] divides 4φ(MZ[i]). It follows that

[
K (EM) : K

] = φ
(
MZ[i]), [

K (EM ,α) : K (EM)
] = 4,

and the proof of the lemma is complete. �
We now briefly describe the theoretical steps underlying our numerical calculations of ordp(c+

p (E))

for the curve E when D is divisible by at least one odd prime. The Weierstrass equation associated to
E is

℘′(z, L)2 = 4℘(z, L)3 − 4D℘(z, L). (48)

Write f = f Z[i] for the conductor of ψE , and define
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u = ℘

(
Ω∞

f
, L

)
, v =

(
℘′

(
Ω∞

f
, L

))
/2. (49)

By Lemma 3.1, K (Ef) is the ray class field of K modulo f. Hence

K (Ef) = K
(
u2) = K (u), v ∈ K (u), (50)

and the degree of K (Ef) over K is d = φ(f)/4. As f is divisible by at least two distinct primes of K ,
a theorem of Cassels [2] shows that both u and v are algebraic integers. Moreover, we can compute
explicitly the monic irreducible polynomial of u over Z[i], which has degree d, and which we denote
by G(X). Once we have computed this polynomial G(X), we can determine

sm = TraceK (Ef)/K
(
um)

(m = 1,2, . . . ,d − 1) (51)

recursively, using the following classical formula. Let

G(X) = (X − u1) . . . (X − ud) = Xd − σ1 Xd−1 + · · · + (−1)dσd,

where σ1, . . . , σd are the elementary symmetric functions in u1, . . . , ud. Then we have (see for exam-
ple, [18, Vol. I, p. 81]),

sm = (−1)m−1mσm +
m−1∑
h=1

(−1)h−1sm−hσh (m � d). (52)

Now we recall that, by virtue of formulae (23) and (24), we have

c+
p (E) = −w−1( f α(E)

)−p(
(p − 1)!)−1

Ξp, (53)

where α(E) is as in (18), and

Ξp = TraceK(Ef)/K

(
℘(p−2)

(
Ω∞

f
, L

))

for all odd primes p. For our curve E = E D , we have w = 4. Moreover, we have

Ω+∞ = Ω/D1/4 if D > 0, Ω+∞ = Ω/(−D/4)1/4 if D < 0,

where Ω = 2.622058 . . . is the least positive real period of the curve E ′ (44). Hence α(E) = 1 when
D > 0, and α(E) = (1 + i) when D < 0. We now fix the value of f following the four cases: (i) D > 0
and D ≡ 1 mod 4, (ii) D < 0 and D ≡ 1 mod 4, (iii) D > 0 and D 
≡ 1 mod 4, and (iv) D < 0, and
D 
≡ 1 mod 4. Following these four cases, we take f to be 2(1 + i)�, (1 + i)3�, 4�, and 4�, so that
the respective values of f α(E) are given by 2(1 + i)�, −4�, 4�, and 4�(1 + i).

As explained in the proof of Lemma 2.10, we have

℘(p−2)

(
Ω∞

f
, L

)
= B p−3

2

(
℘

(
Ω∞

f
, L

))
℘′

(
Ω∞

f
, L

)
, (54)

where B p−3
2

(X) is a polynomial in Z[X] of degree (p − 3)/2. This polynomial can easily computed

recursively, using the differential equation (48) (see the explicit examples below when D = 17 and
D = −14).
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As the theory tells us that v ∈ K (u), there exists a polynomial J (X) in K [X] such that

℘′
(

Ω∞
f

, L
)

= J

(
℘

(
Ω∞

f
, L

))
. (55)

In fact, in the numerical examples we have considered, it is always the case that J (X) belongs
to Z[i][1/ f ][X], and we shall assume henceforth that this is the case. Hence, multiplying together
B p−3

2
(X) and J (X), and using the fact that G(℘ (Ω∞

f , L)) = 0, we deduce that

℘(p−2)

(
Ω∞

f
, L

)
= Ap

(
℘

(
Ω∞

f
, L

))
,

where A p(X) is a polynomial in Z[i][1/ f ][X] of degree at most d − 1. Writing A p(X) = ∑d−1
j=0 a j,p X j,

it follows that

Ξp =
d−1∑
j=0

a j,ps j,

and we can then compute c+
p (E) using the formula (53). The machine then calculates ordp(c+

p (E))

(which our theory shows is always � 0), followed by

c+
p (E) mod pk, where k = ordp

(
c+

p (E)
) + 1.

Finally, we note that Ẽ p(Fp) has order prime to p for all p > 5 with (p, D) = 1. This is clear when
p ≡ 3 mod 4, since then Ẽ p is supersingular. For p ≡ 1 mod 4, say pZ[i] = p.p∗, we have ap =
TraceK/Q(ψE (p)) must be even because 2 is ramified in Q(i), from which it follows that we cannot
have ap = 1, which clearly implies the assertion for these primes p.

The computations described above have been carried out for the two curves D = 17 and D = −14
for all primes p with p ≡ 1 mod 4 and p < 13,500 (the prime p = 17 is excluded when D = 17). We
have

D = 17, f = 2(1 + i)17, d = 256

D = −14, f = 56, d = 384.

For both cases, the polynomials G(X), J (X), B p−3
2

(X), A p(X) have been computed explicitly, and are

given at [17], as they are too elaborate to include here. However, as an illustrative example where the
coefficients are still not too enormous, we give now the polynomials B13(X), which occur for p = 29,

D = −14,

B13(X) = 7496723869173 × 224(431525237696X + 3877463640960X3

+ 5545863414000X5 + 2565173520000X7 + 490959787500X9

+ 40724775000X11 + 1212046875X13),
D = 17,
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B13(X) = 7496723869173 × 224(1383348216959X − 10236515835780X3

+ 12057373443375X5 − 4592819790000X7 + 723915196875X9

− 49451512500X11 + 1212046875X13).
For these two curves, and our range of p, our computations show that ordp(c+

p (E)) = 2, except for

the two primes p = 29,277 for the curve with D = −14. Table 1 gives the value of c+
p (E) mod p3 for

both curves and our p in the range 5 � p < 1000, while Table 2 gives the analogous data for p in the
range 11000 < p < 12000. Again the values for all our p in the range p < 13500 can be found at [17].

Finally, for the curve y2 = x3 + 14x and the two exceptional primes p = 29,277, we have

c+
29(E) ≡ 27 · 293 mod 294,

c+
277(E) ≡ 155 · 2773 mod 2774.

Table 1
c+

p (E) · p−2 mod p for 5 � p < 1000 and p ≡ 1 mod 4.

p D = 17 D = −14 p D = 17 D = −14

5 3 4 13 8 4
17 not valid 7 29 22 0
37 20 9 41 29 12
53 45 42 61 26 60
73 26 56 89 21 65
97 83 90 101 59 53

109 34 68 113 36 47
137 107 126 149 60 111
157 145 48 173 44 149
181 70 157 193 115 11
197 145 54 229 178 109
233 34 174 241 141 7
257 199 9 269 188 139
277 235 0 281 129 107
293 250 133 313 69 245
317 237 191 337 19 151
349 113 263 353 143 15
373 75 236 389 257 300
397 78 68 401 349 340
409 11 313 421 152 244
433 432 152 449 423 140
457 288 376 461 133 37
509 103 407 521 106 423
541 33 422 557 276 84
569 423 209 577 39 212
593 523 18 601 373 508
613 429 590 617 133 536
641 285 489 653 96 540
661 20 330 673 630 197
677 332 185 701 105 95
709 437 108 733 260 462
757 357 672 761 363 596
769 751 343 773 13 369
797 123 93 809 443 212
821 6 347 829 645 823
853 48 635 857 5 502
877 132 603 881 82 591
929 845 766 937 341 100
941 253 642 953 794 866
977 548 98 997 302 401
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Table 2
c+

p (E) · p−2 mod p for 11000 < p < 12000 and p ≡ 1 mod 4.

p D = 17 D = −14 p D = 17 D = −14

11057 3236 10336 11069 7768 6637
11093 9234 5437 11113 832 9242
11117 6204 7965 11149 8885 1364
11161 1292 1636 11173 587 10503
11177 6184 4427 11197 8804 6750
11213 6409 8508 11257 192 1839
11261 700 6850 11273 5932 510
11317 1969 2892 11321 5451 10402
11329 5635 9145 11353 3322 7820
11369 6790 11276 11393 4532 358
11437 10570 3120 11489 8715 10941
11497 4837 6424 11549 7265 2757
11593 225 369 11597 8864 7113
11617 10691 1052 11621 7500 6521
11633 293 5463 11657 10665 4770
11677 10365 11566 11681 6023 5351
11689 11553 3152 11701 5851 11618
11717 10185 8521 11777 10882 3487
11789 6221 3509 11801 10632 3148
11813 2123 3767 11821 7340 128
11833 1715 9412 11897 8766 10281
11909 6032 11519 11933 1190 1783
11941 5023 6379 11953 10988 1162
11969 11669 11573 11981 1742 8384
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